Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Nature ; 621(7980): 773-781, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37612513

ABSTRACT

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.


Subject(s)
Biodiversity , Environment , Introduced Species , Trees , Databases, Factual , Human Activities , Introduced Species/statistics & numerical data , Introduced Species/trends , Phylogeny , Rain , Temperature , Trees/classification , Trees/physiology
2.
Nature ; 620(7974): 582-588, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37558875

ABSTRACT

Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.


Subject(s)
Biodiversity , Conservation of Water Resources , Environmental Monitoring , Fresh Water , Invertebrates , Animals , Introduced Species/trends , Invertebrates/classification , Invertebrates/physiology , Europe , Human Activities , Conservation of Water Resources/statistics & numerical data , Conservation of Water Resources/trends , Hydrobiology , Time Factors , Crop Production , Urbanization , Global Warming , Water Pollutants/analysis
3.
PLoS One ; 17(1): e0262721, 2022.
Article in English | MEDLINE | ID: mdl-35045110

ABSTRACT

Upside-down jellyfish (Cassiopea sp.) are mostly sedentary, benthic jellyfish that have invaded estuarine ecosystems around the world. Monitoring the spread of this invasive jellyfish must contend with high spatial and temporal variability in abundance of individuals, especially around their invasion front. Here, we evaluated the utility of drones to survey invasive Cassiopea in a coastal lake on the east coast of Australia. To assess the efficacy of a drone-based methodology, we compared the densities and counts of Cassiopea from drone observations to conventional boat-based observations and evaluated cost and time efficiency of these methods. We showed that there was no significant difference in Cassiopea density measured by drones compared to boat-based methods along the same transects. However, abundance estimates of Cassiopea derived from scaling-up transect densities were over-inflated by 319% for drones and 178% for boats, compared to drone-based counts of the whole site. Although conventional boat-based survey techniques were cost-efficient in the short-term, we recommend doing whole-of-site counts using drones. This is because it provides a time-saving and precise technique for long-term monitoring of the spatio-temporally dynamic invasion front of Cassiopea in coastal lakes and other sheltered marine habitats with relatively clear water.


Subject(s)
Behavior, Animal/physiology , Environmental Monitoring/methods , Unmanned Aerial Devices/ethics , Animals , Animals, Wild , Australia , Ecosystem , Environmental Monitoring/economics , Environmental Monitoring/instrumentation , Introduced Species/trends , Lakes , Scyphozoa/metabolism , Water
4.
Sci Rep ; 11(1): 18651, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34545138

ABSTRACT

The African citrus psyllid Trioza erytreae is one of the major threats to citrus industry as the vector of the incurable disease known as huanglongbing (HLB) or citrus greening. The psyllid invaded the northwest of the Iberian Peninsula 6 years ago. The invasion alarmed citrus growers in the Mediterranean basin, the largest citrus producing area in Europe, which is still free of HLB. Before our study, no research had been carried out on the genetic diversity of T. erytreae populations that have invaded the Iberian Peninsula and the archipelagos of the Macaronesia (Madeira and the Canary Islands). In this study, combining microsatellites markers and mtDNA barcoding analysis, we characterize the genetic diversity, structure and maternal relationship of these new invasive populations of T. erytreae and those from Africa. Our results suggest that the outbreaks of T. erytreae in the Iberian Peninsula may have derived from the Canary Islands. The populations of T. erytreae that invaded Macaronesia and the Iberian Peninsula are likely to have originated from southern Africa. We anticipate our results to be a starting point for tracking the spread of this invasive pest outside of Africa and to be important for optimizing contingency and eradication plans in newly invaded and free areas.


