Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.547
Filter
1.
PLoS One ; 19(5): e0303244, 2024.
Article in English | MEDLINE | ID: mdl-38728294

ABSTRACT

To predict protective immunity to SARS-CoV-2, cellular immunity seems to be more sensitive than humoral immunity. Through an Interferon-Gamma (IFN-γ) Release Assay (IGRA), we show that, despite a marked decrease in total antibodies, 94.3% of 123 healthcare workers have a positive cellular response 6 months after inoculation with the 2nd dose of BNT162b2 vaccine. Despite the qualitative relationship found, we did not observe a quantitative correlation between IFN-γ and IgG levels against SARS-CoV-2. Using stimulated whole blood from a subset of participants, we confirmed the specific T-cell response to SARS-CoV-2 by dosing elevated levels of the IL-6, IL-10 and TNF-α. Through a 20-month follow-up, we found that none of the infected participants had severe COVID-19 and that the first positive cases were only 12 months after the 2nd dose inoculation. Future studies are needed to understand if IGRA-SARS-CoV-2 can be a powerful diagnostic tool to predict future COVID-19 severe disease, guiding vaccination policies.


Subject(s)
Antibodies, Viral , BNT162 Vaccine , COVID-19 , Health Personnel , Interferon-gamma Release Tests , SARS-CoV-2 , Humans , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Female , Male , SARS-CoV-2/immunology , Adult , Middle Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , Interferon-gamma/blood , Vaccination , Immunoglobulin G/blood , Immunoglobulin G/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Immunity, Cellular , Interleukin-10/blood , Interleukin-10/immunology , Interleukin-6/blood , Interleukin-6/immunology , Tumor Necrosis Factor-alpha/blood
2.
J Agric Food Chem ; 72(19): 10923-10935, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691832

ABSTRACT

This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1ß, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.


Subject(s)
Colitis , Dextran Sulfate , NF-E2-Related Factor 2 , NF-kappa B , Polysaccharides , Animals , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/administration & dosage , Dextran Sulfate/adverse effects , Male , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , RAW 264.7 Cells , NF-kappa B/metabolism , NF-kappa B/genetics , Mice, Inbred C57BL , Protective Agents/pharmacology , Protective Agents/administration & dosage , Protective Agents/chemistry , Liver/drug effects , Liver/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Oxidative Stress/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Mucin-2/genetics , Mucin-2/metabolism
3.
Front Immunol ; 15: 1377014, 2024.
Article in English | MEDLINE | ID: mdl-38694512

ABSTRACT

Background: Acute immune responses to coronavirus disease 2019 (COVID-19) are influenced by variants, vaccination, and clinical severity. Thus, the outcome of these responses may differ between vaccinated and unvaccinated patients and those with and without COVID-19-related pneumonia. In this study, these differences during infection with the Omicron variant were investigated. Methods: A total of 67 patients (including 47 vaccinated and 20 unvaccinated patients) who were hospitalized within 5 days after COVID-19 symptom onset were enrolled in this prospective observational study. Serum neutralizing activity was evaluated using a pseudotyped virus assay and serum cytokines and chemokines were measured. Circulating follicular helper T cell (cTfh) frequencies were evaluated using flow cytometry. Results: Twenty-five patients developed COVID-19 pneumonia on hospitalization. Although the neutralizing activities against wild-type and Delta variants were higher in the vaccinated group, those against the Omicron variant as well as the frequency of developing pneumonia were comparable between the vaccinated and unvaccinated groups. IL-6 and CXCL10 levels were higher in patients with pneumonia than in those without it, regardless of their vaccination status. Neutralizing activity against the Omicron variant were higher in vaccinated patients with pneumonia than in those without it. Moreover, a distinctive correlation between neutralizing activity against Omicron, IL-6 levels, and cTfh proportions was observed only in vaccinated patients. Conclusions: The present study demonstrates the existence of a characteristic relationship between neutralizing activity against Omicron, IL-6 levels, and cTfh proportions in Omicron breakthrough infection.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Interleukin-6 , SARS-CoV-2 , T Follicular Helper Cells , Humans , COVID-19/immunology , COVID-19/blood , Male , SARS-CoV-2/immunology , Female , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Interleukin-6/blood , Interleukin-6/immunology , Middle Aged , Aged , T Follicular Helper Cells/immunology , Prospective Studies , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , Adult , Breakthrough Infections
4.
Int J Infect Dis ; 143: 107016, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521446

ABSTRACT

OBJECTIVES: Despite high global vaccination coverage, it remains unclear how vaccination and anti-SARS-CoV-2 antibodies affect immune responses and inflammation levels in patients with COVID-19. It is further unclear whether the inflammatory response differs depending on antibody levels and whether the combination of antibody and inflammation levels in COVID-19 patients affects mortality rates. METHODS: We conducted a prospective multicenter cohort study that included 1031 hospitalized COVID-19 patients from five hospitals. Anti-SARS-CoV-2-spike antibodies, interleukin-6 (IL6), and CRP were measured on hospital admission. The prespecified endpoint was all-cause in-hospital mortality. RESULTS: We observed significantly lower levels of CRP (P<0.001) and IL6 (P<0.001) in patients with antibody levels above 1200 BAU/ml. After adjusting for potential confounders, patients with high levels of inflammatory markers (CRP>6 mg/dl or IL6>100 pg/ml) combined with low levels of anti-SARS-CoV-2-spike antibodies (<1200 BAU/ml) were approximately 8 times more likely to die than patients with low inflammatory responses and high antibody levels (CRP: aHR 7.973, 95% CI 2.744-23.169, P<0.001; IL6: aHR 8.973, 95% CI 3.549-22.688, P<0.001). CONCLUSION: Hospitalized COVID-19 patients presenting with high inflammatory markers and low antibody levels exhibited the highest mortality risks. Higher antibody levels are associated with lower levels of inflammation in hospitalized COVID-19 patients.


