Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.662
Filter
2.
Scand J Med Sci Sports ; 34(5): e14639, 2024 May.
Article in English | MEDLINE | ID: mdl-38686976

ABSTRACT

BACKGROUND: Associations between muscle architecture and rate of force development (RFD) have been largely studied during fixed-end (isometric) contractions. Fixed-end contractions may, however, limit muscle shape changes and thus alter the relationship between muscle architecture an RFD. AIM: We compared the correlation between muscle architecture and architectural gearing and knee extensor RFD when assessed during dynamic versus fixed-end contractions. METHODS: Twenty-two recreationally active male runners performed dynamic knee extensions at constant acceleration (2000°s-2) and isometric contractions at a fixed knee joint angle (fixed-end contractions). Torque, RFD, vastus lateralis muscle thickness, and fascicle dynamics were compared during 0-75 and 75-150 ms after contraction onset. RESULTS: Resting fascicle angle was moderately and positively correlated with RFD during fixed-end contractions (r = 0.42 and 0.46 from 0-75 and 75-150 ms, respectively; p < 0.05), while more strongly (p < 0.05) correlated with RFD during dynamic contractions (r = 0.69 and 0.73 at 0-75 and 75-150 ms, respectively; p < 0.05). Resting fascicle angle was (very) strongly correlated with architectural gearing (r = 0.51 and 0.73 at 0-75 ms and 0.50 and 0.70 at 75-150 ms; p < 0.05), with gearing in turn also being moderately to strongly correlated with RFD in both contraction conditions (r = 0.38-0.68). CONCLUSION: Resting fascicle angle was positively correlated with RFD, with a stronger relationship observed in dynamic than isometric contraction conditions. The stronger relationships observed during dynamic muscle actions likely result from different restrictions on the acute changes in muscle shape and architectural gearing imposed by isometric versus dynamic muscle contractions.


Subject(s)
Isometric Contraction , Torque , Humans , Male , Isometric Contraction/physiology , Young Adult , Adult , Quadriceps Muscle/physiology , Quadriceps Muscle/anatomy & histology , Quadriceps Muscle/diagnostic imaging , Running/physiology , Knee Joint/physiology , Muscle Strength/physiology , Biomechanical Phenomena
3.
Exp Gerontol ; 190: 112430, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608793

ABSTRACT

PURPOSE: We investigated the effect of an unsupervised, body mass- home-based resistance training program in older adults performed at either a fast or slow contractile speed on changes to muscle-power, -volume, -architecture, and fatigue resistance of the knee extensors. METHODS: Thirty-two male older adults (age 65-88 years) were separated into 1) fast-speed exercise (Fast-group), 2) slow-speed exercise (Slow-group), and 3) no exercise (Control-group) groups. Participants in the exercise groups performed 30-45 repetitions of knee-extension and sit-to-stand exercises 3 times a week for 8 weeks with different exercise speed between the groups. Before and after the intervention period, the following variables were measured: Isotonic power, isometric strength, twitch contractile properties, muscle-activity, -architecture, and -quality, neuromuscular fatigue resistance of the knee extensors, and thigh muscle volume. RESULTS: Peak power was increased in both the Fast-group (+24 %, P < 0.01, d = 0.65) and Slow-group (+12 %, P < 0.05, d = 0.33) but not in the Control-group. Training increased pennation angle of the vastus lateralis in both the Fast-group (+8 %, P < 0.01, d = 0.42) and Slow-group (+8 %, P < 0.01, d = 0.42), while only the Fast-group showed increase in pennation angle of the rectus femoris (+12 %, P < 0.01, d = 0.64) and thigh muscle volume (+16 %, P < 0.01, d = 0.52). There was no time × group interaction effect for the other neuromuscular measures. CONCLUSIONS: Unsupervised, body mass- and home-based resistance training performed at either fast or slow speeds can improve muscle power in older adults, while fast-speed exercise may be preferable over slow-speed owing to the relatively greater improvement of muscle-power, -volume, -architecture, and better time efficiency.


Subject(s)
Muscle Strength , Resistance Training , Humans , Resistance Training/methods , Aged , Male , Muscle Strength/physiology , Aged, 80 and over , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Isometric Contraction/physiology , Knee/physiology , Muscle Contraction/physiology
4.
J Physiol ; 602(10): 2287-2314, 2024 May.
Article in English | MEDLINE | ID: mdl-38619366

