Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.312
Filter
1.
Poult Sci ; 103(5): 103582, 2024 May.
Article in English | MEDLINE | ID: mdl-38457989

ABSTRACT

Small peptides are nutrients and bioactive molecules that have dual regulatory effects on nutrition and physiology. They are of great significance for maintaining the intestinal health and production performance of broilers. We here cultured the primary small intestinal epithelial cells (IEC) of chicken in a medium containing L-Leu (Leu) and L-Leu-L-Leu (Leu-Leu) for 24 h. The untreated cells were considered as the control group. The growth, proliferation, and apoptosis of IEC were examined. By combining RNA-seq and label-free sequencing technology, candidate genes, proteins, and pathways related to the growth, proliferation, and apoptosis of IEC were screened. Immunofluorescence detection revealed that the purity of the isolated primary IEC was >90%. The Leu-Leu group significantly promoted IEC growth and proliferation and significantly inhibited IEC apoptosis, and the effect was better than those of the Leu and control groups. Using transcriptome sequencing, four candidate genes, CCL20, IL8L1, IL8, and IL6, were screened in the Leu group, and one candidate gene, IL8, was screened in the Leu-Leu group. Two candidate genes, IL6 and RGN, were screened in the Leu-Leu group compared with the Leu group. Nonquantitative proteomic marker sequencing results revealed that through the screening of candidate proteins and pathways, found one growth-related candidate protein PGM3 and three proliferation-related candidate proteins RPS17, RPS11, and RPL23, and two apoptosis-related candidate proteins GPX4 and PDPK1 were found in the Leu-Leu group compared with Leu group. In short, Leu-Leu could promote IEC growth and proliferation and inhibit IEC apoptosis. On combining transcriptome and proteome sequencing technologies, multiple immune- and energy-related regulatory signal pathways were found to be related to IEC growth, proliferation, and apoptosis. Three candidate genes of IL8, IL6, and RGN were identified, and six candidate proteins of PGM3, RPS17, RPS11, RPL23, GPX4, and PDPK1 were involved in IEC growth, proliferation, and apoptosis. The results provide valuable data for preliminarily elucidating small peptide-mediated IEC regulation pathways, improving the small peptide nutrition theoretical system, and establishing small peptide nutrition regulation technology.


Subject(s)
Apoptosis , Cell Proliferation , Chickens , Epithelial Cells , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/physiology , Intestinal Mucosa/drug effects , Intestinal Mucosa/cytology , Intestine, Small/cytology , Intestine, Small/drug effects , Avian Proteins/genetics , Avian Proteins/metabolism
2.
Life Sci ; 328: 121902, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37392777

ABSTRACT

AIMS: The small GTPase protein ARF1 has been shown to be involved in the lipolysis pathway and to selectively kill stem cells in Drosophila melanogaster. However, the role of ARF1 in mammalian intestinal homeostasis remains elusive. This study aimed to explore the role of ARF1 in intestinal epithelial cells (IECs) and reveal the possible mechanism. MATERIALS AND METHODS: IEC-specific ARF1 deletion mouse model was used to evaluate the role of ARF1 in intestine. Immunohistochemistry and immunofluorescence analyses were performed to detect specific cell type markers, and intestinal organoids were cultured to assess intestinal stem cell (ISC) proliferation and differentiation. Fluorescence in situ hybridization, 16S rRNA-seq analysis, and antibiotic treatments were conducted to elucidate the role of gut microbes in ARF1-mediated intestinal function and the underlying mechanism. Colitis was induced in control and ARF1-deficient mice by dextran sulfate sodium (DSS). RNA-seq was performed to elucidate the transcriptomic changes after ARF1 deletion. KEY FINDINGS: ARF1 was essential for ISC proliferation and differentiation. Loss of ARF1 increased susceptibility to DSS-induced colitis and gut microbial dysbiosis. Gut microbiota depletion by antibiotics could rescue the intestinal abnormalities to a certain extent. Furthermore, RNA-seq analysis revealed alterations in multiple metabolic pathways. SIGNIFICANCE: This work is the first to elucidate the essential role of ARF1 in regulating gut homeostasis, and provides novel insights into the pathogenesis of intestinal diseases and potential therapeutic targets.