Subject(s)
Antibodies, Viral , Biomarkers , C-Reactive Protein , COVID-19 , Inflammation , Interleukin-6 , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/immunology , COVID-19/blood , Prospective Studies , Male , Female , Antibodies, Viral/blood , SARS-CoV-2/immunology , Middle Aged , C-Reactive Protein/analysis , Interleukin-6/blood , Interleukin-6/immunology , Aged , Biomarkers/blood , Inflammation/blood , Inflammation/immunology , Spike Glycoprotein, Coronavirus/immunology , Hospital Mortality , Hospitalization , Adult , Aged, 80 and over
5.
J Immunol ; 212(10): 1540-1552, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38517295

ABSTRACT

Severe SARS-CoV-2 infection is associated with significant immune dysregulation involving different immune cell subsets. In this study, when analyzing critically ill COVID-19 patients versus those with mild disease, we observed a significant reduction in total and memory B cell subsets but an increase in naive B cells. Moreover, B cells from COVID-19 patients displayed impaired effector functions, evidenced by diminished proliferative capacity, reduced cytokine, and Ab production. This functional impairment was accompanied by an increased apoptotic potential upon stimulation in B cells from severely ill COVID-19 patients. Our further studies revealed the expansion of B cells expressing coinhibitory molecules (PD-1, PD-L1, TIM-1, VISTA, CTLA-4, and Gal-9) in intensive care unit (ICU)-admitted patients but not in those with mild disease. The coinhibitory receptor expression was linked to altered IgA and IgG expression and increased the apoptotic capacity of B cells. Also, we found a reduced frequency of CD24hiCD38hi regulatory B cells with impaired IL-10 production. Our mechanistic studies revealed that the upregulation of PD-L1 was linked to elevated plasma IL-6 levels in COVID-19 patients. This implies a connection between the cytokine storm and altered B cell phenotype and function. Finally, our metabolomic analysis showed a significant reduction in tryptophan but elevation of kynurenine in ICU-admitted COVID-19 patients. We found that kynurenine promotes PD-L1 expression in B cells, correlating with increased IL-6R expression and STAT1/STAT3 activation. Our observations provide novel insights into the complex interplay of B cell dysregulation, implicating coinhibitory receptors, IL-6, and kynurenine in impaired B cell effector functions, potentially contributing to the pathogenesis of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/immunology , Male , Middle Aged , Female , SARS-CoV-2/immunology , Aged , B-Lymphocytes/immunology , B-Lymphocyte Subsets/immunology , Severity of Illness Index , Adult , Apoptosis/immunology , Critical Illness , Interleukin-10/immunology , Interleukin-10/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Interleukin-6/metabolism , Interleukin-6/immunology
6.
J Virol ; 98(1): e0110223, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38169294

ABSTRACT

Mayaro virus (MAYV) is an emerging arbovirus member of the Togaviridae family and Alphavirus genus. MAYV infection causes an acute febrile illness accompanied by persistent polyarthralgia and myalgia. Understanding the mechanisms involved in arthritis caused by alphaviruses is necessary to develop specific therapies. In this work, we investigated the role of the CCL2/CCR2 axis in the pathogenesis of MAYV-induced disease. For this, wild-type (WT) C57BL/6J and CCR2-/- mice were infected with MAYV subcutaneously and evaluated for disease development. MAYV infection induced an acute inflammatory disease in WT mice. The immune response profile was characterized by an increase in the production of inflammatory mediators, such as IL-6, TNF, and CCL2. Higher levels of CCL2 at the local and systemic levels were followed by the significant recruitment of CCR2+ macrophages and a cellular response orchestrated by these cells. CCR2-/- mice showed an increase in CXCL-1 levels, followed by a replacement of the macrophage inflammatory infiltrate by neutrophils. Additionally, the absence of the CCR2 receptor protected mice from bone loss induced by MAYV. Accordingly, the silencing of CCL2 chemokine expression in vivo and the pharmacological blockade of CCR2 promoted a partial improvement in disease. Cell culture data support the mechanism underlying the bone pathology of MAYV, in which MAYV infection promotes a pro-osteoclastogenic microenvironment mediated by CCL2, IL-6, and TNF, which induces the migration and differentiation of osteoclast precursor cells. Overall, these data contribute to the understanding of the pathophysiology of MAYV infection and the identification future of specific therapeutic targets in MAYV-induced disease.IMPORTANCEThis work demonstrates the role of the CCL2/CCR2 axis in MAYV-induced disease. The infection of wild-type (WT) C57BL/6J and CCR2-/- mice was associated with high levels of CCL2, an important chemoattractant involved in the recruitment of macrophages, the main precursor of osteoclasts. In the absence of the CCR2 receptor, there is a mitigation of macrophage migration to the target organs of infection and protection of these mice against bone loss induced by MAYV infection. Much evidence has shown that host immune response factors contribute significantly to the tissue damage associated with alphavirus infections. Thus, this work highlights molecular and cellular targets involved in the pathogenesis of arthritis triggered by MAYV and identifies novel therapeutic possibilities directed to the host inflammatory response unleashed by MAYV.


