Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 251
Filter
1.
J Clin Invest ; 134(9)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483511

ABSTRACT

In lung, thromboxane A2 (TXA2) activates the TP receptor to induce proinflammatory and bronchoconstrictor effects. Thus, TP receptor antagonists and TXA2 synthase inhibitors have been tested as potential asthma therapeutics in humans. Th9 cells play key roles in asthma and regulate the lung immune response to allergens. Herein, we found that TXA2 reduces Th9 cell differentiation during allergic lung inflammation. Th9 cells were decreased approximately 2-fold and airway hyperresponsiveness was attenuated in lungs of allergic mice treated with TXA2. Naive CD4+ T cell differentiation to Th9 cells and IL-9 production were inhibited dose-dependently by TXA2 in vitro. TP receptor-deficient mice had an approximately 2-fold increase in numbers of Th9 cells in lungs in vivo after OVA exposure compared with wild-type mice. Naive CD4+ T cells from TP-deficient mice exhibited increased Th9 cell differentiation and IL-9 production in vitro compared with CD4+ T cells from wild-type mice. TXA2 also suppressed Th2 and enhanced Treg differentiation both in vitro and in vivo. Thus, in contrast to its acute, proinflammatory effects, TXA2 also has longer-lasting immunosuppressive effects that attenuate the Th9 differentiation that drives asthma progression. These findings may explain the paradoxical failure of anti-thromboxane therapies in the treatment of asthma.


Subject(s)
Asthma , Cell Differentiation , T-Lymphocytes, Regulatory , Th2 Cells , Thromboxane A2 , Animals , Mice , Th2 Cells/immunology , Th2 Cells/pathology , Thromboxane A2/metabolism , Thromboxane A2/immunology , T-Lymphocytes, Regulatory/immunology , Asthma/immunology , Asthma/pathology , Asthma/drug therapy , Asthma/genetics , Mice, Knockout , Interleukin-9/immunology , Interleukin-9/genetics , Interleukin-9/metabolism , Pneumonia/immunology , Pneumonia/pathology , Mice, Inbred C57BL , Mice, Inbred BALB C , Lung/immunology , Lung/pathology , Ovalbumin/immunology , Female , T-Lymphocytes, Helper-Inducer/immunology
2.
Adv Respir Med ; 92(1): 27-35, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38247549

ABSTRACT

BACKGROUND: Pathogenesis of pulmonary hypertension (PH) is a multifactorial process driven by inflammation and pulmonary vascular remodeling. To target these two aspects of PH, we recently tested a novel treatment: Interleukin-9 (IL9) fused to F8, an antibody that binds to the extra-domain A of fibronectin (EDA+ Fn). As EDA+ Fn is not found in healthy adult tissue but is expressed during PH, IL9 is delivered specifically to the tissue affected by PH. We found that F8IL9 reduced pulmonary vascular remodeling and attenuated PH compared with sham-treated mice. PURPOSE: To evaluate possible F8IL9 effects on PH-associated inflammatory processes, we analysed the expression of genes involved in pulmonary immune responses. METHODS: We applied the monocrotaline (MCT) model of PH in mice (n = 44). Animals were divided into five experimental groups: sham-induced animals without PH (control, n = 4), MCT-induced PH without treatment (PH, n = 8), dual endothelin receptor antagonist treatment (dual ERA, n = 8), F8IL9 treatment (n = 12, 2 formats with n = 6 each), or with KSFIL9 treatment (KSFIL9, n = 12, 2 formats with n = 6 each, KSF: control antibody with irrelevant antigen specificity). After 28 days, a RT-PCR gene expression analysis of inflammatory response (84 genes) was performed in the lung. RESULTS: Compared with the controls, 19 genes exhibited relevant (+2.5-fold) upregulation in the PH group without treatment. Gene expression levels in F8IL9-treated lung tissue were reduced compared to the PH group without treatment. This was the case especially for CCL20, CXCL5, C-reactive protein, pentraxin related (CRPPR), and Kininogen-1 (KNG1). CONCLUSION: In accordance with the hypothesis stated above, F8IL9 treatment diminished the upregulation of some genes associated with inflammation in a PH animal model. Therefore, we hypothesize that IL9-based immunocytokine treatment will likely modulate various inflammatory pathways.


