Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.011
Filter
1.
Cancer Immunol Immunother ; 73(6): 110, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662248

ABSTRACT

Interleukin (IL)-33 is an important cytokine in the tumour microenvironment; it is known to promote the growth and metastasis of solid cancers, such as gastric, colorectal, ovarian and breast cancer. Our group demonstrated that the IL-33/ST2 pathway enhances the development of squamous cell carcinoma (SCC). Conversely, other researchers have reported that IL-33 inhibits tumour progression. In addition, the crosstalk between IL-33, cancer cells and immune cells in SCC remains unknown. The aim of this study was to investigate the effect of IL-33 on the biology of head and neck SCC lines and to evaluate the impact of IL-33 neutralisation on the T cell response in a preclinical model of SCC. First, we identified epithelial and peritumoural cells as a major local source of IL-33 in human SCC samples. Next, in vitro experiments demonstrated that the addition of IL-33 significantly increased the proliferative index, motility and invasiveness of SCC-25 cells, and downregulated MYC gene expression in SCC cell lines. Finally, IL-33 blockade significantly delayed SCC growth and led to a marked decrease in the severity of skin lesions. Importantly, anti-IL-33 monoclonal antibody therapy increase the percentage of CD4+IFNγ+ T cells and decreased CD4+ and CD8+ T cells secreting IL-4 in tumour-draining lymph nodes. Together, these data suggest that the IL-33/ST2 pathway may be involved in the crosstalk between the tumour and immune cells by modulating the phenotype of head and neck SCC and T cell activity. IL-33 neutralisation may offer a novel therapeutic strategy for SCC.


Subject(s)
Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Interleukin-33 , Lymphocyte Activation , Interleukin-33/metabolism , Humans , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/metabolism , Animals , Lymphocyte Activation/immunology , Neoplasm Invasiveness , Mice , Cell Line, Tumor , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology , Female
2.
Clin. transl. oncol. (Print) ; 26(4): 924-935, Abr. 2024. graf, ilus
Article in English | IBECS | ID: ibc-VR-55

ABSTRACT

Purpose: Non-small cell lung cancer (NSCLC) is a complex disease that remains a major public health concern worldwide. One promising avenue for NSCLC treatment is the targeting of transcription factors that regulate key pathways involved in cancer progression. In this study, we investigated the role of the transcription factor ZNF263 in NSCLC and its impact on the regulation of IL33, apoptosis, and autophagy. Methods: Levels of ZNF263 in tissues and cell lines were identified, after which the effects of its knockdown on cellular malignant behaviors, apoptosis and autophagy were assessed. Based on bioinformatics analysis, ZNF263 was found to bind to IL33 promoter, their mutual relationship was confirmed, as well as the role of IL33 in the regulation of ZNF263. The involvement of ZNF263 in the growth of xenograft tumors was assessed using tumor-bearing nude mouse models. Results: Experimental results revealed that ZNF263 was upregulated in NSCLC tissue samples and cell lines. Its expression level is positively correlated with cellular malignant behaviors. We further demonstrated that ZNF263 upregulated IL33 expression, which, in turn, promoted the proliferation and migration, inhibited apoptosis and autophagy in NSCLC cells. Furthermore, ZNF263 knockdown reduced the growth of xenograft tumors in nude mice. Conclusion: This finding suggests that the inhibition of ZNF263 or IL33 may represent a novel therapeutic strategy for NSCLC. Importantly, our results highlight the crucial role of transcription factors in NSCLC and their potential as therapeutic targets.(AU)


Subject(s)
Humans , Male , Female , Carcinoma, Non-Small-Cell Lung , Autophagy , DNA-Binding Proteins , Interleukin-33/metabolism , Interleukin-33/therapeutic use , Lung Neoplasms/pathology
3.
Front Immunol ; 15: 1335651, 2024.
Article in English | MEDLINE | ID: mdl-38566998

ABSTRACT

Regulatory T cells (Tregs) residing in visceral adipose tissue (VAT) play a pivotal role in regulating tissue inflammation and metabolic dysfunction associated with obesity. However, the specific phenotypic and functional characteristics of Tregs in obese VAT, as well as the regulatory mechanisms shaping them, remain elusive. This study demonstrates that obesity selectively reduces Tregs in VAT, characterized by restrained proliferation, heightened PD-1 expression, and diminished ST2 expression. Additionally, obese VAT displays distinctive maturation of dendritic cells (DCs), marked by elevated expressions of MHC-II, CD86, and PD-L1, which are inversely correlated with VAT Tregs. In an in vitro co-culture experiment, only obese VAT DCs, not macrophages or DCs from subcutaneous adipose tissue (SAT) and spleen, result in decreased Treg differentiation and proliferation. Furthermore, Tregs differentiated by obese VAT DCs exhibit distinct characteristics resembling those of Tregs in obese VAT, such as reduced ST2 and IL-10 expression. Mechanistically, obesity lowers IL-33 production in VAT DCs, contributing to the diminished Treg differentiation. These findings collectively underscore the critical role of VAT DCs in modulating Treg generation and shaping Treg phenotype and function during obesity, potentially contributing to the regulation of VAT Treg populations.