Subject(s)
Alphavirus Infections , Arthritis , Chemokine CCL2 , Receptors, CCR2 , Animals , Mice , Alphavirus , Alphavirus Infections/immunology , Arthritis/immunology , Arthritis/virology , Chemokine CCL2/immunology , Interleukin-6/immunology , Mice, Inbred C57BL , Receptors, CCR2/immunology , Mice, Knockout , Male , Bone Diseases/virology
7.
BMC Immunol ; 24(1): 26, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37653422

ABSTRACT

BACKGROUND: Lung cavitation is associated with heightened TB transmission and poor treatment outcomes. This study aimed to determine the relationship between systemic inflammation and lung cavitation in drug-resistant TB patients with and without HIV co-infection. METHODS: Plasma samples were obtained from 128 participants from the CAPRISA 020 Individualized M(X)drug-resistant TB Treatment Strategy Study (InDEX) prior to treatment initiation. Lung cavitation was present in 61 of the 128 drug-resistant TB patients with 93 being co-infected with HIV. The plasma cytokine and chemokine levels were measured using the 27-Plex Human Cytokine immunoassay. Modified Poisson regression models were used to determine the association between plasma cytokine/chemokine expression and lung cavitation in individuals with drug-resistant TB. RESULTS: Higher Interleukin-6 plasma levels (adjusted risk ratio [aRR] 1.405, 95% confidence interval [CI] 1.079-1.829, p = 0.011) were associated with a higher risk of lung cavitation in the multivariable model adjusting for age, sex, body mass index, HIV status, smoking and previous history of TB. Smoking was associated with an increased risk of lung cavitation (aRR 1.784, 95% CI 1.167-2.729, p = 0.008). An HIV positive status and a higher body mass index, were associated with reduced risk of lung cavitation (aRR 0.537, 95% CI 0.371-0.775, p = 0.001 and aRR 0.927, 95% CI 0.874-0.983, p = 0.012 respectively). CONCLUSION: High plasma interleukin-6 levels are associated with an increased risk of cavitary TB highlighting the role of interleukin-6 in the immunopathology of drug-resistant TB.


Subject(s)
Interleukin-6 , Tuberculosis, Multidrug-Resistant , Humans , Adult , Male , Female , Lung/pathology , Tuberculosis, Multidrug-Resistant/immunology , Tuberculosis, Multidrug-Resistant/pathology , Interleukin-6/blood , Interleukin-6/immunology , HIV Infections/pathology , Coinfection/pathology
8.
Biomolecules ; 13(6)2023 06 11.
Article in English | MEDLINE | ID: mdl-37371554

ABSTRACT

Interleukin 10 (IL-10) plays a role in inflammation and cell-type responses. The anti-SS-A/Ro antibody contributes to leucopenia, and cutaneous and neonatal lupus. OBJECTIVES: To evaluate the association between serum IL-10 levels and autoantibodies, disease activity and organ involvement in systemic lupus erythematosus (SLE) patients. PATIENTS AND METHODS: We studied 200 SLE patients and 50 controls. We analyzed organ involvement, disease activity, serum IL-10 and interleukin-6 (IL-6) levels, and antinuclear and antiphospholipid antibody profiles. RESULTS: Serum IL-10 and IL-6 levels were higher in SLE patients than in controls (all p < 0.00001). Serum IL-10 levels were positively correlated with IL-6 (p < 0.00001), CRP (p < 0.00001), fibrinogen (p = 0.003), and ESR (p < 0.00001), and negatively correlated with hemoglobin (p = 0.0004) and lymphocytes (p = 0.01). Serum IL-6 levels were positively correlated with CRP (p < 0.00001), fibrinogen (p = 0.001), and ESR (p < 0.00001); and negatively correlated with hemoglobin (p = 0.008) and lymphocytes (p = 0.03). Elevated serum IL-10 levels were associated with an increased risk of anti-SS-A/Ro antibody positivity (p = 0.03). Elevated serum IL-6 levels were associated with an increased risk of heart (p = 0.007) and lung (p = 0.04) involvement. CONCLUSIONS: In SLE patients, increased serum IL-10 levels were associated with increased disease activity and risk of anti-SS-A/Ro antibody positivity.