ABSTRACT

The physiological mechanisms determining the progressive decline in the maximal muscle torque production capacity during isometric contractions to task failure are known to depend on task demands. Task-specificity of the associated adjustments in motor unit discharge rate (MUDR), however, remains unclear. This study examined MUDR adjustments during different submaximal isometric knee extension tasks to failure. Participants performed a sustained and an intermittent task at 20% and 50% of maximal voluntary torque (MVT), respectively (Experiment 1). High-density surface EMG signals were recorded from vastus lateralis (VL) and medialis (VM) and decomposed into individual MU discharge timings, with the identified MUs tracked from recruitment to task failure. MUDR was quantified and normalised to intervals of 10% of contraction time (CT). MUDR of both muscles exhibited distinct modulation patterns in each task. During the 20% MVT sustained task, MUDR decreased until ∼50% CT, after which it gradually returned to baseline. Conversely, during the 50% MVT intermittent task, MUDR remained stable until ∼40-50% CT, after which it started to continually increase until task failure. To explore the effect of contraction intensity on the observed patterns, VL and VM MUDR was quantified during sustained contractions at 30% and 50% MVT (Experiment 2). During the 30% MVT sustained task, MUDR remained stable until ∼80-90% CT in both muscles, after which it continually increased until task failure. During the 50% MVT sustained task the increase in MUDR occurred earlier, after ∼70-80% CT. Our results suggest that adjustments in MUDR during submaximal isometric contractions to failure are contraction modality- and intensity-dependent. KEY POINTS: During prolonged muscle contractions a constant motor output can be maintained by recruitment of additional motor units and adjustments in their discharge rate. Whilst contraction-induced decrements in neuromuscular function are known to depend on task demands, task-specificity of motor unit discharge behaviour adjustments is still unclear. In this study, we tracked and compared discharge activity of several concurrently active motor units in the vastii muscles during different submaximal isometric knee extension tasks to failure, including intermittent vs. sustained contraction modalities performed in the same intensity domain (Experiment 1), and two sustained contractions performed at different intensities (Experiment 2). During each task, motor units modulated their discharge rate in a distinct, biphasic manner, with the modulation pattern depending on contraction intensity and modality. These results provide insight into motoneuronal adjustments during contraction tasks posing different demands on the neuromuscular system.


Subject(s)
Isometric Contraction , Humans , Isometric Contraction/physiology , Male , Adult , Female , Torque , Young Adult , Muscle, Skeletal/physiology , Motor Neurons/physiology , Electromyography , Quadriceps Muscle/physiology , Recruitment, Neurophysiological/physiology
5.
Scand J Med Sci Sports ; 34(5): e14638, 2024 May.
Article in English | MEDLINE | ID: mdl-38671559

ABSTRACT

This study aimed to examine the temporal dynamics of muscle-tendon adaptation and whether differences between their sensitivity to mechano-metabolic stimuli would lead to non-uniform changes within the triceps surae (TS) muscle-tendon unit (MTU). Twelve young adults completed a 12-week training intervention of unilateral isometric cyclic plantarflexion contractions at 80% of maximal voluntary contraction until failure to induce a high TS activity and hence metabolic stress. Each participant trained one limb at a short (plantarflexed position, 115°: PF) and the other at a long (dorsiflexed position, 85°: DF) MTU length to vary the mechanical load. MTU mechanical, morphological, and material properties were assessed biweekly via simultaneous ultrasonography-dynamometry and magnetic resonance imaging. Our hypothesis that tendon would be more sensitive to the operating magnitude of tendon strain but less to metabolic stress exercise was confirmed as tendon stiffness, Young's modulus, and tendon size were only increased in the DF condition following the intervention. The PF leg demonstrated a continuous increment in maximal AT strain (i.e., higher mechanical demand) over time along with lack of adaptation in its biomechanical properties. The premise that skeletal muscle adapts at a higher rate than tendon and does not require high mechanical load to hypertrophy or increase its force potential during exercise was verified as the adaptive changes in morphological and mechanical properties of the muscle did not differ between DF and PF. Such differences in muscle-tendon sensitivity to mechano-metabolic stimuli may temporarily increase MTU imbalances that could have implications for the risk of tendon overuse injury.


Subject(s)
Adaptation, Physiological , Magnetic Resonance Imaging , Muscle, Skeletal , Tendons , Ultrasonography , Humans , Male , Young Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/diagnostic imaging , Tendons/physiology , Tendons/diagnostic imaging , Adaptation, Physiological/physiology , Biomechanical Phenomena , Adult , Female , Isometric Contraction/physiology , Elastic Modulus/physiology
6.
Exp Gerontol ; 190: 112423, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608790

ABSTRACT

Aging is associated with impaired strength and power during isometric and shortening contractions, however, during lengthening (i.e., eccentric) contractions, strength is maintained. During daily movements, muscles undergo stretch-shortening cycles (SSCs). It is unclear whether the age-related maintenance of eccentric strength offsets age-related impairments in power generation during SSCs owing to the utilization of elastic energy or other cross-bridge based mechanisms. Here we investigated how aging influences SSC performance at the single muscle fibre level and whether performing active lengthening prior to shortening protects against age-related impairments in power generation. Single muscle fibres from the psoas major of young (∼8 months; n = 31 fibres) and old (∼32 months; n = 41 fibres) male F344BN rats were dissected and chemically permeabilized. Fibres were mounted between a force transducer and length controller and maximally activated (pCa 4.5). For SSCs, fibres were lengthened from average sarcomere lengths of 2.5 to 3.0 µm and immediately shortened back to 2.5 µm at both fast and slow (0.15 and 0.60 Lo/s) lengthening and shortening speeds. The magnitude of the SSC effect was calculated by comparing work and power during shortening to an active shortening contraction not preceded by active lengthening. Absolute isometric force was ∼37 % lower in old compared to young rat single muscle fibres, however, when normalized to cross-sectional area (CSA), there was no longer a significant difference in isometric force between age groups, meanwhile there was an ∼50 % reduction in absolute power in old as compared with young. We demonstrated that SSCs significantly increased power production (75-110 %) in both young and old fibres when shortening occurred at a fast speed and provided protection against power-loss with aging. Therefore, in older adults during everyday movements, power is likely 'protected' in part due to the stretch-shortening cycle as compared with isolated shortening contractions.


