Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 301
Filter
1.
Minerva Med ; 115(3): 320-336, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38727708

ABSTRACT

Phosphate is a key component of mineralized tissues and is also part of many organic compounds. Phosphorus homeostasis depends especially upon intestinal absorption, and renal excretion, which are regulated by various hormones, such as PTH, 1,25-dihydroxyvitamin D, and fibroblast growth factor 23. In this review we provide an update of several genetic disorders that affect phosphate transporters through cell membranes or the phosphate-regulating hormones, and, consequently, result in hypophosphatemia.


Subject(s)
Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Hypophosphatemia , Parathyroid Hormone , Humans , Hypophosphatemia/genetics , Hypophosphatemia/etiology , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Parathyroid Hormone/metabolism , Phosphates/metabolism , Vitamin D/metabolism , Vitamin D/analogs & derivatives , Klotho Proteins , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Intestinal Absorption/genetics , Glucuronidase/genetics , Glucuronidase/metabolism , Phosphorus/metabolism
2.
Diabetes ; 73(6): 983-992, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38498375

ABSTRACT

The postprandial glucose response is an independent risk factor for type 2 diabetes. Observationally, early glucose response after an oral glucose challenge has been linked to intestinal glucose absorption, largely influenced by the expression of sodium-glucose cotransporter 1 (SGLT1). This study uses Mendelian randomization (MR) to estimate the causal effect of intestinal SGLT1 expression on early glucose response. Involving 1,547 subjects with class II/III obesity from the Atlas Biologique de l'Obésité Sévère cohort, the study uses SGLT1 genotyping, oral glucose tolerance tests, and jejunal biopsies to measure SGLT1 expression. A loss-of-function SGLT1 haplotype serves as the instrumental variable, with intestinal SGLT1 expression as the exposure and the change in 30-min postload glycemia from fasting glycemia (Δ30 glucose) as the outcome. Results show that 12.8% of the 1,342 genotyped patients carried the SGLT1 loss-of-function haplotype, associated with a mean Δ30 glucose reduction of -0.41 mmol/L and a significant decrease in intestinal SGLT1 expression. The observational study links a 1-SD decrease in SGLT1 expression to a Δ30 glucose reduction of -0.097 mmol/L. MR analysis parallels these findings, associating a statistically significant reduction in genetically instrumented intestinal SGLT1 expression with a Δ30 glucose decrease of -0.353. In conclusion, the MR analysis provides genetic evidence that reducing intestinal SGLT1 expression causally lowers early postload glucose response. This finding has a potential translational impact on managing early glucose response to prevent or treat type 2 diabetes.


Subject(s)
Blood Glucose , Intestinal Absorption , Mendelian Randomization Analysis , Postprandial Period , Sodium-Glucose Transporter 1 , Humans , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 1/metabolism , Postprandial Period/physiology , Blood Glucose/metabolism , Intestinal Absorption/genetics , Male , Female , Glucose Tolerance Test , Glucose/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Haplotypes , Adult , Obesity/genetics , Obesity/metabolism , Middle Aged , Polymorphism, Single Nucleotide , Jejunum/metabolism
3.
Prog Lipid Res ; 86: 101164, 2022 04.
Article in English | MEDLINE | ID: mdl-35390434

ABSTRACT

Intestinal cholesterol absorption varies widely between individuals, which may translate into differences in responsiveness to cholesterol-lowering drugs or diets. Therefore, understanding the importance of genetic variation on cholesterol absorption rates and the complex intestinal cholesterol network is important. Based on a systematic review, genetic variants in seven genes (ABCG5, ABCG8, ABO, APOE, MTTP, NPC1L1, and LDLR) were identified that were associated with intestinal cholesterol absorption. No clear associations were found for variants in APOA4, APOB, CETP, CYP7A1, HMGCR, SCARB1, SLCO1B1, and SREBF1. The seven genes were used to construct an intestinal cholesterol absorption network. Finally, a network with fifteen additional genes (APOA1, APOA4, APOB, APOC2, APOC3, CETP, HSPG2, LCAT, LDLRAP1, LIPC, LRP1, OLR1, P4HB, SAR1B, and SDC1) was generated. The constructed network shows that cholesterol absorption is complex. Further studies are needed to validate and improve this network, which may ultimately lead to a better understanding of the wide inter-individual variability in intestinal cholesterol absorption and the development of personalized interventions.