Subject(s)
Interleukin-33 , T-Lymphocytes, Regulatory , Humans , T-Lymphocytes, Regulatory/metabolism , Interleukin-33/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Obesity/metabolism , Dendritic Cells/metabolism
4.
Skelet Muscle ; 14(1): 6, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561845

ABSTRACT

BACKGROUND: The regenerative and adaptive capacity of skeletal muscles reduces with age, leading to severe disability and frailty in the elderly. Therefore, development of effective therapeutic interventions for muscle wasting is important both medically and socioeconomically. In the present study, we aimed to elucidate the potential contribution of fibro-adipogenic progenitors (FAPs), which are mesenchymal stem cells in skeletal muscles, to immobilization-induced muscle atrophy. METHODS: Young (2-3 months), adult (12-14 months), and aged (20-22 months) mice were used for analysis. Muscle atrophy was induced by immobilizing the hind limbs with a steel wire. FAPs were isolated from the hind limbs on days 0, 3, and 14 after immobilization for transcriptome analysis. The expression of ST2 and IL-33 in FAPs was evaluated by flow cytometry and immunostaining, respectively. To examine the role of IL-33-ST2 signaling in vivo, we intraperitoneally administered recombinant IL-33 or soluble ST2 (sST2) twice a week throughout the 2-week immobilization period. After 2-week immobilization, the tibialis anterior muscles were harvested and the cross-sectional area of muscle fibers was evaluated. RESULTS: The number of FAPs increased with the progression of muscle atrophy after immobilization in all age-groups. Transcriptome analysis of FAPs collected before and after immobilization revealed that Il33 and Il1rl1 transcripts, which encode the IL-33 receptor ST2, were transiently induced in young mice and, to a lesser extent, in aged mice. The number of FAPs positive for ST2 increased after immobilization in young mice. The number of ST2-positive FAPs also increased after immobilization in aged mice, but the difference from the baseline was not statistically significant. Immunostaining for IL-33 in the muscle sections revealed a significant increase in the number of FAPs expressing IL-33 after immobilization. Administration of recombinant IL-33 suppressed immobilization-induced muscle atrophy in aged mice but not in young mice. CONCLUSIONS: Our data reveal a previously unknown protective role of IL-33-ST2 signaling against immobilization-induced muscle atrophy in FAPs and suggest that IL-33-ST2 signaling is a potential new therapeutic target for alleviating disuse muscle atrophy, particularly in older adults.


Subject(s)
Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Humans , Aged , Mice , Animals , Interleukin-33/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Adipogenesis , Muscle, Skeletal/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Cell Differentiation/physiology
5.
Nutrients ; 16(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674885

ABSTRACT

The cellular and molecular mechanisms of atherosclerosis are still unclear. Type 2 innate lymphocytes (ILC2) exhibit anti-inflammatory properties and protect against atherosclerosis. This study aimed to elucidate the pathogenesis of atherosclerosis development using atherosclerosis model mice (ApoE KO mice) and mice deficient in IL-33 receptor ST2 (ApoEST2 DKO mice). Sixteen-week-old male ApoE KO and ApoEST2 DKO mice were subjected to an 8-week regimen of a high-fat, high-sucrose diet. Atherosclerotic foci were assessed histologically at the aortic valve ring. Chronic inflammation was assessed using flow cytometry and real-time polymerase chain reaction. In addition, saturated fatty acids (palmitic acid) and IL-33 were administered to human aortic endothelial cells (HAECs) to assess fatty acid metabolism. ApoEST2 DKO mice with attenuated ILC2 had significantly worse atherosclerosis than ApoE KO mice. The levels of saturated fatty acids, including palmitic acid, were significantly elevated in the arteries and serum of ApoEST2 DKO mice. Furthermore, on treating HAECs with saturated fatty acids with or without IL-33, the Oil Red O staining area significantly decreased in the IL-33-treated group compared to that in the non-treated group. IL-33 potentially prevented the accumulation of saturated fatty acids within atherosclerotic foci.


Subject(s)
Atherosclerosis , Fatty Acids , Interleukin-33 , Mice, Knockout , Animals , Interleukin-33/metabolism , Interleukin-33/genetics , Atherosclerosis/metabolism , Male , Mice , Fatty Acids/metabolism , Humans , Disease Models, Animal , Palmitic Acid/pharmacology , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Diet, High-Fat , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Endothelial Cells/metabolism , Mice, Knockout, ApoE , Lymphocytes/metabolism , Mice, Inbred C57BL , Aorta/metabolism , Aorta/pathology , Immunity, Innate
6.
Immun Inflamm Dis ; 12(4): e1252, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652015

ABSTRACT

We developed pulmonary emphysema and a type 2 airway inflammation overlap mouse model. The bronchoalveolar lavage (BAL) interleukin 13 (IL-13), IL-4, and IL-5 levels in the overlap model were higher than in the pulmonary emphysema model and lower than in the type 2 airway inflammation model, but IL-33 level in the lung was higher than in other models. IL-33 and interferon-γ (IFNγ) in lungs may control the severity of a type 2 airway inflammation in lung.