Subject(s)
Hypertension, Pulmonary , Interleukin-9 , Animals , Mice , Antibodies , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/immunology , Immunoconjugates/therapeutic use , Inflammation/drug therapy , Interleukin-9/immunology , Interleukin-9/therapeutic use , Lung , Vascular Remodeling , Disease Models, Animal
3.
Mol Immunol ; 152: 240-254, 2022 12.
Article in English | MEDLINE | ID: mdl-36395532

ABSTRACT

Th9, a new subgroup of CD4+T cells is characterized by its specific cytokine IL-9, is a critical factor in allergic diseases, cancers and parasitic infections. This study aimed to explore the potential roles of Th9 cells in the immunopathogenesis of ECM. In splenocytes sourced from uninfected, PbA and Py infected mice, Th9 cells were characterised by flow cytometry, cell sorting and qPCR. Enhancement of CD4+IL-9+ (Th9) cells were observed in both the infections, which corroborated with increased expression of the differentiating transcription factors. Moreover, crucial cytokine receptors (IL-4R, TGF-ßR, IL-6R) as well as chemokine receptors (CCR3, CCR6 and CCR7) and activation marker (CD96), demonstrated elevation upon PbA infection in splenic Th9 cells. Furthermore, Neutralization of IL-9 along with IL-6 enhanced host survivability, reduced mean neurological score of ECM. However, anti- IL-9 treatment also down regulated frequency of Th17 cells, and its transcription factors pSTAT3, RORγT along with depleted Il-1ß and Il-6 expression. In sum, understanding how IL-9 producing CD4+ T-cells can alter Th17/Treg ratio and by that modulate host's immune response, could pave the way for developing immunomodulatory interventions against cerebral malaria.


Subject(s)
Interleukin-9 , Malaria, Cerebral , Th17 Cells , Animals , Mice , Interleukin-6/immunology , Interleukin-9/immunology , Malaria, Cerebral/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Transcription Factors/immunology
4.
Biochem Biophys Res Commun ; 613: 26-33, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35526485

ABSTRACT

CD8+ cytotoxic T lymphocytes (CTLs) and CD4+ helper T (Th) cells play a critical role in protective immune responses to tumor cells. Particularly, Th9 cells exert anti-tumor activity by producing IL-9. TNF receptor (TNFR)-associated factor 6 (TRAF6) is an adaptor protein that mediates the signals from both the TNFR superfamily and Toll-like receptors (TLRs). We have previously reported that T cell-specific TRAF6-deficent (TRAF6ΔT) mice spontaneously developed systemic inflammatory diseases. However, the physiological role of TRAF6 in T cells in controlling anti-tumor immune responses remains largely unclear. Here, we found that tumor formation of syngeneic colon cancer cells inoculated in TRAF6ΔT mice was accelerated compared to that in control mice. Although TRAF6-deficient naïve T cells showed enhanced differentiation of Th9 cells in vitro, these T cells produced lower amounts of IL-9 in response to a specific antigen. Moreover, CD4+ tumor-infiltrating lymphocytes (TILs) in tumor-bearing TRAF6ΔT mice expressed lower levels of IL-9 than those in WT mice. Importantly, administration of recombinant IL-9 (rIL-9) strongly suppressed tumor progression in TRAF6ΔT mice. Furthermore, expression levels of the T-box transcription factor Eomesodermin (Eomes) and its target molecules IFN-γ, granzyme B and perforin, as well as cytotoxic activity, were reduced in TRAF6-deficient CD8+ T cells in vitro. TRAF6-deficient T cells were found to express significantly increased levels of immune checkpoint molecules, CTLA-4 and PD-1 on the cell surface. These results demonstrate that the TRAF6 signaling pathway in T cells regulates anti-tumor immunity through the activation of tumor specific Th9 cells and CTLs in a tumor microenvironment.


Subject(s)
T-Lymphocytes, Cytotoxic , TNF Receptor-Associated Factor 6 , Animals , Interleukin-9/immunology , Interleukin-9/pharmacology , Mice , Recombinant Proteins/pharmacology , Signal Transduction/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , TNF Receptor-Associated Factor 6/immunology
5.
Hum Immunol ; 83(6): 499-508, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35314090

ABSTRACT

The role of main TCD4+ lymphocyte subsets including T helper 1 (Th1), Th2, Th17, and T regulatory cells in transplantation has already been described; however, the implication of newly defined lineages such as Th22, Th9, and T follicular helper cells in alloimmune responses remain to be elucidated. In addition to the low number of studies, most evidence about the role of these cells in transplantation has been obtained from experimental studies, which might be insufficient or irrelevant for clinical interpretations. In the present article, we have reviewed the studies that have investigated the role of Th9 and its principal cytokine interleukin-9 (IL-9) in allograft rejection and tolerance induction. However, the findings tend to be controversial since some investigations demonstrate positive effects of Th9 on transplantation outcomes whereas others are suggestive of its detrimental influences. A similar challenge is presented by IL-9 as both advantages and disadvantages of IL-9 expression in allografts have been reported. Moreover, different organs appear to be affected in different ways by Th9 cells and IL-9. Therefore, more research particularly in human patients is required to provide sufficient data for drawing a concrete conclusion about the implication of Th9 and IL-9 in transplantation.