Subject(s)
Cholesterol , Gene Regulatory Networks , Intestinal Absorption , Cholesterol/metabolism , Genetic Variation , Humans , Intestinal Absorption/genetics
4.
Int J Mol Sci ; 22(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34830305

ABSTRACT

The small intestine is the initial site of glucose absorption and thus represents the first of a continuum of events that modulate normal systemic glucose homeostasis. A better understanding of the regulation of intestinal glucose transporters is therefore pertinent to our efforts in curbing metabolic disorders. Using molecular genetic approaches, we investigated the role of Drosophila Solute Carrier 5A5 (dSLC5A5) in regulating glucose homeostasis by mediating glucose uptake in the fly midgut. By genetically knocking down dSLC5A5 in flies, we found that systemic and circulating glucose and trehalose levels are significantly decreased, which correlates with an attenuation in glucose uptake in the enterocytes. Reciprocally, overexpression of dSLC5A5 significantly increases systemic and circulating glucose and trehalose levels and promotes glucose uptake in the enterocytes. We showed that dSLC5A5 undergoes apical endocytosis in a dynamin-dependent manner, which is essential for glucose uptake in the enterocytes. Furthermore, we showed that the dSLC5A5 level in the midgut is upregulated by glucose and that dSLC5A5 critically directs systemic glucose homeostasis on a high-sugar diet. Together, our studies have uncovered the first Drosophila glucose transporter in the midgut and revealed new mechanisms that regulate glucose transporter levels and activity in the enterocyte apical membrane.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Glucose/metabolism , Homeostasis/genetics , Intestinal Absorption/genetics , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Symporters/metabolism , Animals , Animals, Genetically Modified , Biological Transport/genetics , Cell Membrane/metabolism , Drosophila/genetics , Drosophila Proteins/genetics , Enterocytes/metabolism , Female , Gene Knockdown Techniques/methods , Glucose Transport Proteins, Facilitative/genetics , Male , Sodium-Glucose Transporter 1/metabolism , Symporters/genetics
5.
J Endocrinol ; 252(1): 31-44, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34647524

ABSTRACT

Changes in dietary habits have occurred concomitantly with a rise of type 2 diabetes (T2D) and obesity. Intestine is the first organ facing nutrient ingestion and has to adapt its metabolism with these dietary changes. HNF-4γ, a transcription factor member of the nuclear receptor superfamily and mainly expressed in intestine, has been suggested to be involved in susceptibility to T2D. Our aim was to investigate the role of HNF-4γ in metabolic disorders and related mechanisms. Hnf4g-/- mice were fed high-fat/high-fructose (HF-HF) diet for 6 weeks to induce obesity and T2D. Glucose homeostasis, energy homeostasis in metabolic cages, body composition and stool energy composition, as well as gene expression analysis in the jejunum were analyzed. Despite an absence of decrease in calorie intake, of increase in locomotor activity or energy expenditure, Hnf4g-/- mice fed with HF-HF are protected against weight gain after 6 weeks of HF-HF diet. We showed that Hnf4g-/- mice fed HF-HF display an increase in fecal calorie loss, mainly due to intestinal lipid malabsorption. Gene expression of lipid transporters, Fatp4 and Scarb1 and of triglyceride-rich lipoprotein secretion proteins, Mttp and ApoB are decreased in gut epithelium of Hnf4g-/- mice fed HF-HF, showing the HNF-4γ role in intestine lipid absorption. Furthermore, plasma GLP-1 and jejunal GLP-1 content are increased in Hnf4g-/- mice fed HF-HF, which could contribute to the glucose intolerance protection. The loss of HNF-4γ leads to a protection against a diet-induced weight gain and to a deregulated glucose homeostasis, associated with lipid malabsorption.


Subject(s)
Hepatocyte Nuclear Factor 4/genetics , Intestinal Absorption/genetics , Lipid Metabolism/genetics , Obesity/genetics , Animals , Cells, Cultured , Diet, High-Fat/adverse effects , Female , Fructose/adverse effects , Gene Deletion , Glucose Intolerance/etiology , Glucose Intolerance/genetics , Glucose Intolerance/metabolism , Intestines/metabolism , Malabsorption Syndromes/genetics , Malabsorption Syndromes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/metabolism , Triglycerides/metabolism , Weight Gain/genetics
6.
Nutrients ; 13(2)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33672967