Subject(s)
Autoantibodies , Interleukin-10 , Interleukin-6 , Lupus Erythematosus, Systemic , Humans , Infant, Newborn , Autoantibodies/immunology , Interleukin-10/blood , Interleukin-10/immunology , Interleukin-6/blood , Interleukin-6/immunology , Leukopenia/blood , Leukopenia/immunology , Lupus Erythematosus, Systemic/immunology
9.
Biosci Biotechnol Biochem ; 87(8): 907-915, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37169920

ABSTRACT

We characterized the membrane vesicle fraction (RD-MV fraction) from bacterial strain RD055328, which is related to members of the genus Companilactobacillus and Lactiplantibacillus plantarum. RD-MVs and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were detected in the RD-MV fraction. Immunoglobulin A (IgA) was produced by Peyer's patch cells following the addition of the RD-MV fraction. In the presence of the RD-MV fraction, RAW264 cells produced the pro-inflammatory cytokine IL-6. Recombinant GAPDH probably induced the production of IL-6 by RAW264 cells via superficial toll-like receptor 2 (TLR2) recognition. A confocal laser scanning microscopy image analysis indicated that RD-MVs and GAPDH were taken up by RAW264 cells. GAPDH wrapped around RAW264 cells. We suggest that GAPDH from strain RD055328 enhanced the production of IgA by acquired immune cells via the production of IL-6 by innate immune cells through TLR2 signal transduction.


Subject(s)
Bacterial Proteins , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) , Lactobacillaceae , Signal Transduction , Toll-Like Receptor 2 , RAW 264.7 Cells , Signal Transduction/drug effects , Toll-Like Receptor 2/immunology , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Immunoglobulin A/immunology , Interleukin-6/immunology , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/isolation & purification , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/pharmacology , Adjuvants, Immunologic/genetics , Adjuvants, Immunologic/isolation & purification , Adjuvants, Immunologic/pharmacology , Animals , Mice , Lactobacillaceae/classification , Lactobacillaceae/enzymology , Lactobacillaceae/genetics , Lactobacillaceae/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , NF-kappa B/immunology , Transcriptional Activation/drug effects
10.
Phytochemistry ; 212: 113723, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37182686

ABSTRACT

A bioactivity-guided isolation from the aerial parts of Phyllanthus rheophyticus obtained 17 undescribed ent-cleistanthane-type diterpenoids, namely phyllarheophols A-Q, as well as 12 known analogs. Their structures were characterized by a combination of spectroscopic data interpretation, single-crystal X-ray diffraction and ECD analysis. The anti-inflammatory activities of these compounds were evaluated by measuring their inhibitory effects on NO production in LPS-stimulated RAW264.7 macrophages, and their preliminary structure-activity relationships were also discussed. Further study showed that promising compounds phyllarheophol D and phyacioid B significantly suppressed the expressions of cytokines and nitric oxide synthase through the NF-κB signaling pathway.


Subject(s)
Anti-Inflammatory Agents , Diterpenes , Phyllanthus , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Diterpenes/pharmacology , Lipopolysaccharides , Macrophages/drug effects , Macrophages/enzymology , Macrophages/immunology , Macrophages/metabolism , Molecular Structure , Nitric Oxide/antagonists & inhibitors , Phyllanthus/chemistry , Structure-Activity Relationship , NF-kappa B/metabolism , Plant Components, Aerial/chemistry , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/immunology , Interleukin-6/metabolism , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Animals , Mice
11.
Vopr Pitan ; 92(1): 55-62, 2023.
Article in Russian | MEDLINE | ID: mdl-36883540

ABSTRACT

One of the main issues of the peculiarities of the immune reactions of the gastrointestinal tract is the mechanisms of ensuring tolerance to food antigens. Concentrations of antibodies to food antigens actually reflect the state of the intestinal mucosa barrier function, and the degree of penetration of antigens into the blood determines the level of immune response to them. The aim of the study was to determine the risk criteria for violation of tolerance to food antigens. Material and methods. The study included the results of a survey and examination of 1334 adults living in the north of the European part of the Russian Federation, including 1100 born in the North, of which 970 were women and 364 were men. The average age of the respondents was 45.5±1.0 years. The comparison group consisted of 344 patients with pathology of the gastrointestinal tract who applied to the medical company "Biocor". The content of immunoglobulins (Ig) G to food antigens, total IgA, cytokines (tumor necrosis factor α, interleukin-6, interleukin-4) in blood serum were determined by enzyme immunoassay. Results. Rural residents often (more than 28%) have elevated concentrations of IgG to potato, river fish, wheat and rye antigens. Urban residents have the most pronounced decrease in tolerance to food antigens of chicken, cod, beef and pork. In healthy individuals, elevated (>100 ME/ml) concentrations of antibodies to meat products are recorded in the range of 11.3-13.9%, to dairy antigens - 11.5-14.1%, cereals - 11.9-13.4%. Slightly less frequently, elevated concentrations of antibodies to fish antigens (7.5-10.1%), vegetables (3.8-7.0%) and fruits (4.9-6.5%) are detected. In inflammatory and oncological diseases of the gastrointestinal tract, the content of antibodies to food antigens increases sharply. On average, the frequency of impaired tolerance to food antigens in patients is 2.7-6.1 times higher than in healthy individuals. Conclusion. Violation of tolerance to food antigens is associated with an increase in blood pro-inflammatory cytokines, mainly interleukin-6. In practically healthy individuals, a decrease in tolerance to food antigens is associated with a deficiency of blood IgA. The risk criteria for violation of the diet or consumption of low-quality foods may be an increase in the frequency of detection of elevated concentrations of antibodies to meat products in 14.6±3.0%, fish - 10.7±2.3%, cereals - 13.7±1.6%, dairy products - 14.8±1.5%, vegetables - 7.8±2.4% and fruits - 6.9±5.8%.