Subject(s)
Graft Rejection , Interleukin-9 , T-Lymphocytes, Helper-Inducer , Transplantation Tolerance , Animals , Cytokines/immunology , Graft Rejection/immunology , Humans , Interleukin-9/immunology , T Follicular Helper Cells , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Transplantation Tolerance/immunology
6.
Sci Immunol ; 7(68): eabi9768, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35179949

ABSTRACT

Despite IL-9 functioning as a pleiotropic cytokine in mucosal environments, the IL-9-responsive cell repertoire is still not well defined. Here, we found that IL-9 mediates proallergic activities in the lungs by targeting lung macrophages. IL-9 inhibits alveolar macrophage expansion and promotes recruitment of monocytes that develop into CD11c+ and CD11c- interstitial macrophage populations. Interstitial macrophages were required for IL-9-dependent allergic responses. Mechanistically, IL-9 affected the function of lung macrophages by inducing Arg1 activity. Compared with Arg1-deficient lung macrophages, Arg1-expressing macrophages expressed greater amounts of CCL5. Adoptive transfer of Arg1+ lung macrophages but not Arg1- lung macrophages promoted allergic inflammation that Il9r-/- mice were protected against. In parallel, the elevated expression of IL-9, IL-9R, Arg1, and CCL5 was correlated with disease in patients with asthma. Thus, our study uncovers an IL-9/macrophage/Arg1 axis as a potential therapeutic target for allergic airway inflammation.


Subject(s)
Asthma/immunology , Interleukin-9/immunology , Macrophages, Alveolar/immunology , Allergens/immunology , Animals , Antigens, Dermatophagoides/immunology , Arginase/genetics , Arginase/immunology , Chemokine CCL5/immunology , Child, Preschool , Female , Humans , Infant , Inflammation/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-9/genetics , Receptors, Interleukin-9/immunology
7.
J Nutr Biochem ; 96: 108788, 2021 10.
Article in English | MEDLINE | ID: mdl-34087410

ABSTRACT

Distinct T helper cells, including Th9 cells help maintain homeostasis in the immune system. Vitamins play pivotal role in the immune system through many mechanisms, including regulating the differentiation of T helper cells. Calcitriol (1,25-dihydroxyvitamin D3) and retinoic acid possess hormone-like properties and are the bioactive metabolites of vitamin D and A, respectively, that signal through heterodimers containing the common retinoid X receptor. In contrast to individual treatment with the vitamins that significantly attenuates IL-9 production from Th9 cells, Th9 cells treated with both vitamins demonstrated IL-9 production similar to untreated Th9 cells. This is associated with reciprocal expression of PU.1 and Foxp3. While the recruitment of PU.1 was significantly impaired to the Il9 gene in the presence of calcitriol or retinoic acid in Th9 cells, addition of both vitamins together increased the recruitment of PU.1 to the Il9 gene. Calcitriol and retinoic acid together impaired the recruitment of HDAC1 to the Il9 gene without impacting Gcn5 recruitment. Importantly, retinoic acid negated the effect of calcitriol and impaired the binding of VDR on the Il9 gene by dampened VDR-RXR formation. Collectively, our data show that calcitriol and retinoic acid antagonize each other to regulate the differentiation of Th9 cells.


Subject(s)
Calcitriol/pharmacology , Interleukin-9/immunology , T-Lymphocytes, Helper-Inducer/drug effects , Tretinoin/pharmacology , Vitamins/pharmacology , Animals , Cells, Cultured , Female , Mice, Inbred C57BL , T-Lymphocytes, Helper-Inducer/immunology
8.
Biofactors ; 47(4): 674-685, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33979459

ABSTRACT

Previous studies showed that interleukin-9 (IL-9) is involved in cardiovascular diseases, including hypertension and cardiac fibrosis. This study aimed to investigate the role of IL-9 in lipopolysaccharide (LPS)-induced myocardial cell (MC) apoptosis. Mice were treated with LPS, and IL-9 expression was measured and the results showed that compared with WT mice, LPS-treated mice exhibited increased cardiac Mø-derived IL-9. Additionally, the effects of IL-9 deficiency (IL-9-/-) on macrophage (Mø)-related oxidative stress and MC apoptosis were evaluated, the results showed that IL-9 knockout significantly exacerbated cardiac dysfunction, inhibited Nrf2 nuclear transfer, promoted an imbalance in M1 and M2 Møs, and exacerbated oxidative stress and MC apoptosis in LPS-treated mice. Treatment with ML385, a specific nuclear factor erythroid-2 related factor 2 (Nrf2) pathway inhibitor significantly alleviated the above effects in LPS-treated IL-9-/- mice. Bone marrow-derived Møs from wild-type (WT) mice and IL-9-/- mice were treated with LPS, and the differentiation and oxidative stress levels of Møs were measured. The effect of Mø differentiation on mouse MC apoptosis was also analyzed in vitro. The results showed that LPS-induced M1 Mø/M2 Mø imbalance and Mø-related oxidative stress were alleviated by IL-9 knockout but were exacerbated by ML385 treatment. The protective effects of IL-9 deficiency on the MC apoptosis mediated by LPS-treated Møs were reversed by ML-385. Our results suggest that deletion of IL-9 decreased the nuclear translocation of Nrf2 in Møs, which further aggravated Mø-related oxidative stress and MC apoptosis. IL-9 may be a target for the prevention of LPS-induced cardiac injury.