Subject(s)
Aging , Muscle Fibers, Skeletal , Rats, Inbred F344 , Animals , Male , Aging/physiology , Muscle Fibers, Skeletal/physiology , Rats , Muscle Contraction/physiology , Muscle Strength/physiology , Isometric Contraction/physiology , Sarcomeres/physiology , Rats, Inbred BN , Psoas Muscles/physiology
7.
J Biomech ; 167: 112089, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38608614

ABSTRACT

Skeletal muscles are complex structures with nonlinear constitutive properties. This complexity often requires finite element (FE) modeling to better understand muscle behavior and response to activation, especially the fiber strain distributions that can be difficult to measure in vivo. However, many FE muscle models designed to study fiber strain do not include force-velocity behavior. To investigate force-velocity property impact on strain distributions within skeletal muscle, we modified a muscle constitutive model with active and passive force-length properties to include force-velocity properties. We implemented the new constitutive model as a plugin for the FE software FEBio and applied it to four geometries: 1) a single element, 2) a multiple-element model representing a single fiber, 3) a model of tapering fibers, and 4) a model representing the bicep femoris long head (BFLH) morphology. Maximum fiber velocity and boundary conditions of the finite element models were varied to test their influence on fiber strain distribution. We found that force-velocity properties in the constitutive model behaved as expected for the single element and multi-element conditions. In the tapered fiber models, fiber strain distributions were impacted by changes in maximum fiber velocity; the range of strains increased with maximum fiber velocity, which was most noted in isometric contraction simulations. In the BFLH model, maximum fiber velocity had minimal impact on strain distributions, even in the context of sprinting. Taken together, the combination of muscle model geometry, activation, and displacement parameters play a critical part in determining the magnitude of impact of force-velocity on strain distribution.


Subject(s)
Hamstring Muscles , Muscle Contraction , Muscle Contraction/physiology , Computer Simulation , Muscle, Skeletal/physiology , Isometric Contraction/physiology , Muscle Fibers, Skeletal/physiology , Models, Biological
8.
Medicina (Kaunas) ; 60(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38674180

ABSTRACT

Background and Objectives: Lean body mass loss after bariatric surgery (BS) is remarkable, despite an effective long-term mass reduction and significant declines in comorbidities. A person's functional capacity is adversely affected when their skeletal muscle strength declines by up to 30%. This study aimed to assess the isokinetic trunk muscle strength and fatigue rate in individuals after BS. Materials and Methods: This study included fifty-eight patients, both male and female, ranging in age from 19 to 45. Twenty-seven individuals had BS and twenty-seven healthy people served as the control group. The primary outcomes were the measurement of the concentric and eccentric isokinetic muscle strength of the trunk flexor and extensor muscles. An isokinetic dynamometer (Biodex Rehabilitation and Testing System 3) was used for the assessment of the isokinetic muscle strength. Noraxon EMG was used to determine a secondary outcome, which was the median frequency slop (MF/time) and root mean square slop (RMS/time) of the lumbar erector spinea muscle at 50% of the Maximum Voluntary Isometric Contraction (MVIC). Outcome measures were assessed for both groups. Results: Compared to the control group, the bariatric group showed a lower mean value of both concentric and eccentric isokinetic muscle strength for the flexor and extensor trunk muscles (p < 0.05). In terms of the EMG fatigue rate, the RMS slope increased significantly more than that of the control group, while the MF slope decreased (p > 0.05). Conclusions: The current study found that, in comparison to the healthy subjects, the BS group showed reduced levels of fatigue and isokinetic strength in the trunk muscles. Based on these results, it is recommended that individuals who underwent BS take part in tailored rehabilitation programs to avoid potential musculoskeletal issues in the future.


Subject(s)
Bariatric Surgery , Muscle Fatigue , Muscle Strength , Humans , Male , Female , Adult , Bariatric Surgery/adverse effects , Bariatric Surgery/methods , Muscle Strength/physiology , Middle Aged , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Torso/physiology , Torso/physiopathology , Electromyography/methods , Isometric Contraction/physiology , Young Adult , Muscle Strength Dynamometer
9.
Scand J Med Sci Sports ; 34(4): e14621, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597348

