Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Arch Virol ; 169(7): 136, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847927

ABSTRACT

Here, we report the first detection of lymphocystis disease virus (LCDV) in Indian glass fish in the Andaman Islands, India. Microscopic examination revealed the presence of whitish clusters of nodules on the fish's skin, fins, and eyes. The histopathology of the nodules revealed typical hypertrophied fibroblasts. Molecular characterization of the major capsid protein (MCP) gene of the virus showed a significant resemblance to known LCDV sequences from Korea and Iran, with 98.92% and 97.85% sequence identity, respectively. Phylogenetic analysis confirmed that the MCP gene sequence of the virus belonged to genotype V. This study represents the first documented case of LCDV in finfish from the Andaman Islands, emphasizing the necessity for continued monitoring and research on the health of aquatic species in this fragile ecosystem.


Subject(s)
Capsid Proteins , DNA Virus Infections , Fish Diseases , Iridoviridae , Phylogeny , Animals , Fish Diseases/virology , India , Iridoviridae/genetics , Iridoviridae/isolation & purification , Iridoviridae/classification , DNA Virus Infections/virology , DNA Virus Infections/veterinary , Capsid Proteins/genetics , Fishes/virology , Genotype , Islands
3.
J Virol ; 97(7): e0085723, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37382530

ABSTRACT

Infectious diseases seriously threaten sustainable aquaculture development, resulting in more than $10 billion in economic losses annually. Immersion vaccines are emerging as the key technology for aquatic disease prevention and control. Here, a safe and efficacious candidate immersion vaccine strain (Δorf103r/tk) of infectious spleen and kidney necrosis virus (ISKNV), in which the orf103r and tk genes were knocked out by homologous recombination, is described. Δorf103r/tk was severely attenuated in mandarin fish (Siniperca chuatsi), inducing mild histological lesions, a mortality rate of only 3%, and eliminated within 21 days. A single Δorf103r/tk immersion-administered dose provided long-lasting protection rates over 95% against lethal ISKNV challenge. Δorf103r/tk also robustly stimulated the innate and adaptive immune responses. For example, interferon expression was significantly upregulated, and the production of specific neutralizing antibodies against ISKNV was markedly induced postimmunization. This work provides proof-of-principle evidence for orf103r- and tk-deficient ISKNV for immersion vaccine development to prevent ISKNV disease in aquaculture production. IMPORTANCE Global aquaculture production reached a record of 122.6 million tons in 2020, with a total value of 281.5 billion U.S. dollars (USD). However, approximately 10% of farmed aquatic animal production is lost due to various infectious diseases, resulting in more than 10 billion USD of economic waste every year. Therefore, the development of vaccines to prevent and control aquatic infectious diseases is of great significance. Infectious spleen and kidney necrosis virus (ISKNV) infection occurs in more than 50 species of freshwater and marine fish and has caused great economic losses to the mandarin fish farming industry in China during the past few decades. Thus, it is listed as a certifiable disease by the World Organization for Animal Health (OIE). Herein, a safe and efficient double-gene-deleted live attenuated immersion vaccine against ISKNV was developed, providing an example for the development of aquatic gene-deleted live attenuated immersion vaccine.


Subject(s)
Fish Diseases , Iridoviridae , Viral Vaccines , Animals , Fish Diseases/immunology , Fish Diseases/virology , Fishes , Immersion , Iridoviridae/genetics , Iridoviridae/immunology , Iridoviridae/isolation & purification , Iridoviridae/pathogenicity , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology , Cell Line , Gene Expression/immunology , Antibodies, Viral/immunology
4.
Arch Virol ; 166(11): 3061-3074, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34462803