ABSTRACT

The process of obtaining ascorbic acid (AA) via intestinal absorption and blood circulation is carrier-mediated utilizing the AA transporters SVCT1 and SVCT2, which are expressed in the intestine and brain (SVCT2 in abundance). AA concentration is decreased in Alzheimer's disease (AD), but information regarding the status of intestinal AA uptake in the AD is still lacking. We aimed here to understand how AA homeostasis is modulated in a transgenic mouse model (5xFAD) of AD. AA levels in serum from 5xFAD mice were markedly lower than controls. Expression of oxidative stress response genes (glutathione peroxidase 1 (GPX1) and superoxide dismutase 1 (SOD1)) were significantly increased in AD mice jejunum, and this increase was mitigated by AA supplementation. Uptake of AA in the jejunum was upregulated. This increased AA transport was caused by a marked increase in SVCT1 and SVCT2 protein, mRNA, and heterogeneous nuclear RNA (hnRNA) expression. A significant increase in the expression of HNF1α and specific protein 1 (Sp1), which drive SLC23A1 and SLC23A2 promoter activity, respectively, was observed. Expression of hSVCT interacting proteins GRHPR and CLSTN3 were also increased. SVCT2 protein and mRNA expression in the hippocampus of 5xFAD mice was not altered. Together, these investigations reveal adaptive up-regulation of intestinal AA uptake in the 5xFAD mouse model.


Subject(s)
Alzheimer Disease/metabolism , Ascorbic Acid/metabolism , Jejunum/metabolism , Sodium-Coupled Vitamin C Transporters/metabolism , Up-Regulation/genetics , Alcohol Oxidoreductases/metabolism , Animals , Biological Transport/genetics , Calcium-Binding Proteins/metabolism , Dietary Supplements , Disease Models, Animal , Glutathione Peroxidase/metabolism , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hippocampus/metabolism , Homeostasis/genetics , Intestinal Absorption/genetics , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Oxidative Stress/genetics , RNA, Messenger/metabolism , Superoxide Dismutase-1/metabolism , Glutathione Peroxidase GPX1
7.
Hematol Oncol Stem Cell Ther ; 14(1): 41-50, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32446932

ABSTRACT

OBJECTIVE/BACKGROUND: Mutations in transmembrane protease serine 6 (TMPRSS6) gene induce high hepcidin level, which causes iron-refractory iron deficiency anemia (IRIDA) by preventing duodenal iron absorption. This study aims to identify the common genetic variations of the TMPRSS6 gene that affect iron levels among Saudi female patients with iron deficiency anemia (IDA). METHODS: All study participants were Saudi females (12-49 years old): 32 patients with IDA, 32 patients with IRIDA, and 34 healthy individuals comprising the control group. Hematological investigations, iron profile, serum hepcidin level, and TMPRSS6 gene transcription were determined. The TMPRSS6 gene was amplified, sequenced, and analyzed among all study participants. RESULTS: The mean hepcidin and TMPRSS6 RNA transcription levels in IDA and IRIDA groups were significantly lower than those in the control group. TMPRSS6 gene sequence analysis detected 41 variants: two in the 5' untranslated region (5'UTR), 17 in introns, and 22 in exons. Thirty-three variants were previously reported in the Single Nucleotide Polymorphism Database, and eight variants were novel; one novel variant was in 5'UTR (g.-2 T > G); five novel variants were detected in exons (p.W73X, p.D479N, p.E523K, p.L674L, and p.I799I). At the time of the sequence analysis of our samples, two variants-p.D479N and p.674L-were novel. However, these variants are present at a very low allele frequency in other populations (L674L, 0.00007761 and D479N, 0.000003980). CONCLUSION: This is the first study to investigate the genetic variants of TMPRSS6 gene in Saudi female patients with IDA. The generated data will serve as a reference for future studies on IDA in the Arab population.


Subject(s)
Alleles , Anemia, Iron-Deficiency/genetics , Gene Frequency , Membrane Proteins/genetics , Mutation, Missense , Point Mutation , Serine Endopeptidases/genetics , 5' Untranslated Regions , Adolescent , Adult , Amino Acid Substitution , Anemia, Iron-Deficiency/metabolism , Child , Duodenum/metabolism , Female , Humans , Intestinal Absorption/genetics , Iron/metabolism , Membrane Proteins/metabolism , Middle Aged , Saudi Arabia , Serine Endopeptidases/metabolism
8.
Int J Obes (Lond) ; 45(2): 348-357, 2021 02.
Article in English | MEDLINE | ID: mdl-32917985