Subject(s)
Disease Models, Animal , Interleukin-33 , Pulmonary Emphysema , Animals , Interleukin-33/metabolism , Mice , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/pathology , Pulmonary Emphysema/etiology , Pulmonary Emphysema/immunology , Bronchoalveolar Lavage Fluid/immunology , Lung/pathology , Lung/immunology , Lung/metabolism , Inflammation/immunology , Inflammation/metabolism , Interferon-gamma/metabolism , Interferon-gamma/immunology , Mice, Inbred C57BL
7.
Biomed Pharmacother ; 174: 116596, 2024 May.
Article in English | MEDLINE | ID: mdl-38631146

ABSTRACT

Particulate matter (PM) significantly contributes to the global health crisis of respiratory diseases. It is known to induce and exacerbate conditions such as asthma and respiratory infections. Long exposure to PM can increase the risk of combined allergic rhinitis and asthma syndrome (CARAS). Although therapeutic drugs can be used to improve symptoms of respiratory diseases caused by PM, their usage is often accompanied by side effects. Therefore, many studies are being conducted to discover functional food materials that can more effectively treat respiratory diseases while minimizing the side effects of these therapeutic drugs. This study was conducted to investigate the efficacy of Hydrangea serrata extract (HSE) in airway inflammation in a mouse model of CARAS exacerbated by PM. In the CARAS mouse model worsened by PM, the airway inflammation improvement effect of HSE was evaluated by analyzing allergic nasal symptoms, changes in inflammatory cells, OVA-specific immunoglobulin (Ig) levels, cytokines, mast cell activation, and histopathological findings of both nasal mucosa and lung tissue. HSE effectively reduced OVA-specific IgE and IgG1 and inhibited the production of T helper type 2 (Th2)-related cytokines such as IL-4 and IL-5. Importantly, HSE reduced IL-33 and ST2 expression and inhibited the activation of the NF-κB signaling pathway. In addition, HSE inhibited airway hypersensitivity, mucus production, and inflammatory cell infiltration. These results suggest that HSE may inhibit airway inflammation in CARAS/PM mice by regulating the IL-33/ST2/NF-κB signaling pathway, opening avenues for considering HSE as a potential material for treating allergic airway inflammation diseases in the future.


Subject(s)
Asthma , Disease Models, Animal , Hydrangea , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Mice, Inbred BALB C , NF-kappa B , Particulate Matter , Plant Extracts , Signal Transduction , Animals , NF-kappa B/metabolism , Signal Transduction/drug effects , Plant Extracts/pharmacology , Interleukin-33/metabolism , Particulate Matter/toxicity , Particulate Matter/adverse effects , Asthma/drug therapy , Asthma/chemically induced , Mice , Hydrangea/chemistry , Interleukin-1 Receptor-Like 1 Protein/metabolism , Rhinitis, Allergic/drug therapy , Rhinitis, Allergic/chemically induced , Female , Inflammation/drug therapy , Inflammation/pathology , Cytokines/metabolism , Ovalbumin , Lung/drug effects , Lung/pathology , Lung/metabolism
8.
J Transl Med ; 22(1): 363, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632591

ABSTRACT

Interleukin-33 (IL-33), an emerging cytokine within the IL-1 family, assumes a pivotal function in the control of obesity. However, the specific mechanism of its regulation of obesity formation remains unclear. In this study, we found that the expression level of IL-33 increased in visceral adipose tissue in mice fed with a high-fat diet (HFD) compared with that in mice fed with a normal diet (ND). In vitro, we also found the expression level of IL-33 was upregulated during the adipogenesis of 3T3-L1 cells. Functional test results showed that knockdown of IL-33 in 3T3-L1 cells differentiation could promote the accumulation of lipid droplets, the content of triglyceride and the expression of adipogenic-related genes (i.e. PPAR-γ, C/EBPα, FABP4, LPL, Adipoq and CD36). In contrast, overexpression of IL-33 inhibits adipogenic differentiation. Meanwhile, the above tests were repeated after over-differentiation of 3T3-L1 cells induced by oleic acid, and the results showed that IL-33 played a more significant role in the regulation of adipogenesis. To explore the mechanism, transcriptome sequencing was performed and results showed that IL-33 regulated the PPAR signaling pathway in 3T3-L1 cells. Further, Western blot and confocal microscopy showed that the inhibition of IL-33 could promote PPAR-γ expression by inhibiting the Wnt/ß-catenin signal in 3T3-L1 cells. This study demonstrated that IL-33 was an important regulator of preadipocyte differentiation and inhibited adipogenesis by regulating the Wnt/ß-catenin/PPAR-γ signaling pathway, which provided a new insight for further research on IL-33 as a new intervention target for metabolic disorders.