Subject(s)
DNA, Mitochondrial/genetics , Hemiptera/genetics , Microsatellite Repeats/genetics , Animals , Citrus/chemistry , DNA Barcoding, Taxonomic/methods , Europe , Insect Vectors , Introduced Species/trends , Mitochondria/genetics , Phylogeny , Plant Diseases
5.
Sci Rep ; 11(1): 17058, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34426636

ABSTRACT

Unionid mussels are essential for the integrity of freshwater ecosystems but show rapid worldwide declines. The large-sized, thermophilic Chinese pond mussel Sinanodonta woodiana s.l., however, is a successful global invader, spread with commercially traded fish encysted with mussel larvae; its negative impacts on native mussels are expected. Here, we exploit a natural experiment provided by a simultaneous introduction of S. woodiana and four species of native unionids for water filtration to a pond in north-eastern Poland. Sinanodonta woodiana established a self-sustaining population and persisted for 19 years in suboptimal thermal conditions (mean annual temperature, 7.4 °C; mean temperature of the coldest month, - 3.7 °C, 73-day mean yearly ice-formation), extending the known limits of its cold tolerance. Over four study years, its frequency increased, and it showed higher potential for population growth than the native mussels, indicating possible future dominance shifts. Outbreaks of such sleeper populations are likely to be triggered by increasing temperatures. Additionally, our study documents the broad tolerance of S. woodiana concerning bottom sediments. It also points to the importance of intentional introductions of adult individuals and the bridgehead effect facilitating its further spread. We argue that S. woodiana should be urgently included in invasive species monitoring and management programmes.


Subject(s)
Biomass , Bivalvia/physiology , Introduced Species/trends , Animals , Bivalvia/classification , Temperature
6.
Sci Rep ; 11(1): 9916, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33972597

ABSTRACT

The Asian tiger mosquito (Aedes albopictus), a vector of dengue, Zika and other diseases, was introduced in Europe in the 1970s, where it is still widening its range. Spurred by public health concerns, several studies have delivered predictions of the current and future distribution of the species for this region, often with differing results. We provide the first joint analysis of these predictions, to identify consensus hotspots of high and low suitability, as well as areas with high uncertainty. The analysis focused on current and future climate conditions and was carried out for the whole of Europe and for 65 major urban areas. High consensus on current suitability was found for the northwest of the Iberian Peninsula, southern France, Italy and the coastline between the western Balkans and Greece. Most models also agree on a substantial future expansion of suitable areas into northern and eastern Europe. About 83% of urban areas are expected to become suitable in the future, in contrast with ~ 49% nowadays. Our findings show that previous research is congruent in identifying wide suitable areas for Aedes albopictus across Europe and in the need to effectively account for climate change in managing and preventing its future spread.


Subject(s)
Aedes/physiology , Animal Distribution , Climate Change/statistics & numerical data , Introduced Species/statistics & numerical data , Mosquito Vectors/physiology , Aedes/virology , Animals , Computer Simulation , Dengue/prevention & control , Dengue/transmission , Dengue/virology , Ecological Parameter Monitoring/statistics & numerical data , Epidemiological Monitoring , Europe , Introduced Species/trends , Models, Biological , Mosquito Vectors/virology , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission , Zika Virus Infection/virology
7.
Sci Rep ; 11(1): 11282, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34050232

ABSTRACT

The invasive American bullfrog (Lithobates catesbeianus) imperils freshwater biodiversity worldwide. Effective management hinges on early detection of incipient invasions and subsequent rapid response, as established populations are extremely difficult to eradicate. Although environmental DNA (eDNA) detection methods provide a highly sensitive alternative to conventional surveillance techniques, extensive testing is imperative to generate reliable output. Here, we tested and compared the performance of two primer/probe assays to detect and quantify the abundance of bullfrogs in Western Europe in silico and in situ using digital droplet PCR (ddPCR). Although both assays proved to be equally target-specific and sensitive, one outperformed the other in ddPCR detection resolution (i.e., distinguishing groups of target-positive and target-negative droplets), and hence was selected for further analyses. Mesocosm experiments revealed that tadpole abundance and biomass explained 99% of the variation in eDNA concentration. Because per individual eDNA emission rates did not differ significantly among tadpoles and juveniles, and adults mostly reside out of the water, eDNA concentration can be used as an approximation of local bullfrog abundance in natural populations. Seasonal eDNA patterns in three colonized ponds showed parallel fluctuations in bullfrog eDNA concentration. An increase in eDNA concentration was detected in spring, followed by a strong peak coinciding with the breeding season (August, September or October), and continuously low eDNA concentrations during winter. With this study, we report the validation process required for appropriately implementing eDNA barcoding analyses in lentic systems. We demonstrate that this technique can serve as a solid and reliable tool to detect the early stages of bullfrog invasions and to quantify temporal changes in abundance that will be useful in coordinating large-scale bullfrog eradication programs and evaluating their efficiency.