Subject(s)
ADP-Ribosylation Factor 1 , Adult Stem Cells , Gastrointestinal Microbiome , Intestine, Small , Animals , Mice , Mice, Knockout , Intestine, Small/cytology , Intestine, Small/metabolism , Intestine, Small/microbiology , ADP-Ribosylation Factor 1/metabolism , Adult Stem Cells/metabolism , Dysbiosis/metabolism , Anti-Bacterial Agents/administration & dosage , Transcription, Genetic , Homeostasis , Metabolic Networks and Pathways
3.
Cell Rep ; 42(3): 112194, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36857184

ABSTRACT

The enteric nervous system (ENS) consists of glial cells (EGCs) and neurons derived from neural crest precursors. EGCs retain capacity for large-scale neurogenesis in culture, and in vivo lineage tracing has identified neurons derived from glial cells in response to inflammation. We thus hypothesize that EGCs possess a chromatin structure poised for neurogenesis. We use single-cell multiome sequencing to simultaneously assess transcription and chromatin accessibility in EGCs undergoing spontaneous neurogenesis in culture, as well as small intestine myenteric plexus EGCs. Cultured EGCs maintain open chromatin at genomic loci accessible in neurons, and neurogenesis from EGCs involves dynamic chromatin rearrangements with a net decrease in accessible chromatin. A subset of in vivo EGCs, highly enriched within the myenteric ganglia and that persist into adulthood, have a gene expression program and chromatin state consistent with neurogenic potential. These results clarify the mechanisms underlying EGC potential for neuronal fate transition.


Subject(s)
Enteric Nervous System , Ganglia , Multiomics , Neurogenesis , Neuroglia , Single-Cell Analysis , Neuroglia/classification , Neuroglia/cytology , Neuroglia/metabolism , Neurogenesis/genetics , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , RNA/analysis , RNA/genetics , Ganglia/cytology , Male , Female , Animals , Mice , Enteric Nervous System/cytology , Single-Cell Gene Expression Analysis , Cell Culture Techniques , Intestine, Small/cytology , Weaning
4.
Nature ; 607(7919): 548-554, 2022 07.
Article in English | MEDLINE | ID: mdl-35831497

ABSTRACT

The morphology and functionality of the epithelial lining differ along the intestinal tract, but tissue renewal at all sites is driven by stem cells at the base of crypts1-3. Whether stem cell numbers and behaviour vary at different sites is unknown. Here we show using intravital microscopy that, despite similarities in the number and distribution of proliferative cells with an Lgr5 signature in mice, small intestinal crypts contain twice as many effective stem cells as large intestinal crypts. We find that, although passively displaced by a conveyor-belt-like upward movement, small intestinal cells positioned away from the crypt base can function as long-term effective stem cells owing to Wnt-dependent retrograde cellular movement. By contrast, the near absence of retrograde movement in the large intestine restricts cell repositioning, leading to a reduction in effective stem cell number. Moreover, after suppression of the retrograde movement in the small intestine, the number of effective stem cells is reduced, and the rate of monoclonal conversion of crypts is accelerated. Together, these results show that the number of effective stem cells is determined by active retrograde movement, revealing a new channel of stem cell regulation that can be experimentally and pharmacologically manipulated.


Subject(s)
Cell Count , Cell Movement , Intestines , Stem Cells , Animals , Intestinal Mucosa/cytology , Intestine, Small/cytology , Intestines/cytology , Mice , Receptors, G-Protein-Coupled , Stem Cells/cytology , Wnt Proteins
5.
J Virol ; 96(9): e0035222, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35446142

ABSTRACT

Influenza A viruses (IAV) can cause severe disease and death in humans. IAV infection and the accompanying immune response can result in systemic inflammation, leading to intestinal damage and disruption of the intestinal microbiome. Here, we demonstrate that a specific subset of epithelial cells, tuft cells, increase across the small intestine during active respiratory IAV infection. Upon viral clearance, tuft cell numbers return to baseline levels. Intestinal tuft cell increases were not protective against disease, as animals with either increased tuft cells or a lack of tuft cells did not have any change in disease morbidity after infection. Respiratory IAV infection also caused transient increases in type 1 and 2 innate lymphoid cells (ILC1 and ILC2, respectively) in the small intestine. ILC2 increases were significantly blunted in the absence of tuft cells, whereas ILC1s were unaffected. Unlike the intestines, ILCs in the lungs were not altered in the absence of tuft cells. This work establishes that respiratory IAV infection causes dynamic changes to tuft cells and ILCs in the small intestines and that tuft cells are necessary for the infection-induced increase in small intestine ILC2s. These intestinal changes in tuft cell and ILC populations may represent unexplored mechanisms preventing systemic infection and/or contributing to severe disease in humans with preexisting conditions. IMPORTANCE Influenza A virus (IAV) is a respiratory infection in humans that can lead to a wide range of symptoms and disease severity. Respiratory infection can cause systemic inflammation and damage in the intestines. Few studies have explored how inflammation alters the intestinal environment. We found that active infection caused an increase in the epithelial population called tuft cells as well as type 1 and 2 innate lymphoid cells (ILCs) in the small intestine. In the absence of tuft cells, this increase in type 2 ILCs was seriously blunted, whereas type 1 ILCs still increased. These findings indicate that tuft cells are necessary for infection-induced changes in small intestine type 2 ILCs and implicate tuft cells as regulators of the intestinal environment in response to systemic inflammation.