ABSTRACT

Infectious spleen and kidney necrosis virus (ISKNV) is a fish-pathogenic virus belonging to the genus Megalocytivirus of the family Iridoviridae. In 2018, disease occurrences (40-50% cumulative mortality) associated with ISKNV infection were reported in grown-out Asian sea bass (Lates calcarifer) cultured in an inland freshwater system in Thailand. Clinical samples were collected from seven distinct farms located in the eastern and central regions of Thailand. The moribund fish showed various abnormal signs, including lethargy, pale gills, darkened body, and skin hemorrhage, while hypertrophied basophilic cells were observed microscopically in gill, liver, and kidney tissue. ISKNV infection was confirmed on six out of seven farms using virus-specific semi-nested PCR. The MCP and ATPase genes showed 100% sequence identity among the virus isolates, and the virus was found to belong to the ISKNV genotype I clade. Koch's postulates were later confirmed by challenge assay, and the mortality of the experimentally infected fish at 21 days post-challenge was 50-90%, depending on the challenge dose. The complete genome of two ISKNV isolates, namely KU1 and KU2, was recovered directly from the infected specimens using a shotgun metagenomics approach. The genome length of ISKNV KU1 and KU2 was 111,487 and 111,610 bp, respectively. In comparison to closely related ISKNV strains, KU1 and KU2 contained nine unique genes, including a caspase-recruitment-domain-containing protein that is potentially involved in inhibition of apoptosis. Collectively, this study indicated that inland cultured Asian sea bass are infected by homologous ISKNV strains. This indicates that ISKNV genotype I should be prioritized for future vaccine research.


Subject(s)
DNA Virus Infections/veterinary , Fish Diseases/virology , Iridoviridae/genetics , Perciformes/virology , Adenosine Triphosphatases/genetics , Animals , Aquaculture/statistics & numerical data , DNA Virus Infections/epidemiology , DNA Virus Infections/virology , Fish Diseases/etiology , Fish Diseases/mortality , Fresh Water , Genome, Viral , Genotype , Iridoviridae/isolation & purification , Iridoviridae/pathogenicity , Phylogeny , Polymerase Chain Reaction , Thailand/epidemiology
5.
J Fish Dis ; 44(12): 2043-2053, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34449899

ABSTRACT

Megalocytivirus cause diseases that have serious economic impacts on aquaculture, mainly in East and South-East Asia. Five primary genotypes are known: infectious spleen and kidney necrosis virus (ISKNV), red sea bream iridovirus (RSIV), turbot reddish body iridovirus (TRBIV), threespine stickleback iridovirus (TSIV) and scale drop disease virus (SDDV). ISKNV-mediated infectious spleen and kidney necrosis disease (ISKND) is a major viral disease in both freshwater and marine fish species. In this study, we report the isolation of ISKNV from diseased giant gourami, Osphronemus goramy, in India. Transmission electron microscopy of ultrathin sections of kidney and spleen revealed the presence of numerous polygonal naked viral particles having an outer nucleocapsid layer within the cytoplasm of enlarged cells (115-125 nm). Molecular and phylogenetic analyses confirmed the presence of ISKNV and the major capsid protein (MCP) (1,362 bp) gene in the infected fish had a high similarity to the other ISKNV-I isolates. Moreover, ISKNV was propagated in the Astronotus ocellatus fin (AOF) cell line and further confirmed genotypically. A high mortality rate (60%) was observed in gourami fish injected with ISKNV-positive tissue homogenate through challenge studies. Considering the lethal nature of ISKNV, the present study spotlights the implementation of stringent biosecurity practices for the proper control of the disease in the country.


Subject(s)
DNA Virus Infections/veterinary , Fish Diseases/virology , Iridoviridae/isolation & purification , Animals , Aquaculture , Capsid Proteins/genetics , Cell Line , Cichlids , DNA Virus Infections/mortality , Fish Diseases/mortality , Fishes , India , Iridoviridae/genetics , Iridoviridae/ultrastructure , Kidney/virology , Spleen/virology
6.
J Fish Dis ; 44(9): 1411-1422, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34041757