Subject(s)
Environmental Monitoring/methods , Rana catesbeiana/genetics , Animals , Biodiversity , DNA, Environmental/genetics , Europe , Fresh Water , Introduced Species/trends , Polymerase Chain Reaction/methods , Ponds , Seasons
8.
PLoS One ; 16(4): e0247884, 2021.
Article in English | MEDLINE | ID: mdl-33905407

ABSTRACT

Species-specific monitoring activities represent fundamental tools for natural resource management and conservation but require techniques that target species-specific traits or markers. Sea lamprey, a destructive invasive species in the Laurentian Great Lakes and conservation target in North America and Europe, is among very few fishes that possess and use oral suction, yet suction has not been exploited for sea lamprey control or conservation. Knowledge of specific characteristics of sea lamprey suction (e.g., amplitude, duration, and pattern of suction events; hereafter 'suction dynamics') may be useful to develop devices that detect, record, and respond to the presence of sea lamprey at a given place and time. Previous observations were limited to adult sea lampreys in static water. In this study, pressure sensing panels were constructed and used to measure oral suction pressures and describe suction dynamics of juvenile and adult sea lampreys at multiple locations within the mouth and in static and flowing water. Suction dynamics were largely consistent with previous descriptions, but more variation was observed. For adult sea lampreys, suction pressures ranged from -0.6 kPa to -26 kPa with 20 s to 200 s between pumps at rest, and increased to -8 kPa to -70 kPa when lampreys were manually disengaged. An array of sensors indicated that suction pressure distribution was largely uniform across the mouths of both juvenile and adult lampreys; but some apparent variation was attributed to obstruction of sensing portal holes by teeth. Suction pressure did not differ between static and flowing water when water velocity was lower than 0.45 m/s. Such information may inform design of new systems to monitor behavior, distribution and abundance of lampreys.


Subject(s)
Petromyzon/physiology , Animals , Fishes/physiology , Introduced Species/trends , Lampreys/physiology , Petromyzon/metabolism , Pressure , Suction
9.
PLoS One ; 16(4): e0249904, 2021.
Article in English | MEDLINE | ID: mdl-33831091

ABSTRACT

Two aquatic invasive alien rodents, the coypu (Myocastor coypus) and muskrat (Ondatra zibethicus), have taken over a significant amount of wetlands in France. Pays de la Loire is an administrative region of about 32 000 km2 in the Western France with 6.3% of its area in wetlands (excluding the Loire River). Populations of coypus and muskrats are established and a permanent control programme has been set to reduce their impacts. The control plan is based on few professional trappers and many volunteers which makes this programme unique compared to other programme relying on professionals only. The aim of this study is to analyse the temporal and spatial dynamics of coypu and muskrat captures during the last 10 years to evaluate their effectiveness. The number of rodents removed per year increased by 50% in 10 years and reached about 288 000 individuals in 2016 with about 80% of them being coypus. During the same time length, the number of trappers involved in the programme also increased by 50% to reach 3 000 people in 2016. Although the raise of coypus and muskrats trapped can possibly be explained by an increase of the number of trappers, the number of coypus removed per trapper per year increased by 22%. Despite the outstanding number of individuals removed per year, our results suggest that the programme does not limit the population dynamics of coypus. Finally, since 2017, the number of data gathered from municipalities decreased, as did the total number of individuals trapped. Indeed, although rewards are crucial to recruit new volunteers, subsidies from local and regional authorities are declining. Decision makers and financers should be encouraged to fund this programme from the perspectives of the direct or indirect costs related to the presence of aquatic invasive alien rodents in wetlands.