Subject(s)
Adipogenesis , Interleukin-33 , Wnt Signaling Pathway , Animals , Mice , Adipocytes/metabolism , Adipogenesis/genetics , beta Catenin/metabolism , Cell Differentiation , Interleukin-33/metabolism , Obesity/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167121, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471652

ABSTRACT

BACKGROUND: Sjögren's syndrome (SS) is a chronic autoimmune disease that predominantly affects exocrine glands. Previous studies have demonstrated that upregulated interferon-gamma (IFN-γ) in SS triggers ferroptosis in salivary gland epithelial cells (SGECs), resulting in impaired salivary gland secretion. However, the immune cells responsible for secreting IFN-γ remain unclear. Therefore, this study conducted bioinformatics analysis and molecular validation to identify the origin of IFN-γ in SS salivary gland. METHODS: The 'limma' package in R software was utilized to identify differentially expressed genes (DEGs) in the human SS dataset. Subsequently, the identified DEGs were compared with the ferroptosis database and screened through Cytoscape to determine candidate genes. The cellular localization and expression patterns of candidate genes were further confirmed in the salivary gland single-cell RNA sequence (scRNA-seq) data set from healthy control and SS mice. Furthermore, in vitro and in vivo studies were performed to analyze the effect of CD4 T-secreted IFN-γ on SGECs' ferroptosis and functions. RESULTS: Upregulated TLR4, IFNG, and IL33 were screened as candidates ferroptosis ferroptosis-inducing genes in SS salivary glands. The association of IFNG and IL33 with CD4 T cells was established through immune infiltration analysis. The expression of IFN-γ on CD4 T cells was robustly higher compared with that of IL33 as evidenced by scRNA-seq and immunofluorescence co-localization. Subsequent experiments conducted on candidate genes consistently demonstrated the potent ability of IFN-γ to induce SGECs' ferroptosis and inhibit AQP5 expression. CONCLUSIONS: Our findings indicate that CD4 T cell-secreted IFN-γ in SS induces SGECs' ferroptosis and inhibits AQP5 expression.


Subject(s)
Ferroptosis , Sjogren's Syndrome , Humans , Animals , Mice , Interferon-gamma/metabolism , CD4-Positive T-Lymphocytes , Interleukin-33/metabolism , Salivary Glands , Epithelial Cells/metabolism
10.
J Immunol ; 212(9): 1407-1419, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38497670

ABSTRACT

Mast cells (MCs) play critical roles in the establishment of allergic diseases. We recently demonstrated an unexpected, proinflammatory role for IL-10 in regulating MC responses. IL-10 enhanced MC activation and promoted IgE-dependent responses during food allergy. However, whether these effects extend to IgE-independent stimuli is not clear. In this article, we demonstrate that IL-10 plays a critical role in driving IL-33-mediated MC responses. IL-10 stimulation enhanced MC expansion and degranulation, ST2 expression, IL-13 production, and phospho-relA upregulation in IL-33-treated cells while suppressing TNF-α. These effects were partly dependent on endogenous IL-10 and further amplified in MCs coactivated with both IL-33 and IgE/Ag. IL-10's divergent effects also extended in vivo. In a MC-dependent model of IL-33-induced neutrophilia, IL-10 treatment enhanced MC responsiveness, leading to suppression of neutrophils and decreased TNF-α. In contrast, during IL-33-induced type 2 inflammation, IL-10 priming exacerbated MC activity, resulting in MC recruitment to various tissues, enhanced ST2 expression, induction of hypothermia, recruitment of eosinophils, and increased MCPT-1 and IL-13 levels. Our data elucidate an important role for IL-10 as an augmenter of IL-33-mediated MC responses, with implications during both allergic diseases and other MC-dependent disorders. IL-10 induction is routinely used as a prognostic marker of disease improvement. Our data suggest instead that IL-10 can enhance ST2 responsiveness in IL-33-activated MCs, with the potential to both aggravate or suppress disease severity depending on the inflammatory context.


Subject(s)
Food Hypersensitivity , Mast Cells , Humans , Mast Cells/metabolism , Interleukin-10/metabolism , Tumor Necrosis Factor-alpha/metabolism , Immunoglobulin E/metabolism , Interleukin-33/metabolism , Interleukin-13/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Inflammation/metabolism , Cell Degranulation
11.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542222

ABSTRACT

Mast cells (MCs) are derived from hematopoietic progenitors, mature in vascularized tissues, and participate in innate and acquired immunity. Neuroinflammation is a highly debated topic in the biomedical literature; however, the impact of tumor necrosis factor (TNF) and IL-33 on MCs in the brain has not been widely addressed. MCs can be activated by IgE binding to FcεRI, as well as by different antigens. After activation, MCs mediate various immunological and inflammatory responses through TNF and IL-33. TNF has two receptors: TNFR1, a p55 molecule, and TNFR2, a p75 molecule. This cytokine is the only one of its kind to be stored in the granules of MCs and can also be generated by de novo synthesis via mRNA. In the central nervous system (CNS), TNF is produced almost exclusively by microglial cells, neurons, astrocytes, and, minimally, by endothelial cells. After its release into brain tissue, TNF rapidly induces the adhesion molecules endothelial leukocyte adhesion molecule 1 (ELAM-1), intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) in endothelial cells. TNF causes the chemoattraction of neutrophils by inducing several molecules, including CXC chemokines (IL-8). Both MCs and microglial cells act as a primary barrier against foreign molecules in the CNS, producing pro-inflammatory cytokines such as IL-33. IL-33 belongs to the IL-1 family, is activated through the ST2L/IL1-RAcP receptor complex, and mediates both the innate and adaptive immune response. IL-33 is a nuclear transcription factor expressed in the brain, where it induces pro-inflammatory cytokines (TNF and IL-1) and chemokines (CCL2, CCL3, CCL5, and CXCL10). Therefore, MCs and microglia in the CNS are a source of pro-inflammatory cytokines, including TNF and IL-33, that mediate many brain diseases. The inhibition of TNF and IL-33 may represent a new therapeutic approach that could complement existing neuroinflammatory therapies.