ABSTRACT

Tendon properties impact human locomotion, influencing sports performance, and injury prevention. Hamstrings play a crucial role in sprinting, particularly the biceps femoris long head (BFlh), which is prone to frequent injuries. It remains uncertain if BFlh exhibits distinct mechanical properties compared to other hamstring muscles. This study utilized free-hand three-dimensional ultrasound to assess morphological and mechanical properties of distal hamstrings tendons in 15 men. Scans were taken in prone position, with hip and knee extended, at rest and during 20%, 40%, 60%, and 80% of maximal voluntary isometric contraction of the knee flexors. Tendon length, volume, cross-sectional area (CSA), and anteroposterior (AP) and mediolateral (ML) widths were quantified at three locations. Longitudinal and transverse deformations, stiffness, strain, and stress were estimated. The ST had the greatest tendon strain and the lowest stiffness as well as the highest CSA and AP and ML width strain compared to other tendons. Biceps femoris short head (BFsh) exhibited the least strain, AP and ML deformation. Further, BFlh displayed the highest stiffness and stress, and BFsh had the lowest stress. Additionally, deformation varied by region, with the proximal site showing generally the lowest CSA strain. Distal tendon mechanical properties differed among the hamstring muscles during isometric knee flexions. In contrast to other bi-articular hamstrings, the BFlh high stiffness and stress may result in greater energy absorption by its muscle fascicles, rather than the distal tendon, during late swing in sprinting. This could partly account for the increased incidence of hamstring injuries in this muscle.


Subject(s)
Hamstring Muscles , Muscle, Skeletal , Male , Humans , Muscle, Skeletal/physiology , Tendons/diagnostic imaging , Tendons/physiology , Hamstring Muscles/physiology , Knee/diagnostic imaging , Knee/physiology , Isometric Contraction/physiology , Ultrasonography
10.
PeerJ ; 12: e17156, 2024.
Article in English | MEDLINE | ID: mdl-38584935

ABSTRACT

This cross-sectional study aimed to investigate whether athletes (ATHL) and non-athletes (NON-ATHL) individuals had similar accuracy in matching intended to actual force during ballistic (BAL) and tonic (TON) isometric contractions. In this cross-sectional study, the subjects were divided into ATHL (n = 20; 22.4 ± 2.3 yrs; 73.2 ± 15.7 kg; 1.76 ± 0.08 m) and NON-ATHL (n = 20; 24.6 ± 2.4 yrs; 68.2 ± 15.0 kg; 1.73 ± 0.1 m) groups. The isometric quadriceps strength was measured with a load cell applied to a custom-built chair. For each condition, subjects performed at first three maximal voluntary isometric contractions (MVIC) as reference. Then, subjects had to match three intended force intensities expressed in percentage of the MVIC (i.e., 25%, 50%, and 75%) without any external feedback. Subjects performed three trials for each force intensity. The accuracy (AC) was calculated as the absolute difference in percentage between the intended and the actual force. A Likert scale was administered for each trial to assess the subjective matching between the intended and the actual force. Statistical analysis showed that the ATHL group was more accurate (p < 0.001) than the NON-ATHL group. In contrast, the AC (p < 0.001) was lower when the force intensities increased independently from the group. Moreover, significantly higher AC (p < 0.001) and lower aggregate Likert scores (p < 0.001) were found in BAL than TON conditions. These results suggest that (i) sports practice could enhance muscle recruitment strategies by increasing the AC in the isometric task; (ii) differences between intended and actual force appeared to be intensity-dependent with lower AC at high force intensities; (iii) different control systems act in modulating BAL and TON contractions.


Subject(s)
Isometric Contraction , Sports , Humans , Athletes , Cross-Sectional Studies , Isometric Contraction/physiology , Quadriceps Muscle , Young Adult , Adult
11.
Respir Physiol Neurobiol ; 325: 104264, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38599345

ABSTRACT

Eight pig tracheal strips were stimulated to contract with log increments of methacholine from 10-8 to 10-5 M. For each strip, the concentration-response was repeated four times in a randomized order to measure isometric force, isotonic shortening against a load corresponding to either 5 or 10 % of a reference force, and average force, stiffness, elastance and resistance over one cycle while the strip length was oscillating sinusoidally by 5 % at 0.2 Hz. For each readout, the logEC50 was calculated and compared. Isotonic shortening with a 5 % load had the lowest logEC50 (-7.13), yielding a greater sensitivity than any other contractile readout (p<0.05). It was followed by isotonic shortening with a 10 % load (-6.66), elastance (-6.46), stiffness (-6.46), resistance (-6.38), isometric force (-6.32), and average force (-6.30). Some of these differences were significant. For example, the EC50 with the average force was 44 % greater than with the elastance (p=0.001). The methacholine sensitivity is thus affected by the contractile readout being measured.