ABSTRACT

OBJECTIVE: Activation of vagal afferent neurons (VAN) by postprandial gastrointestinal signals terminates feeding and facilitates nutrient digestion and absorption. Leptin modulates responsiveness of VAN to meal-related gastrointestinal signals. Rodents with high-fat diet (HF) feeding develop leptin resistance that impairs responsiveness of VAN. We hypothesized that lack of leptin signaling in VAN reduces responses to meal-related signals, which in turn decreases absorption of nutrients and energy storage from high-fat, calorically dense food. METHODS: Mice with conditional deletion of the leptin receptor from VAN (Nav1.8-Cre/LepRfl/fl; KO) were used in this study. Six-week-old male mice were fed a 45% HF for 4 weeks; metabolic phenotype, food intake, and energy expenditure were measured. Absorption and storage of nutrients were investigated in the refed state. RESULTS: After 4 weeks of HF feeding, KO mice gained less body weight and fat mass that WT controls, but this was not due to differences in food intake or energy expenditure. KO mice had reduced expression of carbohydrate transporters and absorption of carbohydrate in the jejunum. KO mice had fewer hepatic lipid droplets and decreased expression of de novo lipogenesis-associated enzymes and lipoproteins for endogenous lipoprotein pathway in liver, suggesting decreased long-term storage of carbohydrate in KO mice. CONCLUSIONS: Impairment of leptin signaling in VAN reduces responsiveness to gastrointestinal signals, which reduces intestinal absorption of carbohydrates and de novo lipogenesis resulting in reduced long-term energy storage. This study reveals a novel role of vagal afferents to support digestion and energy storage that may contribute to the effectiveness of vagal blockade to induce weight loss.


Subject(s)
Carbohydrates/genetics , Diet, High-Fat , Leptin/metabolism , Liver/metabolism , Liver/pathology , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Vagus Nerve/metabolism , Animals , Body Weight/genetics , Energy Metabolism/genetics , Intestinal Absorption/genetics , Lipogenesis/genetics , Male , Mice , Neurons, Afferent/metabolism , Nutrients/metabolism , Signal Transduction
9.
Front Endocrinol (Lausanne) ; 11: 586980, 2020.
Article in English | MEDLINE | ID: mdl-33193099

ABSTRACT

Sterol 27-hydroxylase (CYP27A1) is a key enzyme in bile acids (BAs) biosynthesis and a regulator of cholesterol metabolism. Cyp27a1/Apolipoprotein E double knockout (DKO) mice fed with western diet (WD) are protected from atherosclerosis via up-regulation of hepatic Cyp7a1 and Cyp3a11. Since feeding BAs ameliorates metabolic changes in Cyp27a1 KO mice, we tested BAs feeding on the development of atherosclerosis in DKO mice. DKO mice were fed for 8 weeks with WD containing 0.1% cholic acid (CA) (WD-CA) or chenodeoxycholic acid (CDCA) (WD-CDCA). Atherosclerotic lesions, plasma lipoprotein composition and functionality, hepatic lipid content, BAs amount and composition, expression of genes involved in lipid metabolism and BA signaling in liver and intestine as well as intestinal cholesterol absorption were assessed. Hepatic Cyp7a1 and Cyp3a11 expression were reduced by 60% after feeding with both WD-CA and WD-CDCA. After feeding with WD-CA we observed a 40-fold increase in the abundance of atherosclerotic lesions in the aortic valve, doubling of the levels of plasma total and low density lipoprotein cholesterol and halving of the level of high density lipoprotein cholesterol. Furthermore, in these mice plasma cholesterol efflux capacity decreased by 30%, hepatic BA content increased 10-fold, intestinal cholesterol absorption increased 6-fold. No such changes were observed in mice fed with WD-CDCA. Despite similar reduction on Cyp7a1 and Cyp3a11 hepatic expression, CA and CDCA have a drastically different impact on development of atherosclerosis, plasma and hepatic lipids, BAs composition and intestinal absorption. Reduced cholesterol absorption contributes largely to athero-protection in DKO mice.


Subject(s)
Apolipoproteins E/metabolism , Atherosclerosis/blood , Chenodeoxycholic Acid/administration & dosage , Cholestanetriol 26-Monooxygenase/metabolism , Cholesterol 7-alpha-Hydroxylase/metabolism , Cholic Acid/administration & dosage , Down-Regulation/drug effects , Signal Transduction/drug effects , Animals , Apolipoproteins E/genetics , Atherosclerosis/genetics , Cholestanetriol 26-Monooxygenase/genetics , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Diet, Western/adverse effects , Down-Regulation/genetics , Intestinal Absorption/drug effects , Intestinal Absorption/genetics , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Signal Transduction/genetics
10.
Biochem Biophys Res Commun ; 533(4): 1004-1011, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33012507