Subject(s)
Cytokines , Neuroinflammatory Diseases , Humans , Cytokines/metabolism , Mast Cells/metabolism , Interleukin-33/metabolism , Endothelial Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , Intercellular Adhesion Molecule-1/metabolism , Interleukin-1/metabolism
12.
Lung ; 202(2): 127-137, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38502305

ABSTRACT

PURPOSE: The respiratory syncytial virus (RSV) is a common respiratory virus that causes acute lower respiratory tract infectious diseases, particularly in young children and older individuals. Activated leukocyte cell adhesion molecule (ALCAM) is a membrane glycoprotein expressed in various cell types, including epithelial cells, and is associated with inflammatory responses and various cancers. However, the precise role of ALCAM in RSV-induced airway inflammation remains unclear, and our study aimed to explore this gap in the literature. METHODS: C57BL/6 wild-type, ALCAM knockout mice and airway epithelial cells were infected with RSV and the expression of ALCAM and inflammatory cytokines were measured. We also conducted further experiments using Anti-ALCAM antibody and recombinant ALCAM in airway epithelial cells. RESULTS: The expression levels of ALCAM and inflammatory cytokines increased in both RSV-infected mice and airway epithelial cells. Interestingly, IL-33 expression was significantly reduced in ALCAM-knockdown cells compared to control cells following RSV infection. Anti-ALCAM antibody treatment also reduced IL-33 expression following RSV infection. Furthermore, the phosphorylation of ERK1/2, p38, and JNK was diminished in ALCAM-knockdown cells compared to control cells following RSV infection. Notably, in the control cells, inhibition of these pathways significantly decreased the expression of IL-33. In vivo study also confirmed a reduction in inflammation induced by RSV infection in ALCAM deficient mice compared to wild-type mice. CONCLUSION: These findings demonstrate that ALCAM contributes to RSV-induced airway inflammation at least partly by influencing IL-33 expression through mitogen-activated protein kinase signaling pathways. These results suggest that targeting ALCAM could be a potential therapeutic strategy for alleviating IL-33-associated lung diseases.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Animals , Mice , Activated-Leukocyte Cell Adhesion Molecule/metabolism , Cytokines/metabolism , Inflammation/metabolism , Interleukin-33/genetics , Interleukin-33/metabolism , Lung/metabolism , MAP Kinase Signaling System , Mice, Inbred BALB C , Mice, Inbred C57BL , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus, Human/metabolism , Signal Transduction
13.
Taiwan J Obstet Gynecol ; 63(2): 178-185, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38485312

ABSTRACT

OBJECTIVE: Endometriosis is an estrogen-dependent chronic inflammatory disease in women of reproductive age. A review of the literature revealed that cytokines and inflammatory factors are associated with endometriosis-associated infertility. Interleukin 33 (IL-33) is a strong inducer of other pro-inflammatory cytokines. Vascular cell adhesion molecule-1 (VCAM-1) plays a central role in recruiting inflammatory cells, whose expression facilitates leukocyte adhesion and is rapidly induced by pro-inflammatory cytokines. Many studies have indicated that VCAM-1 expression is high in endometriosis; however, whether the expression of VCAM-1 is related to IL-33 is unclear. MATERIALS AND METHODS: Human ovarian endometriotic stromal cells (hOVEN-SCs) were treated with IL-33 to enable investigation of cell characterization, gene and protein expression, and signal pathways. Proliferation potential was measured using an MTT assay. Gene expression was analyzed using reverse transcription-polymerase chain reaction. Protein expression assay was performed using western blot analysis. RESULTS: This study investigated the effects of IL-33 on VCAM-1 and COX-2 expression in hOVEN-SCs. First, the results revealed that the IL-33/ST2/mitogen-activated protein kinase (MAPK) signaling pathway could increase the expression of VCAM-1 and COX-2 in hOVEN-SCs. Second, we discovered that COX-2 expression was essential for IL-33-induced VCAM-1 expression because the effects could be negated through NS398, a selective COX-2 inhibitor. Finally, treatment of IL-33-treated hOVEN-SCs with celecoxib significantly and dose-responsively decreased VCAM-1 expression. CONCLUSION: Taken together, these results indicate that IL-33 can upregulate VCAM-1 expression in hOVEN-SCs through the IL-33/ST2/MAPK/COX-2 signaling pathway and thereby contribute to endometriosis.