Subject(s)
Bronchoconstrictor Agents , Methacholine Chloride , Muscle, Smooth , Trachea , Animals , Muscle, Smooth/physiology , Muscle, Smooth/drug effects , Methacholine Chloride/pharmacology , Swine , Trachea/physiology , Trachea/drug effects , Bronchoconstrictor Agents/pharmacology , Muscle Contraction/physiology , Muscle Contraction/drug effects , Dose-Response Relationship, Drug , Elasticity/physiology , Isometric Contraction/physiology , Isometric Contraction/drug effects
12.
J Strength Cond Res ; 38(5): e219-e225, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38662889

ABSTRACT

ABSTRACT: Ortega, DG, Housh, TJ, Smith, RW, Arnett, JE, Neltner, TJ, Schmidt, RJ, and Johnson, GO. The effects of anchoring a fatiguing forearm flexion task to a high versus low rating of perceived exertion on torque and neuromuscular responses. J Strength Cond Res 38(5): e219-e225, 2024-This study examined the torque and neuromuscular responses following sustained, isometric, forearm flexion tasks anchored to 2 ratings of perceived exertion (RPE). Nine men (mean ± SD: age = 21.0 ± 2.4 years; height = 179.5 ± 5.1 cm; body mass = 79.6 ± 11.4 kg) completed maximal voluntary isometric contractions (MVIC) before and after sustained, isometric, forearm flexion tasks to failure anchored to RPE = 2 and RPE = 8. The amplitude (AMP) and mean power frequency (MPF) of the electromyographic (EMG) signal were recorded from the biceps brachii. Normalized torque was divided by normalized EMG AMP to calculate neuromuscular efficiency (NME). A dependent t-test was used to assess the mean difference for time to task failure (TTF). Repeated-measures analysis of variances was used to compare mean differences for MVIC and normalized neuromuscular parameters. There was no significant difference in TTF between RPE = 2 and RPE = 8 (p = 0.713). The MVIC decreased from pretest to posttest at RPE = 2 (p = 0.009) and RPE = 8 (p = 0.003), and posttest MVIC at RPE = 8 was less than that at RPE = 2 (p < 0.001). In addition, NME decreased from pretest to posttest (p = 0.008). There was no change in normalized EMG AMP or EMG MPF (p > 0.05). The current findings indicated that torque responses were intensity specific, but TTF and neuromuscular responses were not. Furthermore, normalized EMG AMP and EMG MPF remained unchanged but NME decreased, likely due to peripheral fatigue and excitation-contraction coupling failure. Thus, this study provides information regarding the neuromuscular responses and mechanisms of fatigue associated with tasks anchored to RPE, which adds to the foundational understanding of the relationship between resistance exercise and the perception of fatigue.


Subject(s)
Electromyography , Forearm , Isometric Contraction , Muscle Fatigue , Muscle, Skeletal , Physical Exertion , Torque , Humans , Male , Young Adult , Forearm/physiology , Isometric Contraction/physiology , Physical Exertion/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Perception/physiology , Adult
13.
PLoS One ; 19(4): e0302632, 2024.
Article in English | MEDLINE | ID: mdl-38683859

ABSTRACT

Large-scale neuromusculoskeletal models have been used for predicting mechanisms underlying neuromuscular functions in humans. Simulations of such models provide several types of signals of practical interest, such as surface electromyographic signals (EMG), which are compared with experimental data for interpretations of neurophysiological phenomena under study. Specifically, realistic characterization of spectral properties of simulated EMG signals is important for achieving powerful inferences, whereas considerations should be taken for myoelectric signals of different muscles. In this study, we characterized spectral properties of surface interference pattern EMG signals and motor unit action potentials (MUAP) acquired from three plantar flexor muscles: Soleus (SO), Medial Gastrocnemius (MG), and Lateral Gastrocnemius (LG); and one dorsiflexor muscle: Tibialis Anterior (TA). Surface EMG signals were acquired from 20 participants using the same convention for electrode placement. Specifically, interference pattern EMG signals were obtained during isometric constant force contractions at 5%, 10% and 20% of maximum voluntary contraction (MVC), whereas surface MUAPs were decomposed from surface EMG signals obtained at low contraction forces. We compared the spectrum median frequency (MDF) estimated from interference pattern EMG signals across muscles and contraction intensities. Additionally, we compared MDF and durations of MUAPs between muscles. Our results showed that MDF of interference pattern EMG signals acquired from TA were higher compared to SO, MG, and LG for all contraction intensities i.e., 5%, 10%, and 20% MVC. Consistently, MUAPs acquired from TA also had higher MDF values and shorter durations compared to the other leg muscles. We provide herein a dataset with the surface MUAPs waveforms and interference pattern EMG signals obtained for this study, which should be useful for implementing and validating the simulation of myoelectrical signals of leg muscles. Importantly, these results indicate that spectral properties of myoelectrical signals should be considered for improving EMG modeling in large-scale neuromusculoskeletal models.