Subject(s)
Arvicolinae/physiology , Introduced Species/trends , Animals , Biomass , France , Spatio-Temporal Analysis , Wetlands
10.
Nature ; 592(7855): 571-576, 2021 04.
Article in English | MEDLINE | ID: mdl-33790468

ABSTRACT

Biological invasions are responsible for substantial biodiversity declines as well as high economic losses to society and monetary expenditures associated with the management of these invasions1,2. The InvaCost database has enabled the generation of a reliable, comprehensive, standardized and easily updatable synthesis of the monetary costs of biological invasions worldwide3. Here we found that the total reported costs of invasions reached a minimum of US$1.288 trillion (2017 US dollars) over the past few decades (1970-2017), with an annual mean cost of US$26.8 billion. Moreover, we estimate that the annual mean cost could reach US$162.7 billion in 2017. These costs remain strongly underestimated and do not show any sign of slowing down, exhibiting a consistent threefold increase per decade. We show that the documented costs are widely distributed and have strong gaps at regional and taxonomic scales, with damage costs being an order of magnitude higher than management expenditures. Research approaches that document the costs of biological invasions need to be further improved. Nonetheless, our findings call for the implementation of consistent management actions and international policy agreements that aim to reduce the burden of invasive alien species.


Subject(s)
Biodiversity , Ecology/economics , Environmental Science/economics , Internationality , Introduced Species/economics , Introduced Species/trends , Animals , Geographic Mapping , Invertebrates , Linear Models , Plants , Vertebrates
11.
Parasit Vectors ; 14(1): 179, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33766104

ABSTRACT

BACKGROUND: Aedes japonicus japonicus has expanded beyond its native range and has established in multiple European countries, including Belgium. In addition to the population located at Natoye, Belgium, locally established since 2002, specimens were recently collected along the Belgian border. The first objective of this study was therefore to investigate the origin of these new introductions, which were assumed to be related to the expansion of the nearby population in western Germany. Also, an intensive elimination campaign was undertaken at Natoye between 2012 and 2015, after which the species was declared to be eradicated. This species was re-detected in 2017, and thus the second objective was to investigate if these specimens resulted from a new introduction event and/or from a few undetected specimens that escaped the elimination campaign. METHODS: Population genetic variation at nad4 and seven microsatellite loci was surveyed in 224 and 68 specimens collected in Belgium and Germany, respectively. German samples were included as reference to investigate putative introduction source(s). At Natoye, 52 and 135 specimens were collected before and after the elimination campaign, respectively, to investigate temporal changes in the genetic composition and diversity. RESULTS: At Natoye, the genotypic microsatellite make-up showed a clear difference before and after the elimination campaign. Also, the population after 2017 displayed an increased allelic richness and number of private alleles, indicative of new introduction(s). However, the Natoye population present before the elimination programme is believed to have survived at low density. At the Belgian border, clustering results suggest a relation with the western German population. Whether the introduction(s) occur via passive human-mediated ground transport or, alternatively, by natural spread cannot be determined yet from the dataset. CONCLUSION: Further introductions within Belgium are expected to occur in the near future, especially along the eastern Belgian border, which is at the front of the invasion of Ae. japonicus towards the west. Our results also point to the complexity of controlling invasive species, since 4 years of intense control measures were found to be not completely successful at eliminating this exotic at Natoye.


