Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in Spanish | LILACS, CUMED | ID: biblio-1408535

ABSTRACT

La internet de las cosas ha mantenido un crecimiento continuo en los últimos años. Las potencialidades de uso que muestra en diferentes campos han sido ampliamente documentadas. Su utilización efectiva en el campo de la salud puede traer consigo mejoras en la eficiencia de los tratamientos médicos, prevenir situaciones de riesgo, ayudar a elevar la calidad del servicio y proporcionar soporte a la toma de decisiones. La presente revisión profundiza en aspectos medulares de su utilización con el objetivo de explorar las principales tendencias y desafíos relacionados con la creciente utilización de la internet de las cosas en la salud, prestando mayor atención a los aspectos relacionados con las arquitecturas utilizadas para el despliegue de sistemas de internet de las cosas en ese ámbito, el manejo de la seguridad de estos sistemas y las herramientas para el apoyo a la toma de decisiones empleadas. Mediante el análisis documental se logra mostrar las principales características de estos sistemas, así como su arquitectura, herramientas utilizadas para la gestión de los datos capturados y mecanismos de seguridad. La utilización de la internet de las cosas en el campo de la salud tiene gran impacto, mejorando la vida de millones de personas en todo el mundo y brindando grandes oportunidades para el desarrollo de sistemas inteligentes de salud(AU)


The internet of things has maintained continuous growth in recent years. The potentialities of use that it shows in different fields have been widely documented. Its effective use in the field of health can bring improvements in the efficiency of medical treatments, prevention of risky situations, help raising the quality of service and provide support for decision-making. The present review explores into core aspects of its use in order to analyze trends, challenges and strengths. Document analysis was used to show the main characteristics of these systems, as well as their architecture, tools used for the management of the captured data and security mechanisms. The use of the internet of things in the health field has a great impact, improving the lives of millions of people around the world and providing great opportunities for the development of intelligent health systems(AU)


Subject(s)
Humans , Male , Female , Medical Informatics , Health Systems , Cloud Computing/trends , Blockchain/trends , Internet of Things/trends
2.
Curr Med Sci ; 41(6): 1134-1150, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34939144

ABSTRACT

The application of artificial intelligence (AI) technology in the medical field has experienced a long history of development. In turn, some long-standing points and challenges in the medical field have also prompted diverse research teams to continue to explore AI in depth. With the development of advanced technologies such as the Internet of Things (IoT), cloud computing, big data, and 5G mobile networks, AI technology has been more widely adopted in the medical field. In addition, the in-depth integration of AI and IoT technology enables the gradual improvement of medical diagnosis and treatment capabilities so as to provide services to the public in a more effective way. In this work, we examine the technical basis of IoT, cloud computing, big data analysis and machine learning involved in clinical medicine, combined with concepts of specific algorithms such as activity recognition, behavior recognition, anomaly detection, assistant decision-making system, to describe the scenario-based applications of remote diagnosis and treatment collaboration, neonatal intensive care unit, cardiology intensive care unit, emergency first aid, venous thromboembolism, monitoring nursing, image-assisted diagnosis, etc. We also systematically summarize the application of AI and IoT in clinical medicine, analyze the main challenges thereof, and comment on the trends and future developments in this field.


Subject(s)
Artificial Intelligence/trends , Big Data , Clinical Medicine/trends , Cloud Computing/trends , Internet of Things/trends , Algorithms , Humans , Machine Learning
3.
PLoS One ; 16(11): e0258279, 2021.
Article in English | MEDLINE | ID: mdl-34748568

ABSTRACT

One of the significant challenges in the Internet of Things (IoT) is the provisioning of guaranteed security and privacy, considering the fact that IoT devices are resource-limited. Oftentimes, in IoT applications, remote users need to obtain real-time data, with guaranteed security and privacy, from resource-limited network nodes through the public Internet. For this purpose, the users need to establish a secure link with the network nodes. Though the IPv6 over low-power wireless personal area networks (6LoWPAN) adaptation layer standard offers IPv6 compatibility for resource-limited wireless networks, the fundamental 6LoWPAN structure ignores security and privacy characteristics. Thus, there is a pressing need to design a resource-efficient authenticated key exchange (AKE) scheme for ensuring secure communication in 6LoWPAN-based resource-limited networks. This paper proposes a resource-efficient secure remote user authentication scheme for 6LoWPAN-based IoT networks, called SRUA-IoT. SRUA-IoT achieves the authentication of remote users and enables the users and network entities to establish private session keys between themselves for indecipherable communication. To this end, SRUA-IoT uses a secure hash algorithm, exclusive-OR operation, and symmetric encryption primitive. We prove through informal security analysis that SRUA-IoT is secured against a variety of malicious attacks. We also prove the security strength of SRUA-IoT through formal security analysis conducted by employing the random oracle model. Additionally, we prove through Scyther-based validation that SRUA-IoT is resilient against various attacks. Likewise, we demonstrate that SRUA-IoT reduces the computational cost of the nodes and communication overheads of the network.