Subject(s)
Electromyography , Leg , Muscle, Skeletal , Humans , Electromyography/methods , Muscle, Skeletal/physiology , Adult , Male , Leg/physiology , Female , Computer Simulation , Young Adult , Action Potentials/physiology , Muscle Contraction/physiology , Isometric Contraction/physiology , Signal Processing, Computer-Assisted
14.
J Sport Rehabil ; 33(4): 267-274, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38560999

ABSTRACT

CONTEXT: The hamstrings are the most commonly injured muscle in sports and are especially injury prone in lengthened positions. Measuring knee muscle strength in such positions could be relevant to establish injury risk. Handheld dynamometry has been shown to be a valid, reliable, and practical tool to measure isometric muscle strength clinically. The aim of this study was to assess the validity and reliability of the assessment of isometric knee muscle strength with a handheld dynamometer (HHD) at various muscle lengths, by modifying the hip and knee angles during testing. DESIGN: Concurrent validity and test-retest reliability. METHODS: Thirty young healthy participants were recruited. Hamstring and quadriceps isometric strength was measured with a HHD and with an isokinetic dynamometer, over 2 testing sessions, in a randomized order. Isometric strength was measured on the right lower limb in 6 different positions, with the hip at either 0° or 80° of flexion and the knee at either 30°, 60°, or 90° of flexion. Pearson and Spearman correlations were used to assess the validity, and intraclass correlation coefficients were calculated to establish the test-retest reliability of the HHD. RESULTS: Good to excellent reliability and moderate to high validity were found in all the tested muscle length positions, except for the hamstrings in a seated position with the knee extended at 30°. CONCLUSIONS: The use of a HHD is supported in the clinical setting to measure knee muscle strength at varying muscle lengths in healthy adults, but not for the hamstrings in a lengthened position (hip flexed and knee extended). These results will have to be confirmed in sport-specific populations.


Subject(s)
Hamstring Muscles , Isometric Contraction , Muscle Strength Dynamometer , Muscle Strength , Quadriceps Muscle , Humans , Reproducibility of Results , Male , Young Adult , Hamstring Muscles/physiology , Quadriceps Muscle/physiology , Female , Muscle Strength/physiology , Isometric Contraction/physiology , Adult
15.
J Exp Biol ; 227(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38584504

ABSTRACT

Force-length relationships derived from isometric activations may not directly apply to muscle force production during dynamic contractions. As such, different muscle starting lengths between isometric and dynamic conditions could be required to achieve maximal force and power. Therefore, this study examined the effects of starting length [±5-10% of length corresponding to maximal twitch force (L0)] on work loop (WL) power output (PO), across a range of cycle frequencies, of the soleus (SOL) and extensor digitorum longus muscle (EDL; N=8-10) isolated from ∼8 week old C57 mice. Furthermore, passive work was examined at a fixed cycle frequency to determine the association of passive work and active net work. Starting length affected maximal WL PO of the SOL and EDL across evaluated cycle frequencies (P<0.030, ηp2>0.494). For the SOL, PO produced at -5% L0 was greater than that at most starting lengths (P<0.015, Cohen's d>0.6), except -10% L0 (P=0.135, d<0.4). However, PO produced at -10% L0 versus L0 did not differ (P=0.138, d=0.35-0.49), indicating -5% L0 is optimal for maximal SOL WL PO. For the EDL, WL PO produced at -10% L0 was lower than that at most starting lengths (P<0.032, d>1.08), except versus -5% L0 (P=0.124, d<0.97). PO produced at other starting lengths did not differ (P>0.163, d<1.04). For the SOL, higher passive work was associated with reduced PO (Spearman's r=0.709, P<0.001), but no relationship was observed between passive work and PO of the EDL (Pearson's r=0.191, r2=0.04, P=0.184). This study suggests that starting length should be optimised for both static and dynamic contractions and confirms that the force-length curve during dynamic contractions is muscle specific.


Subject(s)
Mice, Inbred C57BL , Muscle Contraction , Muscle, Skeletal , Animals , Muscle, Skeletal/physiology , Mice/physiology , Muscle Contraction/physiology , Male , Biomechanical Phenomena , Isometric Contraction/physiology
16.
J Physiol ; 602(8): 1759-1774, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38502567

ABSTRACT

5-HT2 receptors on motoneurones play a critical role in facilitating persistent inward currents (PICs). Although facilitation of PICs can enhance self-sustained firing after periods of excitation, the relationship between 5-HT2 receptor activity and self-sustained firing in human motor units (MUs) has not been resolved. MU activity was assessed from the tibialis anterior of 10 healthy adults (24.9 ± 2.8 years) during two contraction protocols. Both protocols featured steady-state isometric contractions with constant descending drive to the motoneurone pool. However, one protocol also included an additional phase of superimposed descending drive. Adding and then removing descending drive in the middle of steady-state contractions altered MU firing behaviour across the motor pool, where newly recruited units in the superimposed phase were unable to switch off (P = 0.0002), and units recruited prior to additional descending drive reduced their discharge rates (P < 0.0001, difference in estimated marginal means (∆) = 2.24 pulses/s). The 5-HT2 receptor antagonist, cyproheptadine, was then administered to determine whether changes in MU firing were mediated by serotonergic mechanisms. 5-HT2 receptor antagonism caused reductions in MU discharge rate (P < 0.001, ∆ = 1.65 pulses/s), recruitment threshold (P = 0.00112, ∆ = 1.09% maximal voluntary contraction) and self-sustained firing duration (P < 0.0001, ∆ = 1.77s) after the additional descending drive was removed in the middle of the steady-state contraction. These findings indicate that serotonergic neuromodulation plays a key role in facilitating discharge and self-sustained firing of human motoneurones, where adaptive changes in MU recruitment must occur to meet the demands of the contraction. KEY POINTS: Animal and cellular preparations indicate that somato-dendritic 5-HT2 receptors regulate the intrinsic excitability of motoneurones. 5-HT2 receptor antagonism reduces estimates of persistent inward currents in motoneurones, which contribute to self-sustained firing when synaptic inputs are reduced or removed. This human study employed a contraction task that slowly increased (and then removed) the additional descending drive in the middle of a steady-state contraction where marked self-sustained firing occurred when the descending drive was removed. 5-HT2 receptor antagonism caused widespread reductions in motor unit (MU) discharge rates during contractions, which was accompanied by reduced recruitment threshold and attenuation of self-sustained firing duration after the removal of the additional descending drive to motoneurones. These findings support the role that serotonergic neuromodulation is a key facilitator of MU discharge and self-sustained firing of human motoneurones, where adaptative changes in MU recruitment must occur to meet the demands of the contraction.