Subject(s)
Apoptosis/genetics , Interleukin-9/genetics , Macrophages/pathology , Myocarditis/genetics , Myocytes, Cardiac/pathology , NF-E2-Related Factor 2/genetics , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Apoptosis/immunology , Cell Nucleus/metabolism , Cytoplasm/metabolism , Gene Expression Regulation , Interleukin-9/deficiency , Interleukin-9/immunology , Lipopolysaccharides/administration & dosage , Macrophages/immunology , Male , Mice , Mice, Knockout , Myocarditis/chemically induced , Myocarditis/immunology , Myocarditis/pathology , Myocytes, Cardiac/immunology , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/immunology , Oxidative Stress , Primary Cell Culture , Protein Transport , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/immunology , Receptors, Atrial Natriuretic Factor/genetics , Receptors, Atrial Natriuretic Factor/immunology , Receptors, Interleukin-9/genetics , Receptors, Interleukin-9/immunology , Signal Transduction , Thiazoles/pharmacology , Ventricular Function, Left/physiology , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/immunology
9.
J Neuroinflammation ; 18(1): 108, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33971906

ABSTRACT

BACKGROUND: Interleukin 9 (IL-9), produced mainly by T helper 9 (Th9) cells, has been recognized as an important regulator in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Astrocytes respond to IL-9 and reactive astrocytes always associate with blood-brain barrier damage, immune cell infiltration, and spinal injury in MS and EAE. Several long non-coding RNAs (lncRNAs) with aberrant expression have been identified in the pathogenesis of MS. Here, we examined the effects of lncRNA Gm13568 (a co-upregulated lncRNA both in EAE mice and in mouse primary astrocytes activated by IL-9) on the activation of astrocytes and the process of EAE. METHODS: In vitro, shRNA-recombinant lentivirus with glial fibrillary acidic protein (GFAP) promoter were performed to determine the relative gene expression and proinflammatory cytokines production in IL-9 treated-astrocytes using Western blot, real-time PCR, and Cytometric Bead Array, respectively. RIP and ChIP assays were analyzed for the mechanism of lncRNA Gm13568 regulating gene expression. Immunofluorescence assays was performed to measure the protein expression in astrocytes. In vivo, H&E staining and LFB staining were applied to detect the inflammatory cells infiltrations and the medullary sheath damage in spinal cords of EAE mice infected by the recombinant lentivirus. Results were analyzed by one-way ANOVA or Student's t test, as appropriate. RESULTS: Knockdown of the endogenous lncRNA Gm13568 remarkably inhibits the Notch1 expression, astrocytosis, and the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) as well as the production of inflammatory cytokines and chemokines (IL-6, TNF-α, IP-10) in IL-9-activated astrocytes, in which Gm13568 associates with the transcriptional co-activators CBP/P300 which are enriched in the promoter of Notch1 genes. More importantly, inhibiting Gm13568 with lentiviral vector in astrocytes ameliorates significantly inflammation and demyelination in EAE mice, therefore delaying the EAE process. CONCLUSIONS: These findings uncover that Gm13568 regulates the production of inflammatory cytokines in active astrocytes and affects the pathogenesis of EAE through the Notch1/STAT3 pathway. LncRNA Gm13568 may be a promising target for treating MS and demyelinating diseases.


Subject(s)
Astrocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Interleukin-9/metabolism , RNA, Long Noncoding/immunology , Receptor, Notch1/biosynthesis , p300-CBP Transcription Factors/metabolism , Animals , Astrocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Gene Expression Regulation/immunology , Interleukin-9/immunology , Mice , Mice, Inbred C57BL , RNA, Long Noncoding/metabolism , Receptor, Notch1/immunology , p300-CBP Transcription Factors/immunology
10.
J Immunol ; 206(11): 2740-2752, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34021045

ABSTRACT

IL-9 is produced by Th9 cells and is classically known as a growth-promoting cytokine. Although protumorigenic functions of IL-9 are described in T cell lymphoma, recently, we and others have reported anti-tumor activities of IL-9 in melanoma mediated by mast cells and CD8+ T cells. However, involvement of IL-9 in invasive breast and cervical cancer remains unexplored. In this study, we demonstrate IL-9-dependent inhibition of metastasis of both human breast (MDA-MB-231 and MCF-7) and cervical (HeLa) tumor cells in physiological three-dimensional invasion assays. To dissect underlying mechanisms of IL-9-mediated suppression of invasion, we analyzed IL-9-dependent pathways of cancer cell metastasis, including proteolysis, contractility, and focal adhesion dynamics. IL-9 markedly blocked tumor cell-collagen degradation, highlighting the effects of IL-9 on extracellular matrix remodeling. Moreover, IL-9 significantly reduced phosphorylation of myosin L chain and resultant actomyosin contractility and also increased focal adhesion formation. Finally, IL-9 suppressed IL-17- and IFN-γ-induced metastasis of both human breast (MDA-MB-231) and cervical (HeLa) cancer cells. In conclusion, IL-9 inhibits the metastatic potential of breast and cervical cancer cells by controlling extracellular matrix remodeling and cellular contractility.