ABSTRACT

Scale drop disease virus (SDDV) is one of the most important pathogens that causes scale drop disease (SDD) in Asian sea bass (Lates calcarifer). The outbreaks of this disease are one of the factors causing substantial losses in Asian sea bass aquaculture. In this study, the uracil-DNA glycosylase (UDG)-supplemented cross-priming amplification (UCPA) combined with a colorimetric detection method using the hydroxynaphthol blue (HNB) and lateral flow dipstick (LFD) for detection of SDDV was developed. The UDG was utilized to prevent carryover contamination, and the CPA reactions can be readily observed by HNB and LFD. The CPA primers and probe were designed to target the major capsid protein (MCP) gene of the SDDV. The optimized UCPA conditions were performed at the temperature of 61°C for 60 min. The UCPA assays demonstrated specificity to SDDV without cross-reaction to other tested viruses including red-spotted grouper nervous necrosis virus (RGNNV), infectious spleen and kidney necrosis virus (ISKNV) and Lates calcarifer herpes virus (LCHV), and other bacterial species commonly found in aquatic animals. The sensitivity of the UCPA-HNB and UCPA-LFD was 100 viral copies/µl and 10 pg of extracted total DNA, which was 10-fold more sensitive than that of conventional PCR. The UCPA-HNB and UCPA-LFD assays could be used to detect the SDDV infection in all 25 confirmed SDDV-infected fish samples. Therefore, the UCPA coupled with HNB and LFD was rapid, simple and effective and might be applied for diagnosis of SDDV infection.


Subject(s)
DNA Virus Infections/veterinary , Fish Diseases/diagnosis , Iridoviridae/isolation & purification , Nucleic Acid Amplification Techniques/methods , Animals , Colorimetry , Cross-Priming , DNA Virus Infections/diagnosis , Fish Diseases/virology , Naphthalenesulfonates , Serologic Tests/methods
7.
J Invertebr Pathol ; 182: 107567, 2021 06.
Article in English | MEDLINE | ID: mdl-33711317

ABSTRACT

Decapod iridescent virus 1 (DIV1) is a new virus discovered in recent years that infects farmed shrimp. DIV1 is highly infectious and causes substantial economic loss to the aquaculture industry of China. To prevent and control the spread and outbreak of DIV1 in a timely manner, it is necessary to establish an efficient method for DIV1 diagnosis. In this study, quantitative real-time polymerase chain reaction (qPCR) and quantitative real-time loop-mediated isothermal amplification (qLAMP) detection methods were established based on the specific sequence of the viral ATPase gene. The results indicated that the minimum detection limits of qPCR and qLAMP were 1.9 × 101 copies/µL and 1.9 × 102 copies/µL, respectively; the designed primer had good specificity for DIV1 and did not react with 13 other viruses, including white spot syndrome virus (WSSV), Enterocytozoon hepatopenaei (EHP), acute hepatopancreatic necrosis disease (AHPND), infectious hypodermal and haematopoietic necrosis virus (IHHNV), etc. A total of 43 clinical samples suspected of DIV1 infection were diagnosed by qPCR and qLAMP. Our qPCR demonstrated results consistent with a qPCR assay published previously, and the diagnostic sensitivity (DSe) and diagnostic specificity (DSp) of qLAMP were 85.71% and 100%, respectively. This result indicates that qPCR and qLAMP have good accuracy in the detection of DIVI in clinical samples. As established in this study, qPCR and qLAMP combined with a comprehensive comparative analysis can provide effective new solutions for the detection of DIV1.


Subject(s)
Iridoviridae/isolation & purification , Penaeidae/virology , Animals , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Real-Time Polymerase Chain Reaction
8.
Transbound Emerg Dis ; 68(2): 964-972, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33448668

ABSTRACT

Infectious spleen and kidney necrosis virus (ISKNV), a member of family iridoviridae, reported for the first time in a wide range of ornamental fish species in India. Significant mortalities during the year 2018-19 were reported from a number of retailers in the region with various clinical signs. The samples of moribund, dead and apparently healthy ornamental fishes were collected from retailers, located in three districts of Karnataka, India. Out of 140 fish samples, 16 samples (11.42%) representing 10 different fish species were found positive to ISKNV by OIE listed primers and same samples were reported to amplify the major capsid protein (MCP) gene of ISKNV. Further, sequence analysis of MCP gene showed that all strains detected in this study were closely related to other documented isolates from different countries with an identity ranging from 98.76% to 100%. Further, they clustered in the clade of ISKNV, during the phylogenetic analysis. The sequence similarity was high (99.94%) to ISKNV strains from Japan, Australia and Malaysia. This is the first report of an ISKNV infection in India. Moreover, out of 10 ISKNV-positive fish species, three species were reported positive to ISKNV for the first time in the world. Further, the in vitro experiment showed the growth of virus in Asian sea bass cell line, which is a natural host of ISKNV. Therefore, considering the lethal nature of megalocytiviruses to infect a vast range of species, proper biosecurity measures need to be taken to control these emerging pathogens.