Subject(s)
Endometriosis , Vascular Cell Adhesion Molecule-1 , Humans , Female , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/pharmacology , Celecoxib/metabolism , Celecoxib/pharmacology , Interleukin-33/metabolism , Cyclooxygenase 2/metabolism , Endometriosis/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Stromal Cells/metabolism , Cells, Cultured
14.
Front Immunol ; 15: 1355314, 2024.
Article in English | MEDLINE | ID: mdl-38455059

ABSTRACT

Background: The aim of this study was to identify inflammatory biomarkers in traumatic proliferative vitreoretinopathy (TPVR) patients and further validate the expression curve of particular biomarkers in the rabbit TPVR model. Methods: The Olink Inflammation Panel was used to compare the differentially expressed proteins (DEPs) in the vitreous of TPVR patients 7-14 days after open globe injury (OGI) (N = 19) and macular hole patients (N = 22), followed by correlation analysis between DEPs and clinical signs, protein-protein interaction (PPI) analysis, area under the receiver operating characteristic curve (AUC) analysis, and function enrichment analysis. A TPVR rabbit model was established and expression levels of candidate interleukin family members (IL-6, IL-7, and IL-33) were measured by enzyme-linked immunosorbent assay (ELISA) at 0, 1, 3, 7, 10, 14, and 28 days after OGI. Results: Forty-eight DEPs were detected between the two groups. Correlation analysis showed that CXCL5, EN-RAGE, IL-7, ADA, CD5, CCL25, CASP8, TWEAK, and IL-33 were significantly correlated with clinical signs including ocular wound characteristics, PVR scoring, PVR recurrence, and final visual acuity (R = 0.467-0.699, p < 0.05), and all with optimal AUC values (0.7344-1). Correlations between DEP analysis and PPI analysis further verified that IL-6, IL-7, IL-8, IL-33, HGF, and CXCL5 were highly interactive (combined score: 0.669-0.983). These DEPs were enriched in novel pathways such as cancer signaling pathway (N = 14, p < 0.000). Vitreous levels of IL-6, IL-7, and IL-33 in the rabbit TPVR model displayed consistency with the trend in Olink data, all exhibiting marked differential expression 1 day following the OGI. Conclusion: IL-7, IL-33, EN-RAGE, TWEAK, CXCL5, and CD5 may be potential biomarkers for TPVR pathogenesis and prognosis, and early post-injury may be an ideal time for TPVR intervention targeting interleukin family biomarkers.


Subject(s)
Vitreoretinopathy, Proliferative , Humans , Rabbits , Animals , Vitreoretinopathy, Proliferative/diagnosis , Vitreoretinopathy, Proliferative/etiology , Vitreoretinopathy, Proliferative/metabolism , Vitreous Body/metabolism , Interleukin-33/metabolism , Interleukin-6/metabolism , Interleukin-7/metabolism , Proteomics , Prognosis , Biomarkers/metabolism
15.
Int Immunopharmacol ; 131: 111916, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38522138

ABSTRACT

BACKGROUND: TRP protein is sensitive to external temperature changes, but its pathogenic mechanism in the upper airway mucosa is still unclear. OBJECTIVE: To investigate the mechanism of TRPV1and TRPA1 in regulating the secretion of inflammatory factors in nasal epithelial cells. METHODS: The expression of TRPV1 and TRPA1 in nasal mucosal epithelial cells was investigated using immunofluorescence assays. Epithelial cells were stimulated with TRPV1 and TRPA1 agonists and antagonists, and changes in Ca2+ release and inflammatory factor secretion in epithelial cells were detected. TSLP secretion stimulated with the calcium chelating agent EGTA was evaluated. The transcription factor NFAT was observed by immunofluorescence staining. RESULTS: TRPV1 and TRPA1 expression was detected in nasal epithelial cells, and Ca2+ influx was increased after stimulation with agonists. After the activation of TRPV1 and TRPA1, the gene expression of TSLP, IL-25, and IL-33 and the protein expression levels of TSLP and IL-33 were increased, and only TSLP could be inhibited by antagonists and siRNAs. After administration of EGTA, the secretion of TSLP was inhibited significantly, and the expression of the transcription factor NFAT in the nucleus was observed after activation of the TRPV1 and TRPA1 proteins in epithelial cells. CONCLUSION: Activation of TRPV1 and TRPA1 on nasal epithelial cells stimulates the generation of TSLP through the Ca2+/NFAT pathway. It also induces upregulation of IL-25 and IL-33 gene expression levels and increased levels of IL-33 protein, leading to the development of airway inflammation.