Subject(s)
Breast Neoplasms/immunology , Extracellular Matrix/immunology , Interleukin-9/immunology , Breast Neoplasms/pathology , Cell Adhesion/immunology , Cell Movement/immunology , Female , Humans , Tumor Cells, Cultured
11.
Pigment Cell Melanoma Res ; 34(5): 966-972, 2021 09.
Article in English | MEDLINE | ID: mdl-33834624

ABSTRACT

Immune dysregulation is critical in vitiligo pathogenesis. Although the presence and roles of numerous CD4+ T-cell subsets have been described, the presence of Th9 cells and more importantly, roles of IL-9 on melanocyte functions are not explored yet. Here, we quantified the T helper cell subsets including Th9 cells in vitiligo patients by multicolor flowcytometry. There was an increased frequency of skin-homing (CLA+ ) and systemic (CLA- ) Th9 cells in vitiligo patients compared to healthy donors. However, there was no difference in Th9 cell frequency in vitiligo patients with early and chronic disease. There was negligible IL-9 receptor (IL-9R) expression on human primary melanocytes (HPMs); however, IFNγ upregulated IL-9R expression on HPMs. Functionally, IL-9/IL-9R signaling reduced the production of IFNγ-induced toxic reactive oxygen species (ROS) in HPMs. There was no effect of IL-9 on expression of genes responsible for melanosome formation (MART1, TYRP1, and DCT), melanin synthesis (TYR), and melanocyte-inducing transcription factor (MITF) in HPMs. In conclusion, this study identifies the presence of Th9 cells in vitiligo and their roles in reducing the oxidative stress of melanocytes, which might be useful in designing effective therapeutics.


Subject(s)
Gene Expression Regulation/immunology , Interleukin-9/immunology , Melanocytes/immunology , Skin/immunology , T-Lymphocytes, Helper-Inducer/immunology , Vitiligo/immunology , Adult , Humans , Male , Melanocytes/pathology , Middle Aged , Receptors, Interleukin-9/immunology , Skin/pathology , T-Lymphocytes, Helper-Inducer/pathology , Vitiligo/pathology
12.
Int Immunopharmacol ; 95: 107510, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33706054

ABSTRACT

Diabetic coronary heart disease (DM-CHD) poses a major threat to the world. The newly described T cell subset-Th9 cells and related cytokine interleukin (IL)-9 play important roles in the pathogenesis of diabetes and atherosclerosis. B lymphocyte-induced maturation protein 1 (Blimp-1) has been indicated to negatively regulate Th9 development in allergic asthma, but its role in DM-CHD remains unclear. Hence, this study was designed to investigate the role of Blimp-1 in DM-CHD and to elucidate whether the mechanism was associated with regulation of Th9 cell differentiation. Our results showed that serum Blimp-1 mRNA level was decreased whereas proportion of Th9 cells (IL-9+ CD4+ T cells) and serum level of Th9-related IL-9 were increased in DM-CHD patients. Furthermore, serum Blimp-1 mRNA level was negatively correlated with IL-9 level in DM-CHD patients. Importantly, administration of lentiviruses expressing Blimp-1 (LV-Blimp-1) significantly inhibited Th9 cell differentiation and alleviated the severity of atherosclerotic lesions in the aorta and coronary artery, dyslipidemia, inflammation, vascular endothelial dysfunction, and oxidative stress in DM-CHD model rats. Collectively, Blimp-1 exerts a protective effect in DM-CHD rats and the mechanism might involve inhibition of Th9 cell differentiation.


Subject(s)
Coronary Disease/immunology , Diabetes Mellitus, Type 2/immunology , Positive Regulatory Domain I-Binding Factor 1/immunology , T-Lymphocyte Subsets/immunology , Adult , Aged , Animals , Cell Differentiation , Female , Humans , Interleukin-9/immunology , Male , Middle Aged , Positive Regulatory Domain I-Binding Factor 1/genetics , Rats, Sprague-Dawley
13.
Nat Rev Immunol ; 21(1): 37-48, 2021 01.
Article in English | MEDLINE | ID: mdl-32788707

ABSTRACT

IL-9-producing CD4+ T cells have been considered to represent a distinct T helper cell (TH cell) subset owing to their unique developmental programme in vitro, their expression of distinct transcription factors (including PU.1) and their copious production of IL-9. It remains debatable whether these cells represent a truly unique TH cell subset in vivo, but they are closely related to the T helper 2 (TH2) cells that are detected in allergic diseases. In recent years, increasing evidence has also indicated that IL-9-producing T cells may have potent abilities in eradicating advanced tumours, particularly melanomas. Here, we review the latest literature on the development of IL-9-producing T cells and their functions in disease settings, with a particular focus on allergy and cancer. We also discuss recent ideas concerning the therapeutic targeting of these cells in patients with chronic allergic diseases and their potential use in cancer immunotherapy.