Subject(s)
Aedes/genetics , Genetic Variation , Genetics, Population , Introduced Species/trends , Microsatellite Repeats , Aedes/classification , Aedes/physiology , Animals , Belgium , Europe , Genotype , Humans , Introduced Species/statistics & numerical data
12.
PLoS One ; 16(2): e0246685, 2021.
Article in English | MEDLINE | ID: mdl-33561161

ABSTRACT

According to the 'novel weapons hypothesis', invasive success depends on harmful plant biochemicals, including allelopathic antimicrobial roots exudate that directly inhibit plant growth and soil microbial activity. However, the combination of direct and soil-mediated impacts of invasive plants via allelopathy remains poorly understood. Here, we addressed the allelopathic effects of an invasive plant species (Rhus typhina) on a cultivated plant (Tagetes erecta), soil properties and microbial communities. We grew T. erecta on soil samples at increasing concentrations of R. typhina root extracts and measured both plant growth and soil physiological profile with community-level physiological profiles (CLPP) using Biolog Eco-plates incubation. We found that R. typhina root extracts inhibit both plant growth and soil microbial activity. Plant height, Root length, soil organic carbon (SOC), total nitrogen (TN) and AWCD were significantly decreased with increasing root extract concentration, and plant above-ground biomass (AGB), below-ground biomass (BGB) and total biomass (TB) were significantly decreased at 10 mg·mL-1 of root extracts. In particular, root extracts significantly reduced the carbon source utilization of carbohydrates, carboxylic acids and polymers, but enhanced phenolic acid. Redundancy analysis shows that soil pH, TN, SOC and EC were the major driving factors of soil microbial activity. Our results indicate that strong allelopathic impact of root extracts on plant growth and soil microbial activity by mimicking roots exudate, providing novel insights into the role of plant-soil microbe interactions in mediating invasion success.


Subject(s)
Allelopathy/physiology , Plant Development/physiology , Soil/chemistry , Biomass , Carbon/metabolism , Introduced Species/trends , Microbiota/physiology , Nitrogen/metabolism , Plant Roots/physiology , Plants/metabolism , Plants/microbiology , Rhus/metabolism , Rhus/toxicity , Soil Microbiology , Tagetes/growth & development , Tagetes/metabolism
13.
Sci Rep ; 10(1): 20045, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208830

ABSTRACT

Invasive species are characterized by their ability to colonize new habitats and establish populations away from their native range. In this sense, these plants are expected to have plastic responses to adapt to the environmental pressures during the invasion process. Hence, the role of natural selection is essential because it might favor the occurrence of advantageous traits. However, gene flow can counteract natural selection because immigrants introduce genes adapted to different conditions, with these introductions tending to homogenize allelic frequencies. In this work, we explore the effect of natural selection in invasive populations of S. madagascariensis in Argentina. We quantified leaf area, head number, and length of internodes and inflorescence from material spanning 54 years (1962-2016) and then compared between the edge versus established ranges. Our results show differences in all the measured plant traits among the sampled areas. However, only leaf area was statistically significant, which evidences different responses under the same environmental pressures in the areas located in the edge and established ranges. On the other hand, unlike homogeneous areas, the areas characterized by phenotypically diverse individuals were related to higher dispersal ability. In this sense, long-distance dispersal between neighboring areas may have had an important role in the recorded values. Furthermore, the implications of natural selection and founder effect in the invasion of S. madagascariensis are discussed.


Subject(s)
Adaptation, Physiological , Conservation of Natural Resources , Ecosystem , Introduced Species/trends , Plant Leaves/physiology , Selection, Genetic , Senecio/physiology , Founder Effect , Phenotype
14.
PLoS One ; 15(9): e0239167, 2020.
Article in English | MEDLINE | ID: mdl-32915915

ABSTRACT

Understanding the spread of invasive species in many regions is difficult because surveys are rare. Here, historical records of the invasive marine mussel, Semimytilus algosus, on the shores of Angola and Namibia are synthesised to re-construct its invasive history. Since this mussel was first discovered in Namibia about 90 years ago, it has spread throughout the western coast of southern Africa. By the late 1960s, the species was well established across a range of 1005 km of coastline in southern Angola and northern Namibia. Although only coarse spatial resolution data are available since the 1990s, the distribution of S. algosus clearly increased substantially over the subsequent decades. Today, the species is distributed over 2785 km of coastline, appearing in southern Namibia in 2014, whence it spread across the border to northern South Africa in 2017, and in northern Angola in 2015. Conspicuously, its current range appears to be relatively contiguous across at least 810 km of shore in southern Angola and throughout Namibia, with isolated, spatially disjunct occurrences towards the southern and northern limits of its distribution. Despite there being few occurrence records that are unevenly distributed spatially and temporally, data for the distributional patterns of S. algosus in Angola and Namibia provide invaluable insights into how marine invasive species spread in developing regions that are infrequently monitored.