Subject(s)
Interleukin-33 , TRPV Cation Channels , TRPV Cation Channels/metabolism , TRPA1 Cation Channel/genetics , TRPA1 Cation Channel/metabolism , Interleukin-33/metabolism , Egtazic Acid/metabolism , Gene Expression , Nasal Mucosa/metabolism , Epithelial Cells/metabolism , Transcription Factors/genetics
16.
J Leukoc Biol ; 115(5): 893-901, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38517856

ABSTRACT

Interleukin (IL)-33 is a key driver of T helper 2 (Th2) cell polarization. Endoplasmic reticulum (ER) stress plays a role in the skewed T cell activation. The objective of this project is to elucidate the role of IL-33 derived from macrophages in inducing Th2 polarization in the airways. In this study, bronchoalveolar lavage fluids (BALF) were collected from patients with asthma and healthy control subjects. Macrophages were isolated from the BALF by flow cytometry cell sorting. An asthmatic mouse model was established using the ovalbumin/alum protocol. The results showed that increased IL33 gene activity and ER stress-related molecules in BALF-derived M2a macrophages was observed in asthmatic patients. Levels of IL33 gene activity in M2a cells were positively correlated with levels of asthma response in asthma patients. Sensitization exacerbated the ER stress in the airway macrophages, which increased the expression of IL-33 in macrophages of airway in sensitized mice. Conditional ablation of Il33 or Perk or Atf4 genes in macrophages prevented induction of airway allergy in mice. In conclusion, asthma airway macrophages express high levels of IL-33 and at high ER stress status. Inhibition of IL-33 or ER stress in macrophages can effectively alleviate experimental asthma.


Subject(s)
Asthma , Endoplasmic Reticulum Stress , Interleukin-33 , Macrophages , Th2 Cells , Adult , Animals , Female , Humans , Male , Mice , Asthma/immunology , Asthma/metabolism , Asthma/pathology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cell Polarity , Disease Models, Animal , Endoplasmic Reticulum Stress/immunology , Interleukin-33/metabolism , Macrophages/metabolism , Macrophages/immunology , Mice, Inbred C57BL , Th2 Cells/immunology , Th2 Cells/metabolism , Young Adult , Middle Aged
17.
J Allergy Clin Immunol ; 153(5): 1355-1368, 2024 May.
Article in English | MEDLINE | ID: mdl-38310974

ABSTRACT

BACKGROUND: Eosinophilic esophagitis (EoE) is an increasingly common inflammatory condition of the esophagus; however, the underlying immunologic mechanisms remain poorly understood. The epithelium-derived cytokine IL-33 is associated with type 2 immune responses and elevated in esophageal biopsy specimens from patients with EoE. OBJECTIVE: We hypothesized that overexpression of IL-33 by the esophageal epithelium would promote the immunopathology of EoE. METHODS: We evaluated the functional consequences of esophageal epithelial overexpression of a secreted and active form of IL-33 in a novel transgenic mouse, EoE33. EoE33 mice were analyzed for clinical and immunologic phenotypes. Esophageal contractility was assessed. Epithelial cytokine responses were analyzed in three-dimensional organoids. EoE33 phenotypes were further characterized in ST2-/-, eosinophil-deficient, and IL-13-/- mice. Finally, EoE33 mice were treated with dexamethasone. RESULTS: EoE33 mice displayed ST2-dependent, EoE-like pathology and failed to thrive. Esophageal tissue remodeling and inflammation included basal zone hyperplasia, eosinophilia, mast cells, and TH2 cells. Marked increases in levels of type 2 cytokines, including IL-13, and molecules associated with immune responses and tissue remodeling were observed. Esophageal organoids suggested reactive epithelial changes. Genetic deletion of IL-13 in EoE33 mice abrogated pathologic changes in vivo. EoE33 mice were responsive to steroids. CONCLUSIONS: IL-33 overexpression by the esophageal epithelium generated immunopathology and clinical phenotypes resembling human EoE. IL-33 may play a pivotal role in the etiology of EoE by activating the IL-13 pathway. EoE33 mice are a robust experimental platform for mechanistic investigation and translational discovery.


Subject(s)
Eosinophilic Esophagitis , Interleukin-13 , Interleukin-33 , Mice, Transgenic , Eosinophilic Esophagitis/immunology , Eosinophilic Esophagitis/genetics , Eosinophilic Esophagitis/pathology , Animals , Interleukin-33/genetics , Interleukin-33/immunology , Interleukin-33/metabolism , Interleukin-13/genetics , Interleukin-13/immunology , Interleukin-13/metabolism , Mice , Humans , Esophagus/pathology , Esophagus/immunology , Mice, Knockout , Esophageal Mucosa/pathology , Esophageal Mucosa/immunology , Eosinophils/immunology , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Disease Models, Animal , Mice, Inbred C57BL
18.
mBio ; 15(3): e0333823, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38376154