Subject(s)
Hypersensitivity/immunology , Interleukin-9/immunology , Neoplasms/immunology , T-Lymphocytes, Helper-Inducer/immunology , Humans , Inflammation/immunology , Neoplasms/pathology
14.
J Allergy Clin Immunol ; 147(1): 280-295, 2021 01.
Article in English | MEDLINE | ID: mdl-33069715

ABSTRACT

BACKGROUND: This study group has previously identified IL-9-producing mucosal mast cell (MMC9) as the primary source of IL-9 to drive intestinal mastocytosis and experimental IgE-mediated food allergy. However, the molecular mechanisms that regulate the expansion of MMC9s remain unknown. OBJECTIVES: This study hypothesized that IL-4 regulates MMC9 development and MMC9-dependent experimental IgE-mediated food allergy. METHODS: An epicutaneous sensitization model was used and bone marrow reconstitution experiments were performed to test the requirement of IL-4 receptor α (IL-4Rα) signaling on MMC9s in experimental IgE-mediated food allergy. Flow cytometric, bulk, and single-cell RNA-sequencing analyses on small intestine (SI) MMC9s were performed to illuminate MMC9 transcriptional signature and the effect of IL-4Rα signaling on MMC9 function. A bone marrow-derived MMC9 culture system was used to define IL-4-BATF signaling in MMC9 development. RESULTS: Epicutaneous sensitization- and bone marrow reconstitution-based models of IgE-mediated food allergy revealed an IL-4 signaling-dependent cell-intrinsic effect on SI MMC9 accumulation and food allergy severity. RNA-sequencing analysis of SI-MMC9s identified 410 gene transcripts reciprocally regulated by IL-4 signaling, including Il9 and Batf. Insilico analyses identified a 3491-gene MMC9 transcriptional signature and identified 2 transcriptionally distinct SI MMC9 populations enriched for metabolic or inflammatory programs. Employing an in vitro MMC9-culture model system showed that generation of MMC9-like cells was induced by IL-4 and this was in part dependent on BATF. CONCLUSIONS: IL-4Rα signaling directly modulates MMC9 function and exacerbation of experimental IgE-mediated food allergic reactions. IL-4Rα regulation of MMC9s is in part BATF-dependent and occurs via modulation of metabolic transcriptional programs.


Subject(s)
Basic-Leucine Zipper Transcription Factors/immunology , Food Hypersensitivity/immunology , Interleukin-4/immunology , Interleukin-9/immunology , Intestinal Mucosa/immunology , Mast Cells/immunology , Signal Transduction/immunology , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Disease Models, Animal , Food Hypersensitivity/genetics , Food Hypersensitivity/pathology , Interleukin-4/genetics , Interleukin-9/genetics , Intestinal Mucosa/pathology , Mast Cells/pathology , Mice , Mice, Knockout , Signal Transduction/genetics
15.
Am J Reprod Immunol ; 86(3): e13380, 2021 09.
Article in English | MEDLINE | ID: mdl-33210782

ABSTRACT

PROBLEM: Inflammation and immune responses play crucial roles in the development of endometriosis. Although interleukin-9 (IL-9) has a pro-inflammatory function in chronic inflammatory diseases, its function in endometriosis remains unknown. Here, we aimed to investigate the significance of IL-9 and IL-9-producing lymphocytes in endometriosis. METHOD OF STUDY: Specimens were obtained from patients with and without endometriosis. Peritoneal fluid (PF), peripheral blood (PB), and ovarian endometrioma (OE) tissues were analyzed for the proportion of CD4+ IL-9+ lymphocytes and IL-9 concentration using flow cytometry and enzyme-linked immunosorbent assay. OE, endometrium with endometriosis (EE), and normal endometrium (NE) were analyzed for IL-9 receptor (IL-9R) expression using immunohistochemical staining. IL-9-dependent changes in Interleukin-8 (IL-8) expression in endometrial stromal cells from OE (OESCs) were evaluated using real-time PCR. RESULTS: The proportion of CD4+ IL-9+ lymphocytes was higher in the PF, but not the PB, of patients with endometriosis than individuals without endometriosis (p < .05). However, IL-9 levels in the PF did not differ between those with and without endometriosis. We detected CD4+ IL-9+ lymphocytes in OE tissues and IL-9R in OE tissues and OESCs. In OESC culture, IL-9 significantly elevated IL-8 expression in a dose-dependent manner (p < .05), which was nullified by the addition of the anti-IL-9 receptor antibody. Furthermore, IL-9 additively stimulated IL-8 expression in the presence of TNF-α (p < .05). CONCLUSION: Our findings show that IL-9 produced by helper T cells induces IL-8 expression, suggesting that IL-9 plays an important role in the development of endometriosis by stimulating IL-8 expression.