Subject(s)
Enteritis , Influenza A virus , Intestine, Small , Orthomyxoviridae Infections , Animals , Enteritis/immunology , Enteritis/physiopathology , Enteritis/virology , Humans , Immunity, Innate , Influenza A virus/immunology , Intestine, Small/cytology , Intestine, Small/virology , Lymphocytes/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/physiopathology , Orthomyxoviridae Infections/virology
6.
Nat Commun ; 13(1): 715, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35132078

ABSTRACT

Organs are anatomically compartmentalised to cater for specialised functions. In the small intestine (SI), regionalisation enables sequential processing of food and nutrient absorption. While several studies indicate the critical importance of non-epithelial cells during development and homeostasis, the extent to which these cells contribute to regionalisation during morphogenesis remains unexplored. Here, we identify a mesenchymal-epithelial crosstalk that shapes the developing SI during late morphogenesis. We find that subepithelial mesenchymal cells are characterised by gradients of factors supporting Wnt signalling and stimulate epithelial growth in vitro. Such a gradient impacts epithelial gene expression and regional villus formation along the anterior-posterior axis of the SI. Notably, we further provide evidence that Wnt signalling directly regulates epithelial expression of Sonic Hedgehog (SHH), which, in turn, acts on mesenchymal cells to drive villi formation. Taken together our results uncover a mechanistic link between Wnt and Hedgehog signalling across different cellular compartments that is central for anterior-posterior regionalisation and correct formation of the SI.


Subject(s)
Hedgehog Proteins/metabolism , Intestinal Mucosa/metabolism , Intestine, Small/embryology , Mesenchymal Stem Cells/metabolism , Wnt Signaling Pathway/physiology , Animals , Cell Lineage , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , Intestinal Mucosa/cytology , Intestinal Mucosa/embryology , Intestine, Small/cytology , Intestine, Small/metabolism , Mesenchymal Stem Cells/cytology , Mice , Morphogenesis , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Wnt Signaling Pathway/genetics
7.
Acta Physiol (Oxf) ; 234(2): e13773, 2022 02.
Article in English | MEDLINE | ID: mdl-34985199

ABSTRACT

AIMS: The mammalian gut is the largest endocrine organ. Dozens of hormones secreted by enteroendocrine cells regulate a variety of physiological functions of the gut but also of the pancreas and brain. Here, we examined the role of the helix-loop-helix transcription factor ID2 during the differentiation of intestinal stem cells along the enteroendocrine lineage. METHODS: To assess the functions of ID2 in the adult mouse small intestine, we used single-cell RNA sequencing, genetically modified mice, and organoid assays. RESULTS: We found that in the adult intestinal epithelium Id2 is predominantly expressed in enterochromaffin and peptidergic enteroendocrine cells. Consistently, the loss of Id2 leads to the reduction of Chromogranin A-positive enteroendocrine cells. In contrast, the numbers of tuft cells are increased in Id2 mutant small intestine. Moreover, ablation of Id2 elevates the numbers of Serotonin+ enterochromaffin cells and Ghrelin+ X-cells in the posterior part of the small intestine. Finally, ID2 acts downstream of BMP signalling during the differentiation of Glucagon-like peptide-1+ L-cells and Cholecystokinin+ I-cells towards Neurotensin+ PYY+ N-cells. CONCLUSION: ID2 plays an important role in cell fate decisions in the adult small intestine. First, ID2 is essential for establishing a differentiation gradient for enterochromaffin and X-cells along the anterior-posterior axis of the gut. Next, ID2 is necessary for the differentiation of N-cells thus ensuring a differentiation gradient along the crypt-villi axis. Finally, ID2 suppresses the commitment of secretory intestinal epithelial progenitors towards tuft cell lineage and thus controls host immune response to commensal and parasitic microbiota.


Subject(s)
Cell Differentiation , Enteroendocrine Cells , Inhibitor of Differentiation Protein 2/genetics , Transcription Factors , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Intestinal Mucosa , Intestine, Small/cytology , Mammals , Mice , Transcription Factors/genetics
8.
Biomed Mater ; 17(2)2022 02 02.
Article in English | MEDLINE | ID: mdl-35026740