ABSTRACT

Zinc is an essential trace element and participates in a variety of biological processes. ZnT (SLC30) family members are generally responsible for zinc efflux across the membrane regulating zinc homeostasis. In mammals, the only predominantly plasma membrane resident ZnT has been reported to be ZnT1, and ZnT1-/ZnT1- mice die at the embryonic stage. In Drosophila, knock down of ZnT1 homologue (dZnT1//ZnT63C/CG17723) results in growth arrest under zinc-limiting conditions. To investigate the essentiality of dZnT1 for zinc homeostasis, as well as its role in dietary zinc uptake especially under normal physiological conditions, we generated dZnT1 mutants by the CRISPER/Cas9 method. Homozygous mutant dZnT1 is lethal, with substantial zinc accumulation in the iron cell region, posterior midgut as well as gastric caeca. Expression of human ZnT1 (hZnT1), in the whole body or in the entire midgut, fully rescued the dZnT1 mutant lethality, whereas tissue-specific expression of hZnT1 in the iron cell region and posterior midgut partially rescued the developmental defect of the dZnT1 mutant. Supplementation of zinc together with clioquinol or hinokitiol conferred a limited but observable rescue upon dZnT1 loss. Our work demonstrated the absolute requirement of dZnT1 in Drosophila survival and indicated that the most essential role of dZnT1 is in the gut.


Subject(s)
Cation Transport Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Zinc/metabolism , Animals , Animals, Genetically Modified , CRISPR-Cas Systems , Cation Transport Proteins/antagonists & inhibitors , Cation Transport Proteins/genetics , Diet , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Female , Gene Knockdown Techniques , Genes, Insect , Humans , Intestinal Absorption/genetics , Intestinal Absorption/physiology , Male , Mutation , Phylogeny , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Trace Elements/administration & dosage , Trace Elements/metabolism , Trace Elements/pharmacokinetics , Zinc/administration & dosage , Zinc/pharmacokinetics
11.
Biol Pharm Bull ; 43(9): 1293-1300, 2020.
Article in English | MEDLINE | ID: mdl-32879202

ABSTRACT

It has long been suggested that a Na+-dependent carrier-mediated transport system is involved in the absorption of nucleobases and analogs, including some drugs currently in therapeutic use, for their uptake at the brush border membrane of epithelial cells in the small intestine, mainly based on studies in non-primate experimental animals. The presence of this transport system was indeed proved by the recent identification of sodium-dependent nucleobase transporter 1 (SNBT1/Slc23a4) as its molecular entity in rats. However, this transporter has been found to be genetically deficient in humans and higher primates. Aware of this deficiency, we need to revisit the issue of the absorption of these compounds in the human small intestine so that we can understand the mechanisms and gain information to assure the more rational use and development of drugs analogous to nucleobases. Here, we review the current understanding of the intestinal absorption of nucleobases and analogs. This includes recent knowledge about the efflux transport of those compounds across the basolateral membrane when exiting epithelial cells, following brush border uptake, in order to complete the overall absorption process; the facilitative transporters of equilibrative nucleoside transporter 1 (ENT1/SLC29A1) and equilibrative nucleobase transporter 1 (ENBT1/SLC43A3) may be involved in that in many animal species, including human and rat, without any major species differences.


Subject(s)
Amino Acid Transport Systems/metabolism , Equilibrative Nucleoside Transporter 1/metabolism , Intestinal Absorption/genetics , Purines/pharmacokinetics , Pyrimidines/pharmacokinetics , Amino Acid Transport Systems/genetics , Animals , Cell Membrane , Equilibrative Nucleoside Transporter 1/genetics , Humans , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Nucleobase Transport Proteins/metabolism , Rats , Species Specificity
12.
J Toxicol Sci ; 45(9): 539-548, 2020.
Article in English | MEDLINE | ID: mdl-32879253

ABSTRACT

We investigated the mechanism underlying intestinal cadmium (Cd) uptake based on the mediators (metal transporters) of essential elements, such as Fe, Zn, Cu, and Ca, under normal conditions in female rats. These elements interact with Cd uptake from the intestinal tract. Cd concentration at each site of the small intestine (duodenum, jejunum, and ileum) increased as Cd exposure increased. However, Cd concentration was the highest in the duodenum. The gene expression of ZIP14, DMT1, and ATP7A increased with increase in Cd concentration. Further, Cu concentration decreased as Cd concentration increased. In contrast, Fe concentration displayed a decreasing tendency with the increase in Cd concentration. The gene expression levels of ZIP14, DMT1, and ATP7A were positively correlated with Cd concentration. Immunohistochemical staining revealed the positive sites of ZIP14 and DMT1 scattered in the area adjacent to the goblet cells, resorbable epithelial cells, and lamina propria in the duodenum tissue, according to the increase in Cd concentration. Cd is induced to synthesize and bind to metallothionein (MT-I and -II) and accumulate in the intestinal tissues, mainly in the duodenum. Such findings suggest that Cd, a contaminant element, is taken up from the intestinal tract by multiple metal transporters such as Cu, Fe, and Zn, thereby involving in the intestinal Cd absorption.