Subject(s)
Communication , Computer Security/standards , Internet of Things/trends , User-Computer Interface , Algorithms , Humans , Internet/standards , Privacy , Telecommunications/standards
5.
Sensors (Basel) ; 20(3)2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32033269

ABSTRACT

Internet of Things (IoT) and Cyber-Physical Systems (CPS) have profoundly influenced the way individuals and enterprises interact with the world. Although attacks on IoT devices are becoming more commonplace, security metrics often focus on software, network, and cloud security. For CPS systems employed in IoT applications, the implementation of hardware security is crucial. The identity of electronic circuits measured in terms of device parameters serves as a fingerprint. Estimating the parameters of this fingerprint assists the identification and prevention of Trojan attacks in a CPS. We demonstrate a bio-inspired approach for hardware Trojan detection using unsupervised learning methods. The bio-inspired principles of pattern identification use a Spiking Neural Network (SNN), and glial cells form the basis of this work. When hardware device parameters are in an acceptable range, the design produces a stable firing pattern. When unbalanced, the firing rate reduces to zero, indicating the presence of a Trojan. This network is tunable to accommodate natural variations in device parameters and to avoid false triggering of Trojan alerts. The tolerance is tuned using bio-inspired principles for various security requirements, such as forming high-alert systems for safety-critical missions. The Trojan detection circuit is resilient to a range of faults and attacks, both intentional and unintentional. Also, we devise a design-for-trust architecture by developing a bio-inspired device-locking mechanism. The proposed architecture is implemented on a Xilinx Artix-7 Field Programmable Gate Array (FPGA) device. Results demonstrate the suitability of the proposal for resource-constrained environments with minimal hardware and power dissipation profiles. The design is tested with a wide range of device parameters to demonstrate the effectiveness of Trojan detection. This work serves as a new approach to enable secure CPSs and to employ bio-inspired unsupervised machine intelligence.


Subject(s)
Computer Security/trends , Computers , Internet of Things/trends , Internet/trends , Benchmarking , Humans , Natural Science Disciplines/trends , Neural Networks, Computer
7.
Sensors (Basel) ; 19(14)2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31319562

ABSTRACT

In the age of the Internet of Things, connected devices are changing the delivery system in the healthcare communication environment. With the integration of IoT in healthcare, there is a huge potential for improvement of the quality, safety, and efficiency of health care in addition to promising technological, economical, and social prospects. Nevertheless, this integration comes with security risks such as data breach that might be caused by credential-stealing malware. In addition, the patient valuable data can be disclosed when the perspective devices are compromised since they are connected to the internet. Hence, security has become an essential part of today's computing world regarding the ubiquitous nature of the IoT entities in general and IoT-based healthcare in particular. In this paper, research on the algorithm for anonymizing sensitive information about health data set exchanged in the IoT environment using a wireless communication system has been presented. To preserve the security and privacy, during the data session from the users interacting online, the algorithm defines records that cannot be revealed by providing protection to user's privacy. Moreover, the proposed algorithm includes a secure encryption process that enables health data anonymity. Furthermore, we have provided an analysis using mathematical functions to valid the algorithm's anonymity function. The results show that the anonymization algorithm guarantees safety features for the considered IoT system applied in context of the healthcare communication systems.


Subject(s)
Biosensing Techniques , Delivery of Health Care/trends , Internet of Things/trends , Algorithms , Communication , Humans
8.
E-Cienc. inf ; 9(1): 152-182, ene.-jun. 2019. tab, graf
Article in English | LILACS, SaludCR | ID: biblio-1089861

ABSTRACT

ABSTRACT Over the years, technological advancements have led to rapid growth of smart environments (offices, homes, cities, etc.). The increase of intelligent environments suggests the interconnectivity of applications and the use of the Internet. For this reason, arise what is known as the Internet of Things (IoT). The expansion of the IoT concept gives access to the Internet of Nano Things (IoNT). A new communication networks paradigm based on nanotechnology and IoT, in other words, a paradigm with the capacity to interconnect nano-scale devices through existing networks. This new paradigm so-called IoNT is presented to the world as an option for various fields of application. Therefore, new challenges and research opportunities have arisen. Consequently, this work aims to investigate state of the art and analyze trends for the use of IoNT, its application and future challenges in different fields of social interest, because IoNT is presented as an option for research with the capacities needed to get involved in many fields of social welfare. It is concluded that technologies prevail current IoNT literature, applications are focused on health care, and there is no international standardization regarding privacy, security or architecture of nano-networks.