ABSTRACT

The design of bone scaffolds is predominately aimed to well reproduce the natural bony environment by imitating the architecture/composition of host bone. Such biomimetic biomaterials are gaining increasing attention and acknowledged quite promising for bone tissue engineering. Herein, novel biomimetic bone scaffolds containing decellularized small intestinal submucosa matrix (SIS-ECM) and Sr2+/Fe3+co-doped hydroxyapatite (SrFeHA) are fabricated for the first time by the sophisticated self-assembled mineralization procedure, followed by cross-linking and lyophilization post-treatments. The results indicate the constructed SIS/SrFeHA scaffolds are characterized by highly porous structures, rough microsurface and improved mechanical strength, as well as efficient releasing of bioactive Sr2+/Fe3+and ECM components. These favorable physico-chemical properties endow SIS/SrFeHA scaffolds with an architectural/componential biomimetic bony environment which appears to be highly beneficial for inducing angiogenesis/osteogenesis bothin vitroandin vivo. In particular, the cellular functionality and bioactivity of endotheliocytes/osteoblasts are significantly enhanced by SIS/SrFeHA scaffolds, and the cranial defects model further verifies the potent ability of SIS/SrFeHA to acceleratein vivovascularization and bone regeneration following implantation. In this view these results highlight the considerable angiogenesis/osteogenesis potential of biomimetic porous SIS/SrFeHA scaffolds for inducing bone regeneration and thus may afford a new promising alternative for bone tissue engineering.


Subject(s)
Bone Regeneration/drug effects , Decellularized Extracellular Matrix , Durapatite , Osteogenesis/drug effects , Tissue Scaffolds/chemistry , Animals , Biomimetic Materials , Cell Line , Cells, Cultured , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Intestinal Mucosa/cytology , Intestine, Small/cytology , Mice , Neovascularization, Physiologic/drug effects , Osteoblasts/drug effects , Porosity
9.
Arch Toxicol ; 96(2): 499-510, 2022 02.
Article in English | MEDLINE | ID: mdl-34654938

ABSTRACT

The small intestine plays a critical role in the absorption and metabolism of orally administered drugs. Therefore, a model capable of evaluating drug absorption and metabolism in the small intestine would be useful for drug discovery. Patients with genotype UGT1A1*6 (exon 1, 211G > A) treated with the antineoplastic drug SN-38 have been reported to exhibit decreased glucuronide conjugation and increased incidence of intestinal toxicity and its severe side effects, including severe diarrhea. To ensure the safety of drugs, we must develop a drug metabolism and toxicity evaluation model which considers UGT1A1*6. In this study, we generated CYP3A4·POR·UGT1A1 KI- and CYP3A4·POR·UGT1A1*6 KI-Caco-2 cells for pharmaceutical research using a PITCh system. The CYP3A4·POR·UGT1A1 KI-Caco-2 cells were shown to express functional CYP3A4 and UGT1A1. The CYP3A4·POR·UGT1A1*6 KI-Caco-2 cells were sensitive to SN-38-induced intestinal toxicity. We thus succeeded in generating CYP3A4·POR·UGT1A1 KI- and CYP3A4·POR·UGT1A1*6 KI-Caco-2 cells, which can be used in pharmaceutical research. We also developed an intestinal epithelial cell model of patients with UGT1A1*6 and showed that it was useful as a tool for drug discovery.


Subject(s)
Cytochrome P-450 CYP3A/genetics , Glucuronosyltransferase/genetics , Intestinal Mucosa/enzymology , Intestine, Small/enzymology , Antineoplastic Agents/toxicity , Caco-2 Cells/enzymology , Drug Discovery/methods , Genotype , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Intestine, Small/cytology , Intestine, Small/drug effects , Irinotecan/toxicity
10.
Drug Metab Dispos ; 50(1): 17-23, 2022 01.
Article in English | MEDLINE | ID: mdl-34670778

ABSTRACT

Pharmacokinetic prediction after oral ingestion is important for quantitative risk assessment of food-derived compounds. To evaluate the utility of human intestinal absorption prediction, we compared the membrane permeability and metabolic activities of human induced pluripotent stem cell-derived small intestinal epithelial cells (hiPSC-SIECs) with Caco-2 cells or human primary enterocytes (hPECs). We found that membrane permeability in hiPSC-SIECs had better predictivity than that in Caco-2 cells against 21 drugs with known human intestinal availability (r = 0.830 and 0.401, respectively). Membrane permeability in hiPSC-SIECs was only 0.019-0.25-fold as compared with that in Caco-2 cells for 7 in 15 food-derived compounds, primarily those that were reported to undergo glucuronidation metabolism. The metabolic rates of the glucuronide conjugate were similar or higher in hiPSC-SIECs as compared with hPECs but lower in Caco-2 cells. Expression levels of UDP-glucuronosyltransferase (UGT) isoform mRNA in hiPSC-SIECs were similar or higher as compared with hPECs. Therefore, hiPSC-SIECs could be a useful tool for predicting human intestinal absorption to simultaneously evaluate membrane permeability and UGT-mediated metabolism. SIGNIFICANCE STATEMENT: Gastrointestinal absorption is an important step for predicting the internal exposure of food-derived compounds. This research revealed that human induced pluripotent stem cell-derived small intestinal cells (hiPSC-SIECs) had better predictivity of intestinal availability than Caco-2 cells; furthermore, the metabolic rates of UDP-glucuronosyltransferase (UGT) substrates of hiPSC-SIECs were closer to those of human primary enterocytes than those of Caco-2 cells. Therefore, hiPSC-SIECs could be a useful tool for predicting human intestinal absorption to simultaneously evaluate membrane permeability and UGT-mediated metabolism.