Subject(s)
Endometriosis/immunology , Interleukin-8/biosynthesis , Interleukin-9/biosynthesis , T-Lymphocytes, Helper-Inducer/immunology , Adult , Female , Humans , Interleukin-8/immunology , Interleukin-9/immunology
16.
Front Immunol ; 11: 544248, 2020.
Article in English | MEDLINE | ID: mdl-33329510

ABSTRACT

Background: Interleukin-9 (IL9) plays a critical role in immunity and the pathogenesis of endometrial cancer (EC), especially endometrioid EC (EEC). This study aimed to identify the IL9+ immune cell subsets and their pleiotropic functions and establish an optimized prognostic nomogram towards the promotion of personalized treatment of EEC. Methods: 1,417 EC patients were involved in the present study. 143 patients from the tertiary gynecology centers in Shanghai between 2013 and 2019 were recruited, and the study protocol was approved by the Institutional Review Board (IRB) of Shanghai First Maternity and Infant Hospital. The genomic data of the other 1,274 patients were extracted from the TCGA and the MSKCC datasets, respectively. Immune and stromal scores were calculated using the ESTIMATE R tool, and the tumor infiltration of immune cells was analyzed using the TIMER platform. Metascape and GEPIA datasets were used for bioinformatic analysis. P < 0.05 was considered statistically significant. All statistical analyses were performed with GraphPad Prism and R studio. Results: 552 genes that were correlated with leukocyte infiltration, lymphocyte activation, and regulation of innate immune response were up-regulated in the high immune score group. More IL9+ cell infiltration was detected in the highly and moderately differentiated EC (p = 0.04). High IL9+ lymphocyte infiltration was related to a better overall survival (p = 0.0027). IL9 positive cell clusters included ILC2s, Vδ2 γδT cells, mast cells, macrophages, and Th9 cells. Parameters such as FIGO stage, IL9 score, Vδ2 + γδT cell infiltration, classification of differentiation, and diabetes mellitus were assigned a weighted number of points in the nomogram for a specific predicted 3-, 5- and 10-year overall survival (OS). IL9-IL9R axis played a vital role in EEC, IL9R positive cell subgroups were also identified, and the related function was analyzed in the present study. Additionally, PR (Progesterone Receptor, or PGR) expression was relevant to a higher density of IL9+ lymphocyte infiltration. However, PGRMC1 (Progesterone Receptor Membrane Component 1) was negatively relevant to IL9R (p = 4.26e-8). Conclusion: We observed a significant infiltration of IL9+ cells and the overrepresentation of IL-9R in tissue specimens of patients in EC cases. The nomogram incorporating the IL9 could accurately predict individualized survival probability in EEC. Additionally, this study not only established a prognostic nomogram but also assist in the firmer understanding of the relevance of the IL9-IL9R axis and IL9-producing cells in EC immunity.


Subject(s)
Endometrial Neoplasms/immunology , Endometrial Neoplasms/mortality , Interleukin-9/immunology , Leukocytes/immunology , Lymphocyte Activation , Nomograms , Disease-Free Survival , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Female , Humans , Interleukin-9/genetics , Leukocytes/pathology , Membrane Proteins/genetics , Membrane Proteins/immunology , Middle Aged , Receptors, Progesterone/genetics , Receptors, Progesterone/immunology , Survival Rate
17.
PLoS Pathog ; 16(12): e1009121, 2020 12.
Article in English | MEDLINE | ID: mdl-33351862

ABSTRACT

Parasitic helminths are sensed by the immune system via tissue-derived alarmins that promote the initiation of the appropriate type 2 immune responses. Here we establish the nuclear alarmin cytokine IL-33 as a non-redundant trigger of specifically IL-9-driven and mast cell-mediated immunity to the intestinal parasite Strongyloides ratti. Blockade of endogenous IL-33 using a helminth-derived IL-33 inhibitor elevated intestinal parasite burdens in the context of reduced mast cell activation while stabilization of endogenous IL-33 or application of recombinant IL-33 reciprocally reduced intestinal parasite burdens and increased mast cell activation. Using gene-deficient mice, we show that application of IL-33 triggered rapid mast cell-mediated expulsion of parasites directly in the intestine, independent of the adaptive immune system, basophils, eosinophils or Gr-1+ cells but dependent on functional IL-9 receptor and innate lymphoid cells (ILC). Thereby we connect the described axis of IL-33-mediated ILC2 expansion to the rapid initiation of IL-9-mediated and mast cell-driven intestinal anti-helminth immunity.