Subject(s)
Animal Distribution , Bivalvia/physiology , Ecological Parameter Monitoring/statistics & numerical data , Introduced Species/trends , Angola , Animals , Introduced Species/statistics & numerical data , Namibia , Spatio-Temporal Analysis
15.
PLoS One ; 15(9): e0238979, 2020.
Article in English | MEDLINE | ID: mdl-32931513

ABSTRACT

Invasive pests, such as emerald ash borer or Asian longhorn beetle, have been responsible for unprecedented ecological and economic damage in eastern North America. These and other wood-boring invasive insects can spread to new areas through human transport of untreated firewood. Behaviour, such as transport of firewood, is affected not only by immediate material benefits and costs, but also by social forces. Potential approaches to reduce the spread of wood-boring pests through firewood include raising awareness of the problem and increasing the social costs of the damages incurred by transporting firewood. In order to evaluate the efficacy of these measures, we create a coupled social-ecological model of firewood transport, pest spread, and social dynamics, on a geographical network of camper travel between recreational destinations. We also evaluate interventions aimed to slow the spread of invasive pests with untreated firewood, such as inspections at checkpoints to stop the movement of transported firewood and quarantine of high-risk locations. We find that public information and awareness programs can be effective only if the rate of spread of the pest between and within forested areas is slow. Direct intervention via inspections at checkpoints can only be successful if a high proportion of the infested firewood is intercepted. Patch quarantine is only effective if sufficiently many locations can be included in the quarantine and if the quarantine begins early. Our results indicate that the current, relatively low levels of public outreach activities and lack of adequate funding are likely to render inspections, quarantine and public outreach efforts ineffective.


Subject(s)
Insect Control/methods , Pest Control/methods , Animals , Camping/trends , Coleoptera , Forests , Humans , Insecta , Introduced Species/trends , Models, Theoretical , Travel/trends , Wood/parasitology
16.
PLoS One ; 15(8): e0230985, 2020.
Article in English | MEDLINE | ID: mdl-32845879

ABSTRACT

Spearfishing is currently the primary approach for removing invasive lionfish (Pterois volitans/miles) to mitigate their impacts on western Atlantic marine ecosystems, but a substantial portion of lionfish spawning biomass is beyond the depth limits of SCUBA divers. Innovative technologies may offer a means to target deepwater populations and allow for the development of a lionfish trap fishery, but the removal efficiency and potential environmental impacts of lionfish traps have not been evaluated. We tested a collapsible, non-containment trap (the 'Gittings trap') near artificial reefs in the northern Gulf of Mexico. A total of 327 lionfish and 28 native fish (four were species protected with regulations) recruited (i.e., were observed within the trap footprint at the time of retrieval) to traps during 82 trap sets, catching 144 lionfish and 29 native fish (one more than recruited, indicating detection error). Lionfish recruitment was highest for single (versus paired) traps deployed <15 m from reefs with a 1-day soak time, for which mean lionfish and native fish recruitment per trap were approximately 5 and 0.1, respectively. Lionfish from traps were an average of 19 mm or 62 grams larger than those caught spearfishing. Community impacts from Gittings traps appeared minimal given that recruitment rates were >10X higher for lionfish than native fishes and that traps did not move on the bottom during two major storm events, although further testing will be necessary to test trap movement with surface floats. Additional research should also focus on design and operational modifications to improve Gittings trap deployment success (68% successfully opened on the seabed) and reduce lionfish escapement (56% escaped from traps upon retrieval). While removal efficiency for lionfish demonstrated by traps (12-24%) was far below that of spearfishing, Gittings traps appear suitable for future development and testing on deepwater natural reefs, which constitute >90% of the region's reef habitat.