Subject(s)
Cell Membrane Permeability , Epithelial Cells/metabolism , Glucuronosyltransferase/metabolism , Induced Pluripotent Stem Cells/metabolism , Intestine, Small/metabolism , Caco-2 Cells , Erythrocytes/metabolism , Food , Glucuronides/metabolism , Humans , Intestinal Absorption , Intestine, Small/cytology , Pharmaceutical Preparations/metabolism , Predictive Value of Tests
11.
J Exp Med ; 219(1)2022 01 03.
Article in English | MEDLINE | ID: mdl-34779829

ABSTRACT

Helminth parasites are adept manipulators of the immune system, using multiple strategies to evade the host type 2 response. In the intestinal niche, the epithelium is crucial for initiating type 2 immunity via tuft cells, which together with goblet cells expand dramatically in response to the type 2 cytokines IL-4 and IL-13. However, it is not known whether helminths modulate these epithelial cell populations. In vitro, using small intestinal organoids, we found that excretory/secretory products (HpES) from Heligmosomoides polygyrus blocked the effects of IL-4/13, inhibiting tuft and goblet cell gene expression and expansion, and inducing spheroid growth characteristic of fetal epithelium and homeostatic repair. Similar outcomes were seen in organoids exposed to parasite larvae. In vivo, H. polygyrus infection inhibited tuft cell responses to heterologous Nippostrongylus brasiliensis infection or succinate, and HpES also reduced succinate-stimulated tuft cell expansion. Our results demonstrate that helminth parasites reshape their intestinal environment in a novel strategy for undermining the host protective response.


Subject(s)
Epithelial Cells/metabolism , Goblet Cells/metabolism , Intestine, Small/cytology , Organoids/metabolism , Strongylida Infections/metabolism , Animals , Cell Proliferation/drug effects , Cell Proliferation/genetics , Epithelial Cells/parasitology , Female , Gene Expression Regulation/drug effects , Goblet Cells/parasitology , Helminth Proteins/metabolism , Helminth Proteins/pharmacology , Host-Parasite Interactions , Interleukin-13/pharmacology , Interleukin-4/pharmacology , Intestine, Small/parasitology , Mice, Inbred C57BL , Nematospiroides dubius/metabolism , Nematospiroides dubius/physiology , Nippostrongylus/metabolism , Nippostrongylus/physiology , Organoids/cytology , Organoids/parasitology , Strongylida Infections/parasitology , Succinic Acid/pharmacology , Transcriptome/drug effects
12.
Vet Immunol Immunopathol ; 242: 110352, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34773748

ABSTRACT

An effective method to isolate functional eosinophils from blood and tissues is required to analyze the multiple roles eosinophils play in innate immunity and tissue homeostasis. Highspeed cell sorting was used to isolate bovine eosinophils from blood polymorphonuclear (PMN) cells and from small intestine intraepithelial leukocytes. Eosinophils and neutrophils were purified from bovine blood with highspeed cell sorting after gating on autofluorescence (FL1) high and low PMN subpopulations. Highspeed sorting of intestinal eosinophils was accomplished by using a combination of positive (CD45+, CD11cLow, side scatterHigh) and negative (CD3-) selection parameters. Eosinophils sorted from blood PMNs were 88.6 ± 5.8 % (mean + 1 SD; n = 4) pure and yielded significantly (p < 0.05) more RNA than purified neutrophils. Analysis of Toll-like receptor (TLR) gene expression and TLR ligand-induced pro-inflammatory cytokine (IL-1, IL-6, IL-8, and TNFα) gene expression demonstrated significant (p < 0.01) functional differences between blood eosinophils and neutrophils. Eosinophils varied between 14.7 % to 29.3 % of CD45+ IELs and purity of sorted intestinal eosinophils was 95 + 3.5 % (mean + 1SD; n = 5). A comparison of mucosal and blood eosinophils revealed significant (p < 0.01) differences in TLR gene expression, supporting the hypothesis that functionally distinct eosinophil populations are present in blood and tissues. In conclusion, highspeed cell sorting provides an effective method to isolate viable eosinophils from blood and tissues that can then be used for transcriptome analyses and in vitro function assays.