Subject(s)
DNA Virus Infections/veterinary , Fish Diseases/virology , Iridoviridae , Perciformes , Animals , Capsid Proteins/genetics , DNA Virus Infections/epidemiology , DNA Virus Infections/virology , Fish Diseases/epidemiology , India/epidemiology , Iridoviridae/isolation & purification , Phylogeny
9.
J Fish Dis ; 44(4): 401-413, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33340375

ABSTRACT

Rapid and user-friendly diagnostic tests are necessary for early diagnosis and immediate detection of diseases, particularly for on-site screening of pathogenic microorganisms in aquaculture. In this study, we developed a dual-sample microfluidic chip integrated with a real-time fluorogenic loop-mediated isothermal amplification assay (dual-sample on-chip LAMP) to simultaneously detect 10 pathogenic microorganisms, that is Aeromonas hydrophila, Edwardsiella tarda, Vibrio harveyi, V. alginolyticus, V. anguillarum, V. parahaemolyticus, V. vulnificus, infectious hypodermal and haematopoietic necrosis virus, infectious spleen and kidney necrosis virus, and white spot syndrome virus. This on-chip LAMP provided a nearly automated protocol that can analyse two samples simultaneously, and the tests achieved limits of detection (LOD) ranging from 100 to 10-1  pg/µl for genomic DNA of tested bacteria and 10-4 to 10-5  pg/µl for recombinant plasmid DNA of tested viruses, with run times averaging less than 30 min. The coefficient of variation for the time-to-positive value was less than 10%, reflecting a robust reproducibility. The clinical sensitivity and specificity were 93.52% and 85.53%, respectively, compared to conventional microbiological or clinical methods. The on-chip LAMP assay provides an effective dual-sample and multiple pathogen analysis, and thus would be applicable to on-site detection and routine monitoring of multiple pathogens in aquaculture.


Subject(s)
Aeromonas hydrophila/isolation & purification , Densovirinae/isolation & purification , Edwardsiella tarda/isolation & purification , Iridoviridae/isolation & purification , Microfluidics/methods , Molecular Diagnostic Techniques/veterinary , Nucleic Acid Amplification Techniques/veterinary , Vibrio/isolation & purification , White spot syndrome virus 1/isolation & purification , Animals , Crustacea/microbiology , Crustacea/virology , DNA Virus Infections/diagnosis , DNA Virus Infections/veterinary , DNA Virus Infections/virology , Fish Diseases/diagnosis , Fish Diseases/microbiology , Fish Diseases/virology , Fishes/microbiology , Fishes/virology , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Limit of Detection , Molecular Diagnostic Techniques/methods , Mollusca/microbiology , Mollusca/virology , Nucleic Acid Amplification Techniques/methods , Reproducibility of Results , Sensitivity and Specificity
10.
Transbound Emerg Dis ; 68(3): 1550-1563, 2021 May.
Article in English | MEDLINE | ID: mdl-32920975

ABSTRACT

In late 2018, unusual patterns of very high mortality (>50% production) were reported in intensive tilapia cage culture systems across Lake Volta in Ghana. Samples of fish and fry were collected and analysed from two affected farms between October 2018 and February 2019. Affected fish showed darkening, erratic swimming and abdominal distension with associated ascites. Histopathological observations of tissues taken from moribund fish at different farms revealed lesions indicative of viral infection. These included haematopoietic cell nuclear and cytoplasmic pleomorphism with marginalization of chromatin and fine granulation. Transmission electron microscopy showed cells containing conspicuous virions with typical iridovirus morphology, that is enveloped, with icosahedral and/or polyhedral geometries and with a diameter c.160 nm. PCR confirmation and DNA sequencing identified the virions as infectious spleen and kidney necrosis virus (ISKNV). Samples of fry and older animals were all strongly positive for the presence of the virus by qPCR. All samples tested negative for TiLV and nodavirus by qPCR. All samples collected from farms prior to the mortality event were negative for ISKNV. Follow-up testing of fish and fry sampled from 5 additional sites in July 2019 showed all farms had fish that were PCR-positive for ISKNV, whether there was active disease on the farm or not, demonstrating the disease was endemic to farms all over Lake Volta by that point. The results suggest that ISKNV was the cause of disease on the investigated farms and likely had a primary role in the mortality events. A common observation of coinfections with Streptococcus agalactiae and other tilapia bacterial pathogens further suggests that these may interact to cause severe pathology, particularly in larger fish. Results demonstrate that there are a range of potential threats to the sustainability of tilapia aquaculture that need to be guarded against.