Subject(s)
Conservation of Natural Resources/methods , Environmental Restoration and Remediation/methods , Introduced Species/trends , Animals , Biomass , Coral Reefs , Ecosystem , Fishes/growth & development , Gulf of Mexico , Perciformes/growth & development , Population Density , Population Dynamics , Predatory Behavior
17.
PLoS One ; 15(7): e0235060, 2020.
Article in English | MEDLINE | ID: mdl-32628687

ABSTRACT

Lepidodactylus lugubris is a parthenogenetic gecko which has been increasingly expanding its range during the last century. This invasive species has been reported from multiple tropical and subtropical countries in five continents, most of which were colonized in recent times. In order to understand how the realized niche of the species was affected by this dramatic geographic range expansion, we reconstructed the history of the geographic range expansion. We built models of the realized niche of the species at different points in time during the invasion process. This was achieved through the implementation of modern hypervolume construction methods, based on the Hutchinson's niche concept. The models were then compared to detect possible realized climatic niche expansion over time. Furthermore, we investigated possible pathways used by the species to spread. A progressive expansion of the realized niche was identified. As the species spread into new areas, we observed a tendency to colonize regions with warmer temperatures and higher precipitation rates. Finally, we found evidence for cargo shipping being the major pathway through which the species expands its range. Further studies on this topic should aim to investigate the role of biological interactions, and how they shape the distribution of L. lugubris on a global scale. A deeper understanding of this kind of processes will help us tackle the issue of invasive species, which has become a major challenge in conservation biology.


Subject(s)
Animal Distribution/physiology , Introduced Species/trends , Lizards/physiology , Models, Statistical , Africa , Animals , Asia , Female , Human Activities , Latin America , Male , Parthenogenesis/physiology , Population Dynamics/trends , Rain , Temperature , Transportation
18.
Sci Rep ; 10(1): 9749, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32546786

ABSTRACT

Globalization facilitated the spread of invasive alien species (IAS), undermining the stability of the world's ecosystems. We investigated the metabolomic profiles of three IAS species: Chromolaena odorata (Asteraceae) Datura stramonium (Solanaceae), and Xanthium strumarium (Asteraceae), comparing metabolites of individual plants in their native habitats (USA), to their invasive counterparts growing in and around Kruger National Park (South Africa, ZA). Metabolomic samples were collected using RApid Metabolome Extraction and Storage (RAMES) technology, which immobilizes phytochemicals on glass fiber disks, reducing compound degradation, allowing long-term, storage and simplifying biochemical analysis. Metabolomic differences were analyzed using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) of samples eluted from RAMES disks. Partial Least Squares-Discriminant Analysis (PLS-DA) of metabolomes of individual plants allowed statistical separation of species, native and invasive populations of each species, and some populations on the same continent. Invasive populations of all species were more phytochemically diverse than their native counterparts, and their metabolomic profiles were statistically distinguishable from their native relatives. These data may elucidate the mechanisms of successful invasion and rapid adaptive evolution of IAS. Moreover, RAMES technology combined with PLS-DA statistical analysis may allow taxonomic identification of species and, possibly, populations within each species.


Subject(s)
Chromolaena/metabolism , Datura stramonium/metabolism , Introduced Species/trends , Xanthium/metabolism , Chromatography, Liquid/methods , Chromolaena/genetics , Datura stramonium/genetics , Discriminant Analysis , Ecosystem , Metabolome/genetics , Metabolomics/methods , South Africa , Species Specificity , Tandem Mass Spectrometry/methods , Xanthium/genetics
19.
Sci Rep ; 10(1): 9431, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32523106