Subject(s)
Eosinophils , Intestine, Small/cytology , Leukocyte Count , Animals , Cattle , Eosinophils/cytology , Leukocyte Count/veterinary , Neutrophils
13.
Nutrients ; 13(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34835968

ABSTRACT

In addition to the small intestine's well-known function of nutrient absorption, the small intestine also plays a major role in nutrient sensing. Similar to taste sensors seen on the tongue, GPCR-coupled nutrient sensors are expressed throughout the intestinal epithelium and respond to nutrients found in the lumen. These taste receptors respond to specific ligands, such as digested carbohydrates, fats, and proteins. The activation of nutrient sensors in the intestine allows for the induction of signaling pathways needed for the digestive system to process an influx of nutrients. Such processes include those related to glucose homeostasis and satiety. Defects in intestinal nutrient sensing have been linked to a variety of metabolic disorders, such as type 2 diabetes and obesity. Here, we review recent updates in the mechanisms related to intestinal nutrient sensors, particularly in enteroendocrine cells, and their pathological roles in disease. Additionally, we highlight the emerging nutrient sensing role of tuft cells and recent work using enteroids as a sensory organ model.


Subject(s)
Enteroendocrine Cells/cytology , Intestine, Small/cytology , Animals , Biomarkers/metabolism , Humans , Nutrients , Receptors, Cell Surface/metabolism , Taste
14.
Development ; 148(21)2021 11 01.
Article in English | MEDLINE | ID: mdl-34751748

ABSTRACT

Although the role of the transcription factor NF-κB in intestinal inflammation and tumor formation has been investigated extensively, a physiological function of NF-κB in sustaining intestinal epithelial homeostasis beyond inflammation has not been demonstrated. Using NF-κB reporter mice, we detected strong NF-κB activity in Paneth cells, in '+4/+5' secretory progenitors and in scattered Lgr5+ crypt base columnar stem cells of small intestinal (SI) crypts. To examine NF-κB functions in SI epithelial self-renewal, mice or SI crypt organoids ('mini-guts') with ubiquitously suppressed NF-κB activity were used. We show that NF-κB activity is dispensable for maintaining SI epithelial proliferation, but is essential for ex vivo organoid growth. Furthermore, we demonstrate a dramatic reduction of Paneth cells in the absence of NF-κB activity, concomitant with a significant increase in goblet cells and immature intermediate cells. This indicates that NF-κB is required for proper Paneth versus goblet cell differentiation and for SI epithelial homeostasis, which occurs via regulation of Wnt signaling and Sox9 expression downstream of NF-κB. The current study thus presents evidence for an important role for NF-κB in intestinal epithelial self-renewal.


Subject(s)
Goblet Cells/cytology , Intestine, Small/cytology , NF-kappa B/metabolism , Paneth Cells/cytology , Animals , Cell Differentiation , Cell Self Renewal , Goblet Cells/metabolism , Homeostasis , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Intestine, Small/pathology , Mice , NF-kappa B/genetics , Organoids/cytology , Organoids/growth & development , Organoids/metabolism , Paneth Cells/metabolism , SOX9 Transcription Factor/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway
15.
Food Funct ; 12(19): 9248-9260, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34606540

ABSTRACT

Pathogenesis of C. difficile in the intestine is associated with the secretion of toxins which can damage the intestinal epithelial layer and result in diseases such as diarrhoea. Treatment for C. difficile infections consists of antibiotics which, however, have non-specific microbiocidal effects and may cause intestinal dysbiosis which results in subsequent health issues. Therefore, alternative treatments to C. difficile infections are required. We investigated whether different black soldier fly- and mealworm-derived fractions, after applying the INFOGEST digestion protocol, could counteract C. difficile toxin A-mediated barrier damage of small intestinal Caco-2 cells. Treatment and pre-treatment with insect-derived fractions significantly (p < 0.05) mitigated the decrease of the transepithelial electrical resistance (TEER) of Caco-2 cells induced by C. difficile toxin A. In relation to these effects, RNA sequencing data showed an increased transcription of cell junctional and proliferation protein genes in Caco-2 cells. Furthermore, the transcription of genes regulating immune signalling was also increased. To identify whether this resulted in immune activation we used a Caco-2/THP-1 co-culture model where the cells were only separated by a permeable membrane. However, the insect-derived fractions did not change the basolateral secreted IL-8 levels in this model. To conclude, our findings suggest that black soldier fly- and mealworm-derived fractions can attenuate C. difficile induced intestinal barrier disruption and they might be promising tools to reduce the symptoms of C. difficile infections.