Subject(s)
Antibodies , Antigens , Food , Immune Tolerance , Immunoglobulin A , Interleukin-6 , Female , Humans , Male , Cytokines/blood , Cytokines/immunology , Edible Grain , Fruit , Immunoglobulin A/blood , Immunoglobulin A/immunology , Interleukin-6/blood , Interleukin-6/immunology , Vegetables , Adult , Middle Aged , Antigens/blood , Antigens/immunology , Immune Tolerance/immunology , Antibodies/blood , Antibodies/immunology , Risk Assessment
12.
Am J Hum Biol ; 35(8): e23897, 2023 08.
Article in English | MEDLINE | ID: mdl-36951242

ABSTRACT

INTRODUCTION: Multiple studies have reported that milk immune content increases for infants experiencing infectious disease (ID) episodes, suggesting that the immune system of milk (ISOM) offers enhanced protection when needed to combat ID. METHODS: To test the hypothesis that ISOM content and/or activity increases during an infant's ID episode, we characterized milk secretory immunoglobulin A (sIgA; a major ISOM constituent) and in vitro interleukin-6 (IL-6) responses to Salmonella enterica and Escherichia coli, as system-level biomarkers of ISOM activity, in a prospective study among 96 mother-infant dyads in Kilimanjaro, Tanzania. RESULTS: After control for covariates, no milk immune variables (sIgA, Coef: 0.03; 95% CI -0.25, 0.32; in vitro IL-6 response to S. enterica, Coef: 0.23; 95% CI: -0.67, 1.13; IL-6 response to E. coli, Coef: -0.11; 95% CI: -0.98, 0.77) were associated with prevalent ID (diagnosed at the initial participation visit). Among infants experiencing an incident ID (diagnosed subsequent to the initial participation), milk immune content and responses were not substantially higher or lower than the initial visit (sIgA, N: 61; p: 0.788; IL-6 response to S. enterica, N: 56; p: 0.896; IL-6 response to E. coli, N: 36; p: 0.683); this was unchanged by exclusion of infants with ID at the time of initial participation. CONCLUSION: These findings are not consistent with the hypothesis that milk delivers enhanced immune protection when infants experience ID. In environments with a high burden of ID, dynamism may be less valuable to maternal reproductive success than stability in the ISOM.


Subject(s)
Escherichia coli Infections , Escherichia coli , Immunoglobulin A, Secretory , Interleukin-6 , Milk, Human , Salmonella Infections , Salmonella enterica , Humans , Female , Milk, Human/chemistry , Interleukin-6/analysis , Interleukin-6/immunology , Salmonella enterica/physiology , Salmonella Infections/immunology , Escherichia coli/physiology , Escherichia coli Infections/immunology , Infant, Newborn , Infant , Tanzania , Prospective Studies , Adult , Cross-Sectional Studies , Immunoenzyme Techniques , Immunoglobulin A, Secretory/analysis , Immunoglobulin A, Secretory/immunology , Longitudinal Studies
13.
Sci Transl Med ; 15(681): eabq4419, 2023 02.
Article in English | MEDLINE | ID: mdl-36724239

ABSTRACT

Rheumatoid arthritis (RA) is one of the most common autoimmune diseases affecting primarily the joints. Despite successful therapies including antibodies against tumor necrosis factor (TNF) and interleukin-6 (IL-6) receptor, only 20 to 30% of patients experience remission. We studied whether inhibiting both TNF and IL-6 would result in improved efficacy. Using backtranslation from single-cell RNA sequencing (scRNA-seq) data from individuals with RA, we hypothesized that TNF and IL-6 act synergistically on fibroblast-like synoviocytes (FLS) and T cells. Coculture of FLS from individuals with RA and T cells supported this hypothesis, revealing effects on both disease-driving pathways and biomarkers. Combining anti-TNF and anti-IL-6 antibodies in collagen-induced arthritis (CIA) mouse models resulted in sustained long-term remission, improved histology, and effects on bone remodeling pathways. These promising data initiated the development of an anti-TNF/IL-6 bispecific nanobody compound 1, with similar potencies against TNF and IL-6. We observed additive efficacy of compound 1 in a FLS/T cell coculture affecting arthritis and T helper 17 (TH17) pathways. This nanobody compound transcript signature inversely overlapped with described RA endotypes, indicating a potential efficacy in a broader patient population. In summary, we showed superiority of a bispecific anti-TNF/IL-6 nanobody compound or combination treatment over monospecific treatments in both in vitro and in vivo models. We anticipate improved efficacy in upcoming clinical studies.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Synoviocytes , Animals , Humans , Mice , Arthritis, Experimental/drug therapy , Cells, Cultured , Fibroblasts/pathology , Synovial Membrane/pathology , Synoviocytes/metabolism , Synoviocytes/pathology , Tumor Necrosis Factor Inhibitors/metabolism , Tumor Necrosis Factor Inhibitors/pharmacology , Tumor Necrosis Factor Inhibitors/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/immunology
14.
Nature ; 615(7951): 305-314, 2023 03.
Article in English | MEDLINE | ID: mdl-36813963