Subject(s)
Interleukin-33/immunology , Interleukin-9/immunology , Intestinal Diseases, Parasitic/immunology , Lymphocytes/immunology , Mast Cells/immunology , Strongyloidiasis/immunology , Animals , Immunity, Innate/immunology , Intestines/immunology , Intestines/parasitology , Mice , Strongyloides ratti/immunology
18.
Cells ; 9(9)2020 09 16.
Article in English | MEDLINE | ID: mdl-32947843

ABSTRACT

BACKGROUND: Systemic sclerosis (SSc) is a connective tissue disorder which key feature is a fibrotic process. The role of Endothelin-1 (ET-1) and T-helper (Th)-1 cells in lung and skin fibrosis is well known, although Th17- and Treg-cells were found to be involved. However, no studies analyzed cytokines expression in gastric-juice of SSc patients. Our study aimed to evaluate proinflammatory and profibrotic cytokines in gastric-juice of SSc patients and to investigate their correlations with esophageal dysmotility. METHODS: Patients performed upper-gastrointestinal-endoscopy with gastric-juice collection, esophageal manometry and thoracic CT-scan. GM-CSF, ET-1, Th-1 (IFN-γ, IL-1ß, TNF-α, IL-2, IL-6, IL-9), Th-17 (IL-17, IL-21, IL-22, IL-23) and T-reg (IL-10, TGF-ß) related cytokines were measured in 29 SSc-patients and 20 healthy-controls. RESULTS: Patients showed significant lower levels of IL-6, IL-17, IL-22 and ET-1 (p < 0.005) compared with controls. Patients with atrophic gastritis presented significant lower levels of IL-2, IL-9, IL-6, TGF-ß, GM-CSF, IL-17 and ET-1 (p < 0.005) compared to patients without gastritis. Increased values of IL-2, IL-9, IL-1ß, IL-17, ET-1 and GM-CSF (p < 0.005) were observed in patients with esophageal impairment. This is the first report of cytokines measurement in gastric juice of patients with SSc. The high IL-17 concentrations in gastric-juice of scleroderma patients with esophageal dysmotility support the signature of Th-17 cells in scleroderma esophageal fibrosis.


Subject(s)
Esophagus/immunology , Gastric Juice/immunology , Interleukin-17/genetics , Scleroderma, Systemic/genetics , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Adult , Case-Control Studies , Endothelin-1/genetics , Endothelin-1/immunology , Esophagus/pathology , Female , Gastric Juice/chemistry , Gene Expression , Humans , Interleukin-17/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Interleukin-23/genetics , Interleukin-23/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Interleukin-9/genetics , Interleukin-9/immunology , Interleukins/genetics , Interleukins/immunology , Lung/immunology , Lung/pathology , Male , Middle Aged , Scleroderma, Systemic/immunology , Scleroderma, Systemic/pathology , Skin/immunology , Skin/pathology , Stomach/immunology , Stomach/pathology , T-Lymphocytes, Regulatory/pathology , Th1 Cells/pathology , Th17 Cells/pathology , Tomography, X-Ray Computed , Interleukin-22
19.
Nat Commun ; 11(1): 4882, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32985505

ABSTRACT

T helper cell differentiation requires lineage-defining transcription factors and factors that have shared expression among multiple subsets. BATF is required for development of multiple Th subsets but functions in a lineage-specific manner. BATF is required for IL-9 production in Th9 cells but in contrast to its function as a pioneer factor in Th17 cells, BATF is neither sufficient nor required for accessibility at the Il9 locus. Here we show that STAT5 is the earliest factor binding and remodeling the Il9 locus to allow BATF binding in both mouse and human Th9 cultures. The ability of STAT5 to mediate accessibility for BATF is observed in other Th lineages and allows acquisition of the IL-9-secreting phenotype. STAT5 and BATF convert Th17 cells into cells that mediate IL-9-dependent effects in allergic airway inflammation and anti-tumor immunity. Thus, BATF requires the STAT5 signal to mediate plasticity at the Il9 locus.


Subject(s)
Basic-Leucine Zipper Transcription Factors/immunology , Interleukin-9/immunology , STAT5 Transcription Factor/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Cell Differentiation , Female , Humans , Interleukin-9/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , STAT5 Transcription Factor/genetics , T-Lymphocytes, Helper-Inducer/cytology , Th17 Cells/immunology
20.
Sci Immunol ; 5(48)2020 06 12.
Article in English | MEDLINE | ID: mdl-32532833

ABSTRACT

Interleukin-9 expression by T helper cells marks allergic individuals who develop asthma (see the related Research Article by Seumois et al.).


Subject(s)
Asthma/immunology , Interleukin-9/immunology , Asthma/genetics , Humans , Interleukin-9/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...