Subject(s)
Bacterial Toxins/toxicity , Cell Proliferation/genetics , Enterotoxins/toxicity , Insecta , Intercellular Junctions/genetics , Intestinal Mucosa/physiology , Intestine, Small/cytology , Transcription, Genetic , Animals , Caco-2 Cells , Clostridioides difficile , Coculture Techniques , Coleoptera , Diptera , Epithelial Cells/physiology , Humans , Immunity/genetics , Immunomodulation , Insect Proteins/pharmacology , Intestinal Mucosa/cytology , Intestine, Small/physiology , Macrophages , RNA-Seq , THP-1 Cells
16.
Int J Mol Sci ; 22(20)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34681571

ABSTRACT

Intestinal epithelial cells (IECs) are crucial for the digestive process and nutrient absorption. The intestinal epithelium is composed of the different cell types of the small intestine (mainly, enterocytes, goblet cells, Paneth cells, enteroendocrine cells, and tuft cells). The small intestine is characterized by the presence of crypt-villus units that are in a state of homeostatic cell turnover. Organoid technology enables an efficient expansion of intestinal epithelial tissue in vitro. Thus, organoids hold great promise for use in medical research and in the development of new treatments. At present, the cholinergic system involved in IECs and intestinal stem cells (ISCs) are attracting a great deal of attention. Thus, understanding the biological processes triggered by epithelial cholinergic activation by acetylcholine (ACh), which is produced and released from neuronal and/or non-neuronal tissue, is of key importance. Cholinergic signaling via ACh receptors plays a pivotal role in IEC growth and differentiation. Here, we discuss current views on neuronal innervation and non-neuronal control of the small intestinal crypts and their impact on ISC proliferation, differentiation, and maintenance. Since technology using intestinal organoid culture systems is advancing, we also outline an organoid-based organ replacement approach for intestinal diseases.


Subject(s)
Intestinal Mucosa/cytology , Intestine, Small/cytology , Organoids/cytology , Receptors, Cholinergic/metabolism , Acetylcholine/metabolism , Animals , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Models, Biological , Organoids/metabolism , Stem Cells/cytology , Stem Cells/metabolism
17.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G668-G681, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34643097

ABSTRACT

MicroRNA-mediated regulation is critical for the proper development and function of the small intestinal (SI) epithelium. However, it is not known which microRNAs are expressed in each of the cell types of the SI epithelium. To bridge this important knowledge gap, we performed comprehensive microRNA profiling in all major cell types of the mouse SI epithelium. We used flow cytometry and fluorescence-activated cell sorting with multiple reporter mouse models to isolate intestinal stem cells, enterocytes, goblet cells, Paneth cells, enteroendocrine cells, tuft cells, and secretory progenitors. We then subjected these cell populations to small RNA-sequencing. The resulting atlas revealed highly enriched microRNA markers for almost every major cell type (https://sethupathy-lab.shinyapps.io/SI_miRNA/). Several of these lineage-enriched microRNAs (LEMs) were observed to be embedded in annotated host genes. We used chromatin-run-on sequencing to determine which of these LEMs are likely cotranscribed with their host genes. We then performed single-cell RNA-sequencing to define the cell type specificity of the host genes and embedded LEMs. We observed that the two most enriched microRNAs in secretory progenitors are miR-1224 and miR-672, the latter of which we found is deleted in hominin species. Finally, using several in vivo models, we established that miR-152 is a Paneth cell-specific microRNA.NEW & NOTEWORTHY In this study, first, microRNA atlas (and searchable web server) across all major small intestinal epithelial cell types is presented. We have demonstrated microRNAs that uniquely mark several lineages, including enteroendocrine and tuft. Identification of a key marker of mouse secretory progenitor cells, miR-672, which we show is deleted in humans. We have used several in vivo models to establish miR-152 as a specific marker of Paneth cells, which are highly understudied in terms of microRNAs.


Subject(s)
Cell Lineage , Epithelial Cells/metabolism , Gene Expression Profiling , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , MicroRNAs/genetics , Transcriptome , Animals , Biomarkers/metabolism , Cell Separation , Cells, Cultured , Computational Biology , Dogs , Female , Flow Cytometry , Intestinal Mucosa/cytology , Intestine, Small/cytology , Male , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/metabolism , Organoids , RNA-Seq , Single-Cell Analysis
18.
J Med Food ; 24(12): 1293-1303, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34491844

ABSTRACT

Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly prescribed and self-prescribed drugs to treat inflammation and pain associated with several conditions. Although their efficacy and overall safety have been recognized when used according to medical prescriptions and for a short period time, their acute impact on enteric physiology has rarely been studied. NSAIDs are known to cause gastrointestinal side effects due to their intrinsic mechanism of action, which involves prostaglandins synthesis, leading to impaired mucopolysaccharide layer production. Despite this well-known and investigated side effect, the short- and long-term influences of acute administration of these drugs on the biochemical environment of enteric cells are not well understood. This study investigates the rate of adenosine triphosphate (ATP) loss and permeability alterations occurring in a model of human enteric cells, as a consequence of acute administration of NSAIDs as major perpetrators of enteric toxicity. For the first time, we investigate the ability of a novel ATP-containing formulation to prevent ATP hydrolysis in the stomach and ensure its delivery at the proximal duodenal site.