Subject(s)
Cichlids , DNA Virus Infections/veterinary , Fish Diseases/diagnosis , Iridoviridae/isolation & purification , Animals , Aquaculture , DNA Virus Infections/diagnosis , DNA Virus Infections/virology , Fish Diseases/virology , Ghana
11.
Ticks Tick Borne Dis ; 12(1): 101585, 2021 01.
Article in English | MEDLINE | ID: mdl-33113476

ABSTRACT

Trombidiformes and Mesostigmata mites, as well as Ixodida ticks, infest ectothermic tetrapods worldwide, potentially acting as vectors of bacteria, viruses and protozoa. The relationship among ectoparasites, transmitted pathogenic agents (e.g., Borrelia spp., Coxiella spp., Hepatozoon spp., and Rickettsia spp.) and ectothermic hosts has been scarcely investigated. This research focuses on a large collection of Brazilian herpetofauna screened for the presence of arthropod ectoparasites and vector-borne microbial agents. Reptiles (n = 121) and amphibians (n = 49) from various locations were infested by ectoparasites. Following genomic extraction, microbial agents were detected in 81 % of the Acari (i.e. n = 113 mites and n = 26 ticks). None of the mites, ticks and tissues from amphibians yielded positive results for any of the screened agents. Blood was collected from reptiles and processed through blood cytology and molecular analyses (n = 48). Of those, six snakes (12.5 %) showed intraerythrocytic alterations compatible with Hepatozoon spp. gamonts and Iridovirus inclusions. Hepatozoon spp. similar to Hepatozoon ayorgbor and Hepatozoon musa were molecularly identified from seven hosts, two mite and two tick species. Rickettsia spp. (e.g., Rickettsia amblyommatis, Rickettsia bellii-like, Rickettsia sp.) were detected molecularly from four mite species and Amblyomma rotundatum ticks. Phylogenetic analyses confirmed the molecular identification of the above-mentioned microbial agents of mites and ticks related to snakes and lizards. Overall, our findings highlighted that the Brazilian herpetofauna and its ectoparasites harbour potentially pathogenic agents, particularly from the northern and south-eastern regions. The detection of several species of spotted fever group Rickettsia pointed out the potential role of ectothermic hosts and related arthropod ectoparasites in the epidemiological cycle of these bacteria in Brazil.


Subject(s)
Eucoccidiida/isolation & purification , Iridoviridae/isolation & purification , Ixodidae , Mites , Reptiles , Rickettsia/isolation & purification , Animals , Brazil , Disease Reservoirs , Eucoccidiida/classification , Female , Iridoviridae/classification , Ixodidae/growth & development , Ixodidae/microbiology , Ixodidae/parasitology , Ixodidae/virology , Larva/growth & development , Larva/microbiology , Larva/parasitology , Larva/virology , Male , Mites/growth & development , Mites/microbiology , Mites/parasitology , Mites/virology , Nymph/growth & development , Nymph/microbiology , Nymph/parasitology , Nymph/virology , Phylogeny , Reptiles/microbiology , Reptiles/parasitology , Reptiles/virology , Rickettsia/classification
12.
J Fish Dis ; 44(4): 461-467, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33118189

ABSTRACT

Non-destructive sampling methods offer practical advantages to detection and monitoring of viral pathogens in economically important farmed fish and broodstock. Here, we investigated whether blood, mucus and fin can be used as non-lethal sample sources for detection of scale drop disease virus (SDDV) in farmed Asian sea bass, Lates calcarifer. Detection of SDDV was performed in parallel from three non-destructive and seven destructive sample types, collected from both clinically sick fish and subclinical fish obtained from an affected farm. The results showed that SDDV was detectable in all 10 sample types with the percentage ranging from 20% to 100%. Blood was the best non-destructive sample source exhibited by the fact that it yielded 100% SDDV-positive tests from both sick (n = 12, 95% CI: 69.9-99.2) and clinically healthy fish (n = 4, 95% CI: 39.6%-97.4%) and is considered a "sterile" sample. This study also revealed concurrent infection of SDDV and two ectoparasites Lernanthropus sp. and Diplectanum sp., in all affected fish (n = 8, 95% CI: 46.7-99.3) during the disease outbreak. These ectoparasites also tested positive for SDDV by PCR, indicating that they were potential sample sources for PCR-based detection of SDDV and possibly other viruses infecting Asian sea bass.