Subject(s)
Cadmium/metabolism , Cation Transport Proteins/metabolism , Intestinal Absorption/genetics , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Animals , Cation Transport Proteins/genetics , Copper , Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Duodenum/metabolism , Female , Gene Expression , Iron , Metallothionein/metabolism , Rats , Zinc
13.
Nutr Metab Cardiovasc Dis ; 30(11): 2103-2110, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32807638

ABSTRACT

BACKGROUND AND AIM: Increased intestinal permeability plays a key role in the pathogenesis of fat deposition in the liver. The aim of our study was to assess whether a single nucleotide polymorphism of protein tyrosine phosphatase non-receptor type 2 (PTPN2) (rs2542151 T→G), involved in intestinal permeability, may be associated with non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM). METHODS AND RESULTS: We recruited a prospective cohort of NAFLD subjects and matched controls. Clinical data, PTPN2 genotype and laboratory data were collected for each patient. Results were stratified according to liver histology and diabetes. We enrolled 566 cases and 377 controls. PTPN2 genotype distribution did not significantly differ between patients and controls. In the entire population, patients with PTPN2 rs2542151 T→G (dominant model) have a higher prevalence of diabetes; 345 patients (60.9%) underwent liver biopsy: 198 (57.4%) had steatohepatitis and 75 (21.7%) had advanced fibrosis. At multiple logistic regression analysis PTPN2 rs2542151 T→G was associated with T2DM (OR 2.14, 95% CI 1.04-4.40, P = 0.03). Patients who underwent liver biopsy, rs2542151 T→G of PTPN2 was independently associated with severe steatosis (OR 2.00, 95% CI 1.17-3.43, p = 0.01) and severe fibrosis (OR 2.23, 95% CI 1.06-4.72, P = 0.03). CONCLUSION: Our study shows that NAFLD patients with rs2542151 T→G of PTPN2 have a higher severity of fatty liver disease and a higher prevalence of T2DM. These results suggest that individual genetic susceptibility to intestinal permeability could play a role in liver disease progression.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Intestinal Absorption/genetics , Non-alcoholic Fatty Liver Disease/genetics , Polymorphism, Single Nucleotide , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Adult , Case-Control Studies , Cross-Sectional Studies , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/physiopathology , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Italy/epidemiology , Liver Cirrhosis/epidemiology , Liver Cirrhosis/genetics , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/physiopathology , Permeability , Phenotype , Prevalence , Prospective Studies , Risk Assessment , Risk Factors , Severity of Illness Index
14.
Nutrients ; 12(5)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32366023

ABSTRACT

Prebiotic oligosaccharides are widely used as human and animal feed additives for their beneficial effects on the gut microbiota. However, there are limited data to assess the direct effect of such functional foods on the transcriptome of intestinal epithelial cells. The purpose of this study is to describe the differential transcriptomes and cellular pathways of colonic cells directly exposed to galacto-oligosaccharides (GOS) and fructo-oligosaccharides (FOS). We have examined the differential gene expression of polarized Caco-2 cells treated with GOS or FOS products and their respective mock-treated cells using mRNA sequencing (RNA-seq). A total of 89 significant differentially expressed genes were identified between GOS and mock-treated groups. For FOS treatment, a reduced number of 12 significant genes were observed to be differentially expressed relative to the control group. KEGG and gene ontology functional analysis revealed that genes up-regulated in the presence of GOS were involved in digestion and absorption processes, fatty acids and steroids metabolism, potential antimicrobial proteins, energy-dependent and -independent transmembrane trafficking of solutes and amino acids. Using our data, we have established complementary non-prebiotic modes of action for these frequently used dietary fibers.