Subject(s)
Adenosine Triphosphate , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Dietary Supplements , Intestine, Small , Adenosine Triphosphate/therapeutic use , Humans , Intestine, Small/cytology , Intestine, Small/drug effects
19.
Science ; 373(6561): eabf9232, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34529485

ABSTRACT

Vitamin A and its derivative retinol are essential for the development of intestinal adaptive immunity. Retinoic acid (RA)­producing myeloid cells are central to this process, but how myeloid cells acquire retinol for conversion to RA is unknown. Here, we show that serum amyloid A (SAA) proteins­retinol-binding proteins induced in intestinal epithelial cells by the microbiota­deliver retinol to myeloid cells. We identify low-density lipoprotein (LDL) receptor­related protein 1 (LRP1) as an SAA receptor that endocytoses SAA-retinol complexes and promotes retinol acquisition by RA-producing intestinal myeloid cells. Consequently, SAA and LRP1 are essential for vitamin A­dependent immunity, including B and T cell homing to the intestine and immunoglobulin A production. Our findings identify a key mechanism by which vitamin A promotes intestinal immunity.


Subject(s)
Adaptive Immunity , Intestinal Mucosa/immunology , Intestine, Small/immunology , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Myeloid Cells/metabolism , Serum Amyloid A Protein/metabolism , Vitamin A/metabolism , Animals , B-Lymphocytes/immunology , CD11c Antigen/analysis , CD4-Positive T-Lymphocytes/immunology , Cell Line , Endocytosis , Gene Deletion , Humans , Immunoglobulin A/biosynthesis , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestine, Small/cytology , Intestine, Small/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Mice , Mice, Inbred C57BL , Myeloid Cells/immunology , Protein Binding , Retinol-Binding Proteins/metabolism , Salmonella Infections, Animal/immunology , Salmonella typhimurium , Serum Amyloid A Protein/genetics , Th17 Cells/immunology
20.
Biomed Res Int ; 2021: 1086206, 2021.
Article in English | MEDLINE | ID: mdl-34423029

ABSTRACT

As a new type of noncoding RNA, circular RNA (circRNA) is stable in cells and not easily degraded. This type of RNA can also competitively bind miRNAs to regulate the expression of their target genes. The role of circRNA in the mechanism of intestinal oxidative stress (OS) in weaned piglets is still unclear. In our research, diquat (DQ) was used to induce OS in small intestinal epithelial cells (IPEC-J2) to construct an OS cell model. Mechanistically, dual luciferase reporter assays, fluorescence in situ hybridization (FISH), and western blotting were performed to confirm that circGLI3 directly sponged miR-339-5p and regulated the expression of VEGFA. Overexpression of circGLI3 promoted IPEC-J2 cell proliferation, increased the proportion of S-phase cells (P < 0.01), and reduced reactive oxygen species (ROS) generation when IPEC-J2 cells were subjected to OS. circGLI3 can increase the activity of glutathione peroxidase (GSH-Px) and the total antioxidant capacity (T-AOC) in IPEC-J2 cells and reduce the malondialdehyde (MDA) content and levels of inflammatory factors. Therefore, overexpression of circGLI3 reduced oxidative damage, whereas miR-339-5p mimic counteracted these effects. We identified a regulatory network composed of circGLI3, miR-339-5p, and VEGFA and verified that circGLI3 regulates VEGFA by directly binding miR-339-5p. The expression of VEGFA affects IPEC-J2 cell proliferation, cell cycle progression, and ROS content and changes the levels of antioxidant enzymes and inflammatory factors. This study reveals the molecular mechanism by which circGLI3 inhibits OS in the intestine of piglets and provides a theoretical basis for further research on the effect of OS on intestinal function.


Subject(s)
Diquat/adverse effects , Intestine, Small/cytology , MicroRNAs/genetics , RNA, Circular/genetics , Vascular Endothelial Growth Factor A/genetics , Animals , Cell Cycle/drug effects , Cell Line , Cell Proliferation/drug effects , Epithelial Cells/chemistry , Epithelial Cells/cytology , Epithelial Cells/drug effects , Gene Expression Regulation/drug effects , Glutathione Peroxidase/metabolism , Intestine, Small/chemistry , Intestine, Small/drug effects , Malondialdehyde/metabolism , Models, Biological , Oxidative Stress , Swine , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...