Subject(s)
Bass , Copepoda/virology , DNA Virus Infections/veterinary , Fish Diseases/epidemiology , Iridoviridae/isolation & purification , Trematoda/virology , Animal Scales/virology , Animals , DNA Virus Infections/epidemiology , DNA Virus Infections/virology , Fish Diseases/virology , Prevalence , Thailand/epidemiology
13.
Viruses ; 12(6)2020 06 24.
Article in English | MEDLINE | ID: mdl-32599850

ABSTRACT

The Megalocytivirus genus includes three genotypes, red sea bream iridovirus (RSIV), infectious spleen and kidney necrosis virus (ISKNV), and turbot reddish body iridovirus (TRBIV), and has caused mass mortalities in various marine and freshwater fish species in East and Southeast Asia. Of the three genotypes, TRBIV-like megalocytivirus is not included in the World Organization for Animal Health (OIE)-reportable virus list because of its geographic restriction and narrow host range. In 2017, 39 cases of suspected iridovirus infection were isolated from fingerlings of giant sea perch (Lates calcarifer) cultured in southern Taiwan during megalocytivirus epizootics. Polymerase chain reaction (PCR) with different specific primer sets was undertaken to identify the causative agent. Our results revealed that 35 out of the 39 giant sea perch iridovirus (GSPIV) isolates were TRBIV-like megalocytiviruses. To further evaluate the genetic variation, the nucleotide sequences of major capsid protein (MCP) gene (1348 bp) from 12 of the 35 TRBIV-like megalocytivirus isolates were compared to those of other known. High nucleotide sequence identity showed that these 12 TRBIV-like GSPIV isolates are the same species. Phylogenetic analysis based on the MCP gene demonstrated that these 12 isolates belong to the clade II of TRBIV megalocytiviruses, and are distinct from RSIV and ISKNV. In conclusion, the GSPIV isolates belonging to TRBIV clade II megalocytiviruses have been introduced into Taiwan and caused a severe impact on the giant sea perch aquaculture industry.


Subject(s)
Capsid Proteins/genetics , DNA Virus Infections/veterinary , Fish Diseases/virology , Iridoviridae/genetics , Iridovirus/genetics , Animals , DNA Virus Infections/virology , Fisheries , Genetic Variation/genetics , Genome, Viral/genetics , Iridoviridae/classification , Iridoviridae/isolation & purification , Iridovirus/classification , Iridovirus/isolation & purification , Perches , Phylogeny , Polymerase Chain Reaction , Taiwan
14.
J Invertebr Pathol ; 173: 107367, 2020 06.
Article in English | MEDLINE | ID: mdl-32251642

ABSTRACT

Decapod iridescent virus 1 (DIV1) was proven to be the aetiological agent of a disease causing mass die-offs of shrimp, prawn and crayfish. The specific purpose of this study was to develop a new sensitive real-time PCR method for the specific detection of DIV1. A pair of primers that amplify a 142 bp fragment and a TaqMan probe were selected for the major capsid protein gene of DIV1. They were shown to be specific for DIV1 and did not react with other common shrimp pathogens or healthy shrimp DNA. The method could detect as virus levels as low as 1.2 copies of DIV1 plasmid DNA.


Subject(s)
Iridoviridae/isolation & purification , Penaeidae/virology , Real-Time Polymerase Chain Reaction/methods , Animals , Real-Time Polymerase Chain Reaction/instrumentation , Sensitivity and Specificity , Viral Load
15.
Arch Virol ; 165(5): 1215-1218, 2020 May.
Article in English | MEDLINE | ID: mdl-32140836

ABSTRACT

A novel lymphocystivirus causing typical signs of lymphocystis virus disease in whitemouth croaker (Micropogonias furnieri) on the coast of Uruguay was detected and described recently. Based on genetic analysis of some partially sequenced core genes, the virus seemed to differ from previously described members of the genus Lymphocystivirus. In this study, using next-generation sequencing, the whole genome of this virus was sequenced and analysed. The complete genome was found to be 211,086 bp in size, containing 148 predicted protein-coding regions, including the 26 core genes that seem to have a homologue in every iridovirus genome sequenced to date. Considering the current species demarcation criteria for the family Iridoviridae (genome organization, G+C content, amino acid sequence similarity, and phylogenetic relatedness of the core genes), the establishment of a novel species ("Lymphocystis disease virus 4") in the genus Lymphocystivirus is suggested.


Subject(s)
DNA Virus Infections/veterinary , Fish Diseases/virology , Genome, Viral , Iridoviridae/classification , Iridoviridae/isolation & purification , Perciformes/virology , Sequence Analysis, DNA , Animals , Base Composition , DNA Virus Infections/virology , High-Throughput Nucleotide Sequencing , Iridoviridae/genetics , Open Reading Frames , Phylogeny , Sequence Homology, Amino Acid , Uruguay
16.
Food Environ Virol ; 12(2): 174-179, 2020 06.
Article in English | MEDLINE | ID: mdl-32086771

ABSTRACT

Lymphocystis disease virus (LCDV), the causative agent of lymphocystis disease (LCD), is a waterborne pathogen that uses the external surfaces, including the gills, as portals to gain access to fish host. However, there are no data on LCDV persistence in the aquatic environment. In this study, the persistence of LCDV in natural (raw), treated (autoclaved and filtered) and synthetic seawater held at 22 and 18 °C has been evaluated. The estimated T99 values for LCDV in seawater ranged from 2.7 to 242 days depending on seawater type and temperature, with the highest value recorded at 22 °C in autoclaved seawater. Microbiota and temperature seem to be the main factors affecting the persistence of LCDV in seawater. The results indicated that LCDV is more stable in treated seawater than most of the fish pathogenic viruses studied so far, supporting the relevance of this medium for the prevalence of LCD in fish farms.


Subject(s)
DNA Virus Infections/veterinary , Fish Diseases/virology , Iridoviridae/isolation & purification , Seawater/virology , Animals , DNA Virus Infections/virology , Iridoviridae/classification , Iridoviridae/genetics , Iridoviridae/physiology , Seawater/chemistry , Temperature
17.
Braz J Microbiol ; 51(2): 531-535, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31797325

ABSTRACT

The aim of this study is to report the occurrence of Lymphocystivirus in Brazilian ornamental fish. From 25 ornamental fish species submitted for molecular diagnosis, only one sample (Pomacanthus imperator) was positive, and its viral nucleotide sequence obtained clustered with sequences of genotype VII. To our knowledge, this is the first report on the genetic characterization of Lymphocystivirus in Brazil.


Subject(s)
DNA Virus Infections/veterinary , Fish Diseases/virology , Fishes/virology , Iridoviridae/genetics , Animals , Brazil , Commerce , Fisheries , Genotype , Iridoviridae/isolation & purification , Phylogeny
18.
Sci Rep ; 9(1): 17135, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31748669

ABSTRACT

Ranaviruses (family Iridoviridae) cause important diseases in cold-blooded vertebrates. In addition, some occurrences indicate that, in this genus, the same virus can infect animals from different taxonomic groups. A strain isolated from a Ranavirus outbreak (2012) in the state of Sao Paulo, Brazil, had its genome sequenced and presented 99.26% and 36.85% identity with samples of Frog virus 3 (FV3) and Singapore grouper iridovirus (SGIV) ranaviruses, respectively. Eight potential recombination events among the analyzed sample and reference FV3 samples were identified, including a recombination with Bohle iridovirus (BIV) sample from Oceania. The analyzed sample presented several rearrangements compared to FV3 reference samples from North America and European continent. We report for the first time the complete genome of Ranavirus FV3 isolated from South America, these results contribute to a greater knowledge related to evolutionary events of potentially lethal infectious agent for cold-blooded animals.


Subject(s)
Genome, Viral/genetics , Rana catesbeiana/virology , Ranavirus/genetics , Animals , Base Sequence , Brazil , DNA Virus Infections/virology , Fish Diseases/virology , Fishes/virology , Iridoviridae/genetics , Iridoviridae/isolation & purification , North America , Phylogeny , Ranavirus/isolation & purification , Ranidae/virology , Reptiles/virology
19.
Transbound Emerg Dis ; 66(6): 2318-2328, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31286667

ABSTRACT

Movements of large volumes and species varieties make the ornamental fish industry a high-risk pathway for the transfer of aquatic pathogens to new geographical regions and naïve hosts, potentially resulting in emergency disease events. Infectious spleen and kidney necrosis virus (genus Megalocytivirus) is considered exotic to Australia despite documented incursions since 2003. There are current import controls requiring freedom from infection for entry to Australia. The objective was to evaluate the effect of tissue pooling strategies for qPCR testing using a SYBR® assay for freedom from ISKNV at 2% expected prevalence with 95% confidence. Tissue homogenates from apparently healthy imported ornamental fish were tested as individuals and in pools of 5 and 10. Analytical sensitivity of the qPCR assay was reduced by two orders of magnitude when the nucleic acid extraction process was accounted for by spiking the plasmid in fish tissues and compared with molecular grade water. Diagnostic sensitivity of the assay was substantially reduced when testing tissues in pools compared with individual testing. For Population 1 (66% positive for ISKNV with moderate viral loads), surveillance sensitivity was only achieved using individual testing. For Population 2 (100% positive ISKNV with high viral loads), surveillance sensitivity was achieved using 260 fish in pools of 10 for a total of 26 tests or 200 fish in pools of 5 for 40 tests. Surveillance sensitivity could be maximized even when there was a reduction in pooled diagnostic sensitivity compared with diagnostic sensitivity for individual fish by increasing the sample size. Pooled sensitivity was influenced by the prevalence and variable virus load among fish with subclinical infections. Pooled testing is highly effective when the prevalence is >10% which should be informed by prior knowledge or pooling can be used for a screening test to rapidly identify populations with high prevalence.


Subject(s)
Fish Diseases/epidemiology , Iridoviridae/isolation & purification , Population Surveillance/methods , Animals , Fish Diseases/diagnosis , Fish Diseases/virology , Phylogeny , Prevalence , Viral Load
20.
Microb Pathog ; 135: 103617, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31283962

ABSTRACT

The bluegill sunfish, Lepomis macrochirus, is an important aquacultural and recreational species in southern China because of its excellent taste, rapid growth rate, and good looks. At present, few pathogens are known to affect the bluegill sunfish. However, an iridovirus-like disease recently caused heavy losses to the bluegill sunfish aquaculture industry in Guangdong, China. We report that a virus, designated BSMIV-SD-20171020, was isolated from diseased bluegill sunfish in China. The isolate was efficiently propagated in a Chinese perch brain (CPB) cell line. The cytopathic effect was observed, the MCP gene PCR amplified, and the virus observed with electron microscopy. Its viral titer in CPB cells reached 104.13 TCID50 mL-1. The mortality rate was 100% when bluegill sunfish were challenged with BSMIV-SD-20171020 at a dose of 103.13 TCID50/fish. A histopathological examination revealed basophilic hypertrophied cells in the intestine, liver, and spleen. A nucleotide sequence alignment and phylogenetic analysis of the major capsid protein revealed that isolate BSMIV-SD-20171020 is the species Infectious spleen and kidney necrosis virus (ISKNV), in the genus Megalocytivirus.


Subject(s)
DNA Virus Infections/veterinary , DNA Virus Infections/virology , Fish Diseases/virology , Iridoviridae/classification , Iridoviridae/isolation & purification , Perciformes/virology , Animals , Aquaculture , Brain , Capsid Proteins/classification , Capsid Proteins/genetics , Cell Line , China , DNA Virus Infections/pathology , Fish Diseases/pathology , Fishes , Iridoviridae/genetics , Iridoviridae/pathogenicity , Kidney/pathology , Kidney/virology , Liver/pathology , Liver/virology , Perches , Phylogeny , Sequence Analysis, DNA/veterinary , Spleen/pathology , Spleen/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...