ABSTRACT

Down's syndrome (DS) presents with a constellation of cardiac, neurocognitive and growth impairments. Individuals with DS are also prone to severe infections and autoimmunity including thyroiditis, type 1 diabetes, coeliac disease and alopecia areata1,2. Here, to investigate the mechanisms underlying autoimmune susceptibility, we mapped the soluble and cellular immune landscape of individuals with DS. We found a persistent elevation of up to 22 cytokines at steady state (at levels often exceeding those in patients with acute infection) and detected basal cellular activation: chronic IL-6 signalling in CD4 T cells and a high proportion of plasmablasts and CD11c+TbethighCD21low B cells (Tbet is also known as TBX21). This subset is known to be autoimmune-prone and displayed even greater autoreactive features in DS including receptors with fewer non-reference nucleotides and higher IGHV4-34 utilization. In vitro, incubation of naive B cells in the plasma of individuals with DS or with IL-6-activated T cells resulted in increased plasmablast differentiation compared with control plasma or unstimulated T cells, respectively. Finally, we detected 365 auto-antibodies in the plasma of individuals with DS, which targeted the gastrointestinal tract, the pancreas, the thyroid, the central nervous system, and the immune system itself. Together, these data point to an autoimmunity-prone state in DS, in which a steady-state cytokinopathy, hyperactivated CD4 T cells and ongoing B cell activation all contribute to a breach in immune tolerance. Our findings also open therapeutic paths, as we demonstrate that T cell activation is resolved not only with broad immunosuppressants such as Jak inhibitors, but also with the more tailored approach of IL-6 inhibition.


Subject(s)
Autoimmunity , CD4-Positive T-Lymphocytes , Cytokines , Down Syndrome , Humans , Autoantibodies/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Cytokines/analysis , Cytokines/immunology , Disease Susceptibility , Down Syndrome/immunology , Down Syndrome/physiopathology , Interleukin-6/immunology , Receptors, Complement 3d
15.
Immunol Res ; 71(2): 229-246, 2023 04.
Article in English | MEDLINE | ID: mdl-36451006

ABSTRACT

Macro-autophagy is a highly conserved catabolic process among eukaryotes affecting macrophages. This work studies the genetic regulatory network involving the interplay between autophagy and macrophage polarization (activation). Autophagy-related genes (Atgs) and differentially expressed genes (DEGs) of macrophage polarization (M1-M2) were predicted, and their regulatory networks constructed. Naïve (M0) mouse bone marrow-derived monocytes were differentiated into M1 and M2a. Validation of the targets of Smad1, LC3A and LC3B, Atg16L1, Atg7, IL-6, CD68, Arg-1, and Vamp7 was performed in vitro. Immunophenotyping by flow cytometry revealed three macrophage phenotypes: M0 (IL-6 + /CD68 +), M1 (IL-6 + /CD68 + /Arg-1 +), and M2a (CD68 + /Arg-1). Confocal microscopy revealed increased autophagy in both M1 and M2a and a significant increase in the pre-autophagosomes size and number. Bafilomycin A increased the expression of CD68 and Arg-1 in all cell lineages. In conclusion, our approach predicted the protein targets mediating the interplay between autophagy and macrophage polarization. We suggest that autophagy reprograms macrophage polarization via CD68, arginase 1, Atg16L1-1, and Atg16L1-3. The current findings provide a foundation for the future use of macrophages in immunotherapy of different autoimmune disorders.


Subject(s)
Autophagy , Gene Regulatory Networks , Macrophage Activation , Macrophages , Animals , Mice , Autophagy/genetics , Autophagy/immunology , Gene Regulatory Networks/genetics , Gene Regulatory Networks/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Macrophage Activation/genetics , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/physiology , Monocytes/immunology , Monocytes/physiology
16.
Mol Immunol ; 152: 240-254, 2022 12.
Article in English | MEDLINE | ID: mdl-36395532

ABSTRACT

Th9, a new subgroup of CD4+T cells is characterized by its specific cytokine IL-9, is a critical factor in allergic diseases, cancers and parasitic infections. This study aimed to explore the potential roles of Th9 cells in the immunopathogenesis of ECM. In splenocytes sourced from uninfected, PbA and Py infected mice, Th9 cells were characterised by flow cytometry, cell sorting and qPCR. Enhancement of CD4+IL-9+ (Th9) cells were observed in both the infections, which corroborated with increased expression of the differentiating transcription factors. Moreover, crucial cytokine receptors (IL-4R, TGF-ßR, IL-6R) as well as chemokine receptors (CCR3, CCR6 and CCR7) and activation marker (CD96), demonstrated elevation upon PbA infection in splenic Th9 cells. Furthermore, Neutralization of IL-9 along with IL-6 enhanced host survivability, reduced mean neurological score of ECM. However, anti- IL-9 treatment also down regulated frequency of Th17 cells, and its transcription factors pSTAT3, RORγT along with depleted Il-1ß and Il-6 expression. In sum, understanding how IL-9 producing CD4+ T-cells can alter Th17/Treg ratio and by that modulate host's immune response, could pave the way for developing immunomodulatory interventions against cerebral malaria.


Subject(s)
Interleukin-9 , Malaria, Cerebral , Th17 Cells , Animals , Mice , Interleukin-6/immunology , Interleukin-9/immunology , Malaria, Cerebral/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Transcription Factors/immunology
17.
Front Endocrinol (Lausanne) ; 13: 1019667, 2022.
Article in English | MEDLINE | ID: mdl-36299462

ABSTRACT

Background: The inflammatory response plays a critical role in postoperative nosocomial infections, which are the most common postoperative complications causing adverse events and poor postoperative outcomes. This study aimed to explore the ability of early inflammation-related factor levels to predict the occurrence of nosocomial infections after abdominal surgery. Methods: The study included 146 patients with open abdominal surgery (a nosocomial infection group (NI group, n=42) and a no-nosocomial infection group (NNI group, n=104)). After 1:1 matching, the patients were divided into a matching nosocomial infection group (M-NI group, n=25) and a matching no-nosocomial infection group (M-NNI group, n=25). Serum levels of interleukin (IL)-6, IL-8, IL-10, IL-12, IL-18, macrophage migration inhibitory factor (MIF), and monocyte chemotactic protein (MCP-1) were tested at three time points (pre-operation, 0-hour post-operation (POD1) and 24-hour post-operation (POD2)). The area under the receiver operating characteristic curve (AUC-ROC) was used to test the predictive abilities. Results: There were significant differences in the levels of IL-6, IL-12, and IL-18 between the M-NI and M-NNI groups (p < 0.05), but not in the levels of other inflammatory factors. MIF, IL-8, and MCP-1 levels were higher in the M-NI group than in the M-NNI group at POD2 (p < 0.05). In the ROC analysis, the AUC for prediction of nosocomial infection using a combination of IL-6 and IL-18 at POD1 was 0.9616, while the AUCs for IL-6 alone and IL-12 alone were 0.8584 and 0.8256, respectively. Conclusions: The combination of the levels of inflammatory factors, IL-6 and IL-18, at the 0-hour postoperative time point, significantly improved the predictive ability to the development of postoperative infection during perioperative period. Our study suggests the importance of monitoring postoperative inflammatory markers.


Subject(s)
Cross Infection , Interleukin-18 , Interleukin-6 , Monocyte Chemoattractant Proteins , Humans , Interleukin-10 , Interleukin-12 , Interleukin-18/blood , Interleukin-18/immunology , Interleukin-6/blood , Interleukin-6/immunology , Interleukin-8 , Macrophage Migration-Inhibitory Factors , Postoperative Complications/diagnosis , Postoperative Complications/etiology , Postoperative Complications/immunology , Biomarkers/blood , Abdomen/surgery , Cross Infection/blood , Cross Infection/immunology
18.
Front Immunol ; 13: 952164, 2022.
Article in English | MEDLINE | ID: mdl-35967343

ABSTRACT

Vascular intimal hyperplasia (VIH) is an important stage of atherosclerosis (AS), in which macrophages not only play a critical role in local inflammation, but also transform into foam cells to participate into plaque formation, where they appear to be heterogeneous. Recently, it was shown that CD11c+ macrophages were more associated with active plaque progression. However, the molecular regulation of phenotypic changes of plaque macrophages during VIH has not been clarified and thus addressed in the current study. Since CD11c- cells were M2a-polarized anti-inflammatory macrophages, while CD11c+ cells were M1/M2b-polarized pro-inflammatory macrophages, we used bioinformatics tools to analyze the CD11c+ versus CD11c- plaque macrophages, aiming to detect the differential genes associated with M1/M2 macrophage polarization. We obtained 122 differential genes that were significantly altered in CD11c+ versus CD11c- plaque macrophages, regardless of CD11b expression. Next, hub genes were predicted in these 122 genes, from which we detected 3 candidates, interleukin 6 (Il6), Decorin (Dcn) and Tissue inhibitor matrix metalloproteinase 1 (Timp1). The effects of these 3 genes on CD11c expression as well as on the macrophage polarization were assessed in vitro, showing that only expression of Il6, but not expression of Dcn or Timp1, induced M1/M2b-like polarization in M2a macrophages. Moreover, only suppression of Il6, but not suppression of either of Dcn or Timp1, induced M2a-like polarization in M1/M2b macrophages. Furthermore, pharmaceutical suppression of Il6 attenuated VIH formation and progression of AS in a mouse model that co-applied apolipoprotein E-knockout and high-fat diet. Together, our data suggest that formation of VIH can be controlled through modulating macrophage polarization, as a promising therapeutic approach for prevent AS.


Subject(s)
Atherosclerosis , Interleukin-6 , Macrophage Activation , Macrophages , Plaque, Atherosclerotic , Tunica Intima , Animals , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/pathology , Hyperplasia/genetics , Hyperplasia/immunology , Hyperplasia/pathology , Interleukin-6/genetics , Interleukin-6/immunology , Macrophage Activation/genetics , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/pathology , Mice , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/immunology , Plaque, Atherosclerotic/pathology , Tunica Intima/immunology , Tunica Intima/pathology
19.
Int J Med Sci ; 19(8): 1265-1274, 2022.
Article in English | MEDLINE | ID: mdl-35928722

ABSTRACT

Objective: To investigate the efficiency and potential mechanisms of exosomes from dendritic cells (DCs) transfected with Forkhead box protein P3 (FOXP3) in the development of experimental autoimmune encephalomyelitis (EAE). Method: Mouse bone marrow-derived immature DCs were loaded with adenovirus carrying FOXP3 gene, and exosomes were generated. Then the exosomes with FOXP3 (FOXP3-EXOs) were co-cultured with CD4+T cell in vitro to evaluate their potential on CD4+T cell proliferation and differentiation, and injected into EAE mice to assess their effects on the development of EAE. Result: FOXP3-EXOs were effective to inhibit the CD4+T cell proliferation and the production of Interferon gamma (IFN-γ), interleukin (IL)-6, and IL-17, while they promoted the production of IL-10 in vitro. Moreover, FOXP3-EXOs treatment significantly decreased the neurological scores, reduced the infiltration of inflammatory cells into the spinal cord, and decreased demyelination in comparison to saline and Con-EXOs treated EAE mice. Moreover, the FOXP3-EXOs treatment resulted in obvious increases in the levels of regulatory T (Treg) cells and IL-10, whereas levels of T helper 1 (Th1) cells, Th17 cells, IFN-γ, IL-6, and IL-17 decreased significantly in the splenocyte culture of EAE mice. Conclusion: The present study preliminarily investigated the effects and potential mechanisms of FOXP3-EXOs in EAE and revealed that the FOXP3-EXOs could inhibit the production of Th1 and Th17 cells and promote the production of Treg cells as well as ameliorate the development of EAE. The neuroprotective effects of FOXP3-EXOs on EAE are likely due to the regulation of Th/Treg balance.


Subject(s)
Dendritic Cells , Encephalomyelitis, Autoimmune, Experimental , Exosomes , Forkhead Transcription Factors , Animals , Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/therapy , Exosomes/genetics , Exosomes/immunology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Interferon-gamma/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-17/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Mice , Mice, Inbred C57BL , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory , Th17 Cells
20.
Cell Mol Gastroenterol Hepatol ; 14(4): 789-811, 2022.
Article in English | MEDLINE | ID: mdl-35809803

ABSTRACT

BACKGROUND & AIMS: MUC1 is abnormally expressed in colorectal cancer, including colitis-associated colorectal cancer (CAC), but its role in tumorigenesis is unclear. This study investigated MUC1's effects in murine models of colitis and CAC and elucidated mechanisms of action. METHODS: Colitis and CAC were induced in mice by exposure to dextran sodium sulfate or azoxymethane plus dextran sodium sulphate. Clinical parameters, immune cell infiltration, and tumor development were monitored throughout disease progression. Experiments in knockout mice and bone marrow chimeras were combined with an exploration of immune cell abundance and function. RESULTS: Deficiency of Muc1 suppressed inflammation, inhibited tumor progression, increased abundance of CD8+ T lymphocytes, and reduced abundance of macrophages in colon tumors. Bone marrow chimeras showed promotion of CAC was primarily mediated by Muc1-expressing hematopoietic cells, and that MUC1 promoted a pro-tumoral immunosuppressive macrophage phenotype within tumors. Mechanistic studies revealed that Muc1 deficiency remarkably reduced interleukin-6 levels in the colonic tissues and tumors that was mainly produced by infiltrating macrophages at day 21, 42, and 85. In bone marrow-derived macrophages, MUC1 promoted responsiveness to chemoattractant and promoted activation into a phenotype with high Il6 and Ido1 expression, secreting factors which inhibited CD8+ T cell proliferation. MUC1 potently drives macrophages to produce interleukin-6, which in turn drives a pro-tumorigenic activation of signal transducer and activator of transcription 3 in colon epithelial tumor and stromal cells, ultimately increasing the occurrence and development of CAC. CONCLUSIONS: Our findings provide cellular and molecular mechanisms for the pro-tumorigenic functions of MUC1 in the inflamed colon. Therapeutic strategies to inhibit MUC1 signal transduction warrant consideration for the prevention or therapy of CAC.


Subject(s)
Colitis-Associated Neoplasms , Interleukin-6 , Macrophage Activation , Mucin-1 , STAT3 Transcription Factor , Animals , Azoxymethane/toxicity , Carcinogenesis , Chemotactic Factors , Colitis/chemically induced , Colitis/genetics , Colitis/immunology , Colitis-Associated Neoplasms/genetics , Colitis-Associated Neoplasms/immunology , Colonic Neoplasms/genetics , Colonic Neoplasms/immunology , Dextran Sulfate/toxicity , Interleukin-6/genetics , Interleukin-6/immunology , Macrophage Activation/genetics , Macrophage Activation/immunology , Mice , Mice, Knockout , Mucin-1/genetics , Mucin-1/immunology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...