ABSTRACT

Growth behavior of different species under different habitats can be studied by comparing the production of biomass, plasticity index and relative competitive interaction. However, these functional traits of invasive species received rare consideration for determining the invasion success of invasive species at wetlands. Here, we examined the effect of water depth at 5 cm and 15 cm (static and fluctuated) with different nutrient concentrations (full-strength (n1), 1/4-strength (n2) and 1/8-strength (n3) Hoagland solution) on functional traits of invasive Wedelia trilobata and its congener native Wedelia chinensis under mono and mixed culture. Water depth of 5 cm with any of the nutrient treatments (n1, n2 and n3) significantly restrained the photosynthesis, leaf nitrogen and photosynthetic nitrogen use efficiency (PNUE) of both W. trilobata and W. chinensis. While, increase in the water depth to 15 cm with low nutrient treatment (n3) reduced more of biomass of W. chinensis under mixed culture. However, relative competition interaction (RCI) was recorded positive for W. trilobata and seemingly W. trilobata benefited more from RCI under high-fluctuated water depth at 15 cm in mixed culture. Therefore, higher PNUE, more competitive ability and higher plasticity may contribute to the invasiveness of W. trilobata in wetlands.


Subject(s)
Wedelia/growth & development , Wedelia/metabolism , Asteraceae/growth & development , Asteraceae/metabolism , Biological Evolution , Biomass , Ecosystem , Hydrology , Introduced Species/trends , Nitrogen/metabolism , Photosynthesis , Water , Wedelia/genetics , Wetlands
20.
Ecotoxicol Environ Saf ; 201: 110794, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32526590

ABSTRACT

The intensive use of glyphosate in industrial agriculture may lead to freshwater contamination, encouraging studies of its toxic effect on non-target aquatic organisms. Glyphosate-based commercial formulations contain adjuvants, making them even more toxic than the active ingredient (a.i.) itself. The golden mussel Limnoperna fortunei is a freshwater invasive species which has been found to increase glyphosate dissipation in water and to accelerate eutrophication. The aim of this study is to evaluate the capability of L. fortunei to reduce the concentration of glyphosate in two commercial formulations, Roundup Max® and Glifosato Atanor®. Results were compared with the decay of the a.i. alone and in presence of mussels. Evasive response and toxicity tests were performed in a first set of trials to analyze the response of L. fortunei exposed to Roundup Max® and Glifosato Atanor®. Subsequently, we conducted a 21-day degradation experiment in 2.6-L microcosms applying the following treatments: 6 mg L-1 of technical-grade glyphosate (G), Glifosato Atanor® (A), Roundup Max® (R), 20 mussels in dechlorinated tap water (M), and the combination of mussels and herbicide either in the technical-grade (MG) or formulated form (MA and MR) (all by triplicate). Samples were collected at days 0, 1, 7, 14 and 21. No significant differences in glyphosate decay were found between treatments with mussels (MG: 2.03 ± 0.40 mg L-1; MA: 1.60 ± 0.32 mg L-1; MR: 1.81 ± 0.21 mg L-1), between glyphosate as a.i. and the commercial formulations, and between the commercial formulations, suggesting that the adjuvants did not affect the degrading potential of L. fortunei. In addition to the acceleration of glyphosate dissipation in water, there was an increase in the concentration of dissolved nutrients in water (N-NH4+ and P-PO43-) even higher than that caused by the filtering activity of the mussels, probably resulting from stress or from the degradation of glyphosate and adjuvants. We believe that a larger bioavailability of these nutrients due to glyphosate metabolization mediated by mussels would accelerate eutrophication processes in natural water bodies. The approach used here, where L. fortunei was exposed to two commercial formulations actually used in agricultural practices, sheds light on the potential impact of glyphosate decay on water bodies invaded by this species.


Subject(s)
Fresh Water/chemistry , Glycine/analogs & derivatives , Herbicides/toxicity , Introduced Species/trends , Mytilidae/drug effects , Water Pollutants, Chemical/toxicity , Animals , Argininosuccinate Synthase , Biodegradation, Environmental , Escherichia coli Proteins , Glycine/toxicity , Mytilidae/metabolism , Toxicity Tests , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...