ABSTRACT

Innate lymphoid cells (ILCs) play a critical role in maintaining intestinal health in homeostatic and diseased conditions. During Clostridium difficile infection (CDI), IL-33 activates ILC2 to protect from colonic damage and mortality. The function of IL-33 and ILC is tightly regulated by the intestinal microbiota. We set out to determine the impact of antibiotic-induced disruption of the microbiome on ILC function. Our goal was to understand antibiotic-induced changes in ILC function on susceptibility to C. difficile colitis in a mouse model. We utilized high-throughput single-cell RNAseq to investigate the phenotypic features of colonic ILC at baseline, after antibiotic administration with or without IL-33 treatment. We identified a heterogeneous landscape of colonic ILCs with gene signatures of inflammatory, anti-inflammatory, migratory, progenitor, plastic, and antigen-presenting ILCs. Antibiotic treatment decreased ILC2 while coordinately increasing ILC1 and ILC3 phenotypes. Notably, Ifng+, Ccl5+, and Il23r+ ILC increased after antibiotics. IL-33 treatment counteracted the antibiotic effect by downregulating ILC1 and ILC3 and activating ILC2. In addition, IL-33 treatment markedly induced the expression of type 2 genes, including Areg and Il5. Finally, we identified amphiregulin, produced by ILC2, as protective during C. difficile infection. Together, our data expand our understanding of how antibiotics induce susceptibility to C. difficile colitis through their impact on ILC subsets and function.IMPORTANCEClostridium difficile infection (CDI) accounts for around 500,000 symptomatic cases and over 20,000 deaths annually in the United States alone. A major risk factor of CDI is antibiotic-induced dysbiosis of the gut. Microbiota-regulated IL-33 and innate lymphoid cells (ILCs) are important in determining the outcomes of C. difficile infection. Understanding how antibiotic and IL-33 treatment alter the phenotype of colon ILCs is important to identify potential therapeutics. Here, we performed single-cell RNAseq of mouse colon ILCs collected at baseline, after antibiotic treatment, and after IL-33 treatment. We identified heterogeneous subpopulations of all three ILC subtypes in the mouse colon. Our analysis revealed several potential pathways of antibiotic-mediated increased susceptibility to intestinal infection. Our discovery that Areg is abundantly expressed by ILCs, and the protection of mice from CDI by amphiregulin treatment, suggests that the amphiregulin-epidermal growth factor receptor pathway is a potential therapeutic target for treating intestinal colitis.


Subject(s)
Clostridioides difficile , Clostridium Infections , Colitis , Enterocolitis, Pseudomembranous , Mice , Animals , Immunity, Innate , Lymphocytes , Anti-Bacterial Agents/pharmacology , Interleukin-33/metabolism , Interleukin-33/pharmacology , Amphiregulin/metabolism , Amphiregulin/pharmacology , Dysbiosis , Clostridium Infections/metabolism
19.
Immunology ; 172(2): 226-234, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38409805

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) play critical roles in driving the pathogenesis of allergic airway inflammation. The mechanisms underlying the regulation of ILC2s remain to be fully understood. Here, we identified neuropilin-1 (NRP1) as a surface marker of ILC2s in response to IL-33 stimulation. NRP1 was abundantly expressed in ILC2s from lung under steady state, which was significantly reduced upon IL-33 stimulation. ILC2s with high expression of NRP1 (NRP1high) displayed lower response to IL-33, as compared with NRP1low ILC2s. Transcriptional profiling and flow cytometric analysis showed that downregulation of AKT-mTOR signalling participated in the diminished functionality of NRP1high ILC2s. These observations revealed a potential role of NRP1 in ILC2s responses under allergic inflammatory condition.


Subject(s)
Down-Regulation , Immunity, Innate , Interleukin-33 , Lymphocytes , Neuropilin-1 , Signal Transduction , Interleukin-33/metabolism , Interleukin-33/immunology , Animals , Neuropilin-1/metabolism , Neuropilin-1/genetics , Mice , Lymphocytes/immunology , Lymphocytes/metabolism , Lung/immunology , Lung/metabolism , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Mice, Inbred C57BL
20.
JCI Insight ; 9(6)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319737

ABSTRACT

Atopic dermatitis (AD) is a persistent skin disease typified by symptoms of dry skin and recurrent eczema. Patients with AD are at heightened risk for Staphylococcus aureus infection. Group 2 innate lymphoid cells (ILC2s) are mainly activated by epithelial cell-derived cytokines IL-33 and involved in the pathogenesis of AD. However, little is known about the effect of skin delipidization on the epithelial cell-derived cytokines and dermal ILC2s in AD. In our study, we investigated the mechanism by which S. aureus infection modulates and exacerbates the pathogenesis of dry skin, leading to type 2 inflammation in the context of innate immunity. In vivo, we found that S. aureus infection aggravated delipidization-induced dermal IL-33 release and dermal ILC2 accumulation, which exacerbated skin inflammation. We also noticed that Il33fl/fl K14cre mice and Tlr2-/- mice exhibited attenuated skin inflammation. In vitro, treatment with necroptosis inhibitors reduced IL-33 release from S. aureus-infected keratinocytes. Mechanistically, we observed an increase in the necroptosis-associated kinases, MLKL and RIPK3, in S. aureus-infected mice, indicating that IL-33 release was associated with necroptotic cell death responses. Our results reveal that S. aureus infection-elicited keratinocyte necroptosis contributes to IL-33-mediated type 2 inflammation, which exacerbates the pathogenesis of dry skin.


Subject(s)
Dermatitis, Atopic , Ichthyosis , Staphylococcal Infections , Humans , Mice , Animals , Immunity, Innate , Staphylococcus aureus , Interleukin-33/metabolism , Necroptosis , Lymphocytes , Inflammation/pathology , Cytokines/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...