RESUMEN A través de los años, los avances tecnológicos han llevado a un rápido crecimiento de entornos inteligentes (oficinas, hogares, ciudades, etc.). El aumento de entornos inteligentes sugiere la interconectividad de las aplicaciones y el uso de la Internet. Por esta razón, surge lo que se conoce como Internet de las cosas (IoT, por sus siglas en inglés). La ampliación del concepto IoT brinda acceso a la Internet de las nano cosas (IoNT, por sus siglas en inglés), un nuevo paradigma de redes de comunicación basado en nanotecnología y IoT, en otras palabras, un paradigma con la capacidad de interconectar dispositivos a nano escala a través de redes existentes. Este nuevo paradigma denominado IoNT se presenta al mundo como una opción para diversos campos de aplicación. Por lo tanto, surgen nuevos desafíos y oportunidades de investigación. En consecuencia, este trabajo tiene como objetivo investigar el estado del arte y analizar las tendencias para el uso de IoNT, su aplicación y los desafíos futuros en diferentes campos de interés social, debido a que IoNT se presenta como una opción para la investigación con las capacidades necesarias para involucrarse en muchos campos del bienestar social. Se concluye que la literatura actual de IoNT está prevalecida por las tecnologías, las aplicaciones se enfocan en el cuidado de la salud y no se dispone de una estandarización internacional en cuanto a la privacidad, seguridad o la arquitectura de las nano redes.


Subject(s)
Computer Communication Networks , Enacted Statutes , Nanotechnology , Internet of Things/trends , Health , Nanostructures , Internet Access , Internet Use
9.
Chem Rev ; 119(13): 7996-8027, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31070892

ABSTRACT

The Internet of Things (IoT) is a megatrend that cuts across all scientific and engineering disciplines and establishes an integrating technical evolution to improve production efficiencies and daily human life. Linked machines and sensors use decision-making routines to work toward a common product or solution. Expanding this technical revolution into the value chain of complex areas such as agriculture, food production, and healthcare requires the implementation and connection of sophisticated (bio)analytical methods. Today, wearable sensors, monitors, and point-of-care diagnostic tests are part of our daily lives and improve patients' medical progression or athletes' monitoring capabilities that are already beyond imagination. Also, early contributions toward sensor networks and finally the IT revolution with wireless data collection and transmission via Bluetooth or smartphones have set the foundation to connect remote sensors and distributed analytical chemical services with centralized laboratories, cloud storage, and cloud computing. Here, we critically review those biosensor and chemosensor technologies and concepts used in an IoT setting or considered IoT-ready that were published in the period 2013-2018, while also pointing to those foundational concepts and ideas that arose over the last two decades. We focus on these sensors due to their unique ability to be remotely stationed and that easily function in networks and have made the greatest progress toward IoT integration. Finally, we highlight requirements and existing and future challenges and provide possible solutions important toward the vision of a seamless integration into a global analytical concept, which includes many more analytical techniques than sensors and includes foremost next-generation sequencing and separation principles coupled with MS detection.


Subject(s)
Biosensing Techniques/trends , Chemistry Techniques, Analytical/trends , Internet of Things/trends , Animals , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Chemistry Techniques, Analytical/instrumentation , Chemistry Techniques, Analytical/methods , Humans , Point-of-Care Systems/trends
10.
Sci Eng Ethics ; 25(3): 737-769, 2019 06.
Article in English | MEDLINE | ID: mdl-29497969

ABSTRACT

The development of "smart stadia", i.e. the use of "smart technologies" in the way sports stadia are designed and managed, promises to enhance the experience of attending a live match through innovative and improved services for the audience, as well as for the players, vendors and other stadium stakeholders. These developments offer us a timely opportunity to reflect on the ethical implications of the use of smart technologies and the emerging Internet of Things (IoT). The IoT has the potential to radically transform society and is representative of the ways that novel technologies will alter human life. We use Dublin's Croke Park stadium smart project as a case study for examining the development of smart stadia.


Subject(s)
Facility Design and Construction/ethics , Facility Design and Construction/trends , Internet of Things/ethics , Internet of Things/trends , Sports and Recreational Facilities/ethics , Sports and Recreational Facilities/trends , Stakeholder Participation , Data Collection , Humans , Informed Consent , Ireland , Personal Autonomy , Privacy , Wireless Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...