Subject(s)
Receptors, Serotonin, 5-HT2 , Serotonin , Adult , Humans , Serotonin/pharmacology , Muscle, Skeletal/physiology , Isometric Contraction/physiology , Motor Neurons/physiology , Electromyography/methods , Muscle Contraction/physiology , Recruitment, Neurophysiological/physiology
17.
Exp Physiol ; 109(5): 711-728, 2024 May.
Article in English | MEDLINE | ID: mdl-38500268

ABSTRACT

The abrupt cessation of ovarian hormone release is associated with declines in muscle contractile function, yet the impact of gradual ovarian failure on muscle contractility across peri-, early- and late-stage menopause remains unclear. In this study, a 4-vinylcyclohexene diepoxide (VCD)-induced ovarian failure mouse model was used to examine time course changes in muscle mechanical function. Plantar flexors of female mice (VCD: n = 10; CON: n = 8) were assessed at 40 (early perimenopause), 80 (late perimenopause), 120 (menopause onset) and 176 (late menopause) days post-initial VCD injection. A torque-frequency relationship was established across a range of frequencies (10-200 Hz). Isotonic dynamic contractions were elicited against relative loads (10-80% maximal isometric torque) to determine the torque-velocity-power relationship. Mice then performed a fatigue task using intermittent 100 Hz isometric contractions until torque dropped by 60%. Recovery of twitch, 10 Hz and 100 Hz torque were tracked for 10 min post-task failure. Additionally, intact muscle fibres from the flexor digitorum brevis underwent a fatigue task (50 repetitions at 70 Hz), and 10 and 100 Hz tetanic [Ca2+] were monitored for 10 min afterward. VCD mice exhibited 16% lower twitch torque than controls across all time points. Apart from twitch torque, 10 Hz torque and 10 Hz tetanic [Ca2+], where VCD showed greater values relative to pre-fatigue during recovery, no significant differences were observed between control and VCD mice during recovery. These results indicate that gradual ovarian failure has minimal detriments to in vivo muscle mechanical function, with minor alterations observed primarily for low-frequency stimulation during recovery from fatigue.


Subject(s)
Calcium , Muscle Contraction , Muscle Fatigue , Muscle, Skeletal , Vinyl Compounds , Animals , Female , Mice , Vinyl Compounds/pharmacology , Muscle, Skeletal/physiopathology , Muscle, Skeletal/metabolism , Muscle Fatigue/physiology , Muscle Contraction/physiology , Calcium/metabolism , Torque , Mice, Inbred C57BL , Cyclohexenes/pharmacology , Isometric Contraction/physiology , Primary Ovarian Insufficiency/physiopathology , Primary Ovarian Insufficiency/metabolism
18.
J Strength Cond Res ; 38(4): 671-680, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38513175

ABSTRACT

ABSTRACT: Mongold, SJ, Ricci, AW, Hahn, ME, and Callahan, DM. Skeletal muscle compliance and echogenicity in resistance-trained and nontrained women. J Strength Cond Res 38(4): 671-680, 2024-Noninvasive assessment of muscle mechanical properties in clinical and performance settings tends to rely on manual palpation and emphasizes examination of musculotendinous stiffness. However, measurement standards are highly subjective. The purpose of the study was to compare musculotendinous stiffness in adult women with varying resistance training history while exploring the use of multiple tissue compliance measures. We identified relationships between tissue stiffness and morphology, and tested the hypothesis that combining objective measures of morphology and stiffness would better predict indices of contractile performance. Resistance-trained (RT) women (n = 11) and nontrained (NT) women (n = 10) participated in the study. Muscle echogenicity and morphology were measured using B-mode ultrasonography (US). Vastus lateralis (VL) and patellar tendon (PT) stiffness were measured using digital palpation and US across submaximal isometric contractions. Muscle function was evaluated during maximal voluntary isometric contraction (MVIC) of the knee extensors (KEs). Resistance trained had significantly greater PT stiffness and reduced echogenicity (p < 0.01). Resistance trained also had greater strength per body mass (p < 0.05). Muscle echogenicity was strongly associated with strength and rate of torque development (RTD). Patellar tendon passive stiffness was associated with RTD normalized to MVIC (RTDrel; r = 0.44, p < 0.05). Patellar tendon stiffness was greater in RT young women. No predictive models of muscle function incorporated both stiffness and echogenicity. Because RTDrel is a clinically relevant measure of rehabilitation in athletes and can be predicted by digital palpation, this might represent a practical and objective measure in settings where RTD may not be easy to measure directly.


Subject(s)
Knee Joint , Muscle, Skeletal , Adult , Humans , Female , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Knee Joint/physiology , Muscle Contraction/physiology , Quadriceps Muscle/physiology , Isometric Contraction/physiology , Ultrasonography , Muscle Strength/physiology , Torque
19.
J Musculoskelet Neuronal Interact ; 24(1): 38-46, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427367

ABSTRACT

BFR) applied during sprint interval training (SIT) on performance and neuromuscular function. METHODS: Fifteen men completed a randomized bout of SIT with CBFR, IBFR, and without BFR (No-BFR), consisting of 2, 30-s maximal sprints on a cycle ergometer with a resistance of 7.5% of body mass. Concentric peak torque (CPT), maximal voluntary isometric contraction (MVIC) torque, and muscle thickness (MT) were measured before and after SIT, including surface electromyography (sEMG) recorded during the strength assessments. Peak and mean revolutions per minute (RPM) were measured during SIT and power output was examined relative to physical working capacity at the fatigue threshold (PWCFT). RESULTS: CPT and MVIC torque decreased from pre-SIT (220.3±47.6 Nm and 355.1±72.5 Nm, respectively) to post-SIT (147.9±27.7 Nm and 252.2±45.5 Nm, respectively, all P<0.05), while MT increased (1.77±0.31 cm to 1.96±0.30 cm). sEMG mean power frequency decreased during CPT (-12.8±10.5%) and MVIC (-8.7±10.2%) muscle actions. %PWCFT was greater during No-BFR (414.2±121.9%) than CBFR (375.9±121.9%). CONCLUSION: SIT with or without BFR induced comparable alterations in neuromuscular fatigue and sprint performance across all conditions, without affecting neuromuscular function.


Subject(s)
High-Intensity Interval Training , Muscle, Skeletal , Humans , Male , Electromyography , Isometric Contraction/physiology , Muscle Fatigue , Muscle, Skeletal/physiology , Regional Blood Flow/physiology , Torque
20.
J Appl Physiol (1985) ; 136(5): 1053-1064, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38482573

ABSTRACT

The physiological effects on blood flow and oxygen utilization in active muscles during and after involuntary contraction triggered by electrical muscle stimulation (EMS) remain unclear, particularly compared with those elicited by voluntary (VOL) contractions. Therefore, we used diffuse correlation and near-infrared spectroscopy (DCS-NIRS) to compare changes in local muscle blood flow and oxygen consumption during and after these two types of muscle contractions in humans. Overall, 24 healthy young adults participated in the study, and data were successfully obtained from 17 of them. Intermittent (2-s contraction, 2-s relaxation) isometric ankle dorsiflexion with a target tension of 20% of maximal VOL contraction was performed by EMS or VOL for 2 min, followed by a 6-min recovery period. DCS-NIRS probes were placed on the tibialis anterior muscle, and relative changes in local tissue blood flow index (rBFI), oxygen extraction fraction (rOEF), and metabolic rate of oxygen (rMRO2) were continuously derived. EMS induced more significant increases in rOEF and rMRO2 than VOL exercise but a comparable increase in rBFI. After EMS, rBFI and rMRO2 decreased more slowly than after VOL and remained significantly higher until the end of the recovery period. We concluded that EMS augments oxygen consumption in contracting muscles by enhancing oxygen extraction while increasing oxygen delivery at a rate similar to the VOL exercise. Under the conditions examined in this study, EMS demonstrated a more pronounced and/or prolonged enhancement in local muscle perfusion and aerobic metabolism compared with VOL exercise in healthy participants.NEW & NOTEWORTHY This is the first study to visualize continuous changes in blood flow and oxygen utilization within contracted muscles during and after electrical muscle stimulation (EMS) using combined diffuse correlation and near-infrared spectroscopy. We found that initiating EMS increases blood flow at a rate comparable to that during voluntary (VOL) exercise but enhances oxygen extraction, resulting in higher oxygen consumption. Furthermore, EMS increased postexercise muscle perfusion and oxygen consumption compared with that after VOL exercise.


Subject(s)
Electric Stimulation , Exercise , Muscle, Skeletal , Oxygen Consumption , Regional Blood Flow , Spectroscopy, Near-Infrared , Humans , Oxygen Consumption/physiology , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/blood supply , Muscle, Skeletal/physiology , Young Adult , Exercise/physiology , Electric Stimulation/methods , Regional Blood Flow/physiology , Female , Adult , Spectroscopy, Near-Infrared/methods , Oxygen/metabolism , Muscle Contraction/physiology , Isometric Contraction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...