Subject(s)
Dietary Fiber , Fructose , Functional Food , Galactose , Gene Expression , Intestinal Mucosa/metabolism , Oligosaccharides , Prebiotics , Transcriptome , Amino Acids/metabolism , Caco-2 Cells , Digestion/genetics , Fatty Acids/metabolism , Humans , Intestinal Absorption/genetics , Pore Forming Cytotoxic Proteins/metabolism , Steroids/metabolism
15.
PLoS One ; 15(5): e0227844, 2020.
Article in English | MEDLINE | ID: mdl-32470043

ABSTRACT

Morroniside is a biologically active polyphenol found in Cornus officinalis Sieb. et Zucc (CO) that exhibits a broad spectrum of pharmacological activities, such as protecting nerves, and preventing diabetic liver damage and renal damage. However, little data are available regarding the mechanism of its intestinal absorption. Here, an in vitro human intestinal epithelial cell model of cultured Caco-2 cells was applied to study the absorption and transport of morroniside. The effects of donor concentration, pH and inhibitors were investigated. The bidirectional permeability of morroniside from the apical (AP) to the basolateral (BL) side and in the reverse direction was studied. When administered at three tested concentrations (5, 25 and 100 µM), the apparent permeability coefficient (Papp) values in the AP-to-BL direction ranged from 1.59 × 10-6 to 2.66 × 10-6 cm/s. In the reverse direction, BL-to-AP, the value was ranged from 2.67 × 10-6 to 4.10 × 10-6 cm/s. The data indicated that morroniside transport was pH-dependent. The permeability of morroniside was affected by treatment with various inhibitors, such as multidrug resistance protein inhibitors MK571 and indomethacin, as well as the breast cancer resistance protein inhibitor apigenin. The mechanisms of the intestinal absorption of morroniside may involve multiple transport pathways, such as the passive diffusion and efflux protein-mediated active transport especially involving multidrug resistance protein 2 and breast cancer resistance protein. After the addition of CO, the Papp values in the AP-to-BL direction increased significantly, therefore, it can be assumed that some ingredients in the CO promote morroniside absorption in the small intestine.


Subject(s)
Cornus/chemistry , Glycosides/pharmacology , Intestinal Absorption/drug effects , Neoplasms/drug therapy , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Caco-2 Cells , Cell Proliferation/drug effects , Epithelial Cells/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Indomethacin/pharmacology , Intestinal Absorption/genetics , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasms/pathology , Permeability/drug effects , Propionates/pharmacology , Quinolines/pharmacology , ATP-Binding Cassette Sub-Family B Member 4
16.
Eur J Pharm Biopharm ; 151: 108-115, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32298758

ABSTRACT

The effect of the degree of supersaturation (DS) on absorption of the model drugs indomethacin and tadalafil was elucidated in a single-pass intestinal perfusion (SPIP) model in rats. In addition, the performance of the precipitation inhibitor (PI) hydroxypropylmethylcellulose (HPMC) was evaluated when added at a concentration of 0.1% (w/v) to fasted state simulated intestinal fluid (FaSSIF and FaSSIFHPMC) used as perfusion medium. A supersaturated state was created by a solvent shift method where indomethacin or tadalafil dissolved in dimethyl sulfoxide (DMSO) were administered to a segment of the small intestine, which subsequently was perfused with FaSSIF or FaSSIFHPMC. The perfusate was collected for 60 min, and for one group of rats dosed with 30 mg tadalafil, for 120 min. Blood samples were drawn every 15 min. The solubility of indomethacin and tadalafil in the perfusate was determined. The DS of each drug in the perfusate was calculated by dividing the concentration in the perfusate at selected time points with the solubility. The DS was above one for all timepoints for both drugs, thus showing supersaturation during the time of perfusion. For indomethacin, no improvement of the DS was seen when perfusing with FaSSIFHPMC, compared to FaSSIF. For tadalafil, a higher DS was achieved when perfusing with FaSSIFHPMC compared to FaSSIF. Perfusing the drugs with FaSSIFHPMC resulted in a significantly lower area under the curve (AUC0-60 min) for plasma concentrations of indomethacin, and no increase in the AUC0-60 min of plasma concentrations of tadalafil compared to perfusion with FaSSIF. The importance of simultaneously estimating the intraluminal DS and absorption of a drug was demonstrated by the SPIP model in the present study. Further, the study highlights the discrepancy between optimal in vitro supersaturation, intraluminal supersaturation and in vivo performance of two poorly soluble drugs, and further emphasizes the importance of optimization of in vitro methods in order to predict in vivo supersaturation and precipitation of drugs.


Subject(s)
Indomethacin/chemistry , Indomethacin/metabolism , Intestinal Absorption/physiology , Intestine, Small/metabolism , Tadalafil/chemistry , Tadalafil/metabolism , Administration, Oral , Animals , Chemical Precipitation , Excipients/chemistry , Hypromellose Derivatives/chemistry , Intestinal Absorption/genetics , Male , Models, Animal , Perfusion , Permeability , Rats , Rats, Sprague-Dawley , Solubility , Solvents/chemistry
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(11): 158571, 2020 11.
Article in English | MEDLINE | ID: mdl-31770587

ABSTRACT

Vitamin A is an essential nutrient necessary for numerous basic physiological functions, including reproduction and development, immune cell differentiation and communication, as well as the perception of light. To evade the dire consequences of vitamin A deficiency, vertebrates have evolved specialized metabolic pathways that enable the absorption, transport, and storage of vitamin A acquired from dietary sources as preformed retinoids or provitamin A carotenoids. This evolutionary advantage requires a complex interplay between numerous specialized retinoid-transport proteins, receptors, and enzymes. Recent advances in molecular and structural biology resulted in a rapid expansion of our understanding of these processes at the molecular level. This progress opened new avenues for the therapeutic manipulation of retinoid homeostasis. In this review, we summarize current research related to the biochemistry of carotenoid and retinoid-processing proteins with special emphasis on the structural aspects of their physiological actions. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.


Subject(s)
Biological Transport/genetics , Carotenoids/metabolism , Retinoids/metabolism , Vitamin A/metabolism , Animals , Carrier Proteins/genetics , Homeostasis/genetics , Humans , Intestinal Absorption/genetics , Liver/metabolism , Vertebrates , Vitamin A/genetics , Vitamin A Deficiency/genetics , Vitamin A Deficiency/metabolism
19.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(11): 158580, 2020 11.
Article in English | MEDLINE | ID: mdl-31794861

ABSTRACT

Carotenoids exert a rich variety of physiological functions in mammals and are beneficial for human health. These lipids are acquired from the diet and metabolized to apocarotenoids, including retinoids (vitamin A and its metabolites). The small intestine is a major site for their absorption and bioconversion. From here, carotenoids and their metabolites are distributed within the body in triacylglycerol-rich lipoproteins to support retinoid signaling in peripheral tissues and photoreceptor function in the eyes. In recent years, much progress has been made in identifying carotenoid metabolizing enzymes, transporters, and binding proteins. A diet-responsive regulatory network controls the activity of these components and adapts carotenoid absorption and bioconversion to the bodily requirements of these lipids. Genetic variability in the genes encoding these components alters carotenoid homeostasis and is associated with pathologies. We here summarize the advanced state of knowledge about intestinal carotenoid metabolism and its impact on carotenoid and retinoid homeostasis of other organ systems, including the eyes, liver, and immune system. The implication of the findings for science-based intake recommendations for these essential dietary lipids is discussed. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.


Subject(s)
Carotenoids/metabolism , Lipids/genetics , Liver/metabolism , Vitamin A/metabolism , Animals , Homeostasis , Humans , Intestinal Absorption/genetics , Lipid Metabolism/genetics , Triglycerides/metabolism , Vitamin A/genetics
20.
J Exp Med ; 217(2)2020 02 03.
Article in English | MEDLINE | ID: mdl-31753849

ABSTRACT

The intestine plays an important role in nutrient digestion and absorption, microbe defense, and hormone secretion. Although major cell types have been identified in the mouse intestinal epithelium, cell type-specific markers and functional assignments are largely unavailable for human intestine. Here, our single-cell RNA-seq analyses of 14,537 epithelial cells from human ileum, colon, and rectum reveal different nutrient absorption preferences in the small and large intestine, suggest the existence of Paneth-like cells in the large intestine, and identify potential new marker genes for human transient-amplifying cells and goblet cells. We have validated some of these insights by quantitative PCR, immunofluorescence, and functional analyses. Furthermore, we show both common and differential features of the cellular landscapes between the human and mouse ilea. Therefore, our data provide the basis for detailed characterization of human intestine cell constitution and functions, which would be helpful for a better understanding of human intestine disorders, such as inflammatory bowel disease and intestinal tumorigenesis.


Subject(s)
Goblet Cells/metabolism , Intestinal Absorption/genetics , Nutrients/metabolism , Paneth Cells/metabolism , Single-Cell Analysis/methods , Transcriptome , Animals , Biomarkers , Cell Cycle/genetics , Cell Differentiation/genetics , Cell Proliferation , Cells, Cultured , Humans , Ileum/cytology , Mice , Mice, Inbred C57BL , Organoids , RNA-Seq , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL