Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.110
Filter
1.
BMJ Open Respir Res ; 11(1)2024 May 02.
Article in English | MEDLINE | ID: mdl-38697676

ABSTRACT

BACKGROUND: Multidrug-resistant tuberculosis is a type of tuberculosis that is resistant to at least the first-line antituberculosis drugs namely, rifampicin and isoniazid. However, most of these studies were limited only to a single hospital. Therefore, this study aimed to identify the determinants of multidrug-resistant tuberculosis among adults undergoing treatment for tuberculosis in the Tigray region of Ethiopia. METHODS: Hospital-based unmatched case-control study was conducted from 1 April 2019 to 30 June 2019. A simple random sampling method was used to select the required sample size. Variables at a p value less than 0.25 in bivariate analysis were entered into a multivariable analysis to identify the determinant factors of multidrug-resistant tuberculosis. Finally, the level of significance was declared at p<0.05. RESULTS: Rural residence (adjusted OR (AOR) 2.54; 95% CI 1.34 to 4.83), HIV (AOR 4.5; 95% CI 1.4 to 14.2), relapse (AOR 3.86; 95% CI 1.98 to 7.5), return after lost follow-up (AOR 6.29; 95% CI 1.64 to 24.2), treatment failure (AOR 5.87; 95% CI 1.39 to 24.8) were among the determinants of multidrug-resistant tuberculosis. CONCLUSION: Rural residence, HIV, relapses, return after lost follow-up and treatment failure were the identified determinant factors of multidrug-resistance tuberculosis.


Subject(s)
Antitubercular Agents , HIV Infections , Tuberculosis, Multidrug-Resistant , Humans , Ethiopia/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Adult , Case-Control Studies , Female , Male , Antitubercular Agents/therapeutic use , Middle Aged , Young Adult , HIV Infections/drug therapy , HIV Infections/epidemiology , HIV Infections/complications , Risk Factors , Rural Population/statistics & numerical data , Adolescent , Treatment Failure , Recurrence , Lost to Follow-Up , Rifampin/therapeutic use , Isoniazid/therapeutic use
2.
Trials ; 25(1): 294, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693583

ABSTRACT

BACKGROUND: Despite several incremental improvements in the management of tuberculous meningitis (TBM), the mortality rates remain high. In spite of national and international guidelines, variation in the choice, dose, and duration of drugs exist between countries and clinicians. We propose to evaluate a shorter and more effective regimen containing agents with augmented intracerebral drug exposure and anti-inflammatory approaches to improve disability-free survival among patients with TBM. Our strategy incorporates the various developments in the field of TBM over the last two decades and only few trials have evaluated a composite of these strategies in the overall outcomes of TBM. METHODS: An open label, parallel arms, randomized controlled superiority trial will be conducted among 372 participants across 6 sites in India. Eligible participants will be randomly allocated in 1:1:1 ratio into one of the three arms. The intervention arm consists of 2 months of high-dose rifampicin (25 mg/kg), moxifloxacin (400 mg), pyrazinamide, isoniazid, aspirin (150 mg), and steroids followed by rifampicin, isoniazid, and pyrazinamide for 4 months. The second intervention arm includes all the drugs as per the first arm except aspirin and the patients in the control arm will receive treatment according to the National TB Elimination Program guidelines. All participants will be followed up for 1 year after the treatment.  DISCUSSION: Current WHO regimens have agents with poor central nervous system drug exposure and is too long. It does not reflect the accumulating evidence in the field. We propose a comprehensive clinical trial incorporating the emerging evidence accrued over the last two decades to shorten the duration and improve the treatment outcomes. This multi-centric trial may generate crucial evidence with policy and practice implications in the treatment of TBM. TRIAL REGISTRATION: Clinical Trial Registry India CTRI/2023/05/053314. Registered on 31 May 2023 ( https://ctri.nic.in/Clinicaltrials/pmaindet2.php?EncHid=ODYzMzg=&Enc=&userName=CTRI/2023/05/053314 ). CLINICALTRIALS: gov NCT05917340. Registered on 6 August 2023 ( https://classic. CLINICALTRIALS: gov/ct2/show/NCT05917340 ). PROTOCOL VERSION: Version 1.3 dated 12 July 2023.


Subject(s)
Antitubercular Agents , Multicenter Studies as Topic , Tuberculosis, Meningeal , Humans , Tuberculosis, Meningeal/drug therapy , Antitubercular Agents/administration & dosage , Antitubercular Agents/adverse effects , Antitubercular Agents/therapeutic use , India , Isoniazid/administration & dosage , Isoniazid/therapeutic use , Drug Therapy, Combination , Adult , Rifampin/administration & dosage , Rifampin/therapeutic use , Equivalence Trials as Topic , Treatment Outcome , Drug Administration Schedule , Randomized Controlled Trials as Topic , Time Factors , Pyrazinamide/administration & dosage , Pyrazinamide/therapeutic use , Aspirin/administration & dosage , Aspirin/therapeutic use
3.
PLoS One ; 19(5): e0301210, 2024.
Article in English | MEDLINE | ID: mdl-38709710

ABSTRACT

BACKGROUND: Multidrug-resistant tuberculosis (MDR-TB), characterized by isoniazid and rifampicin resistance, is caused by chromosomal mutations that restrict treatment options and complicate tuberculosis management. This study sought to investigate the prevalence of pre-extensively drug-resistant (pre-XDR) and extensively drug-resistant (XDR) tuberculosis, as well as mutation pattern, in Nepalese patients with MDR/rifampicin-resistant (RR)-TB strains. METHODS: A cross-sectional study was conducted on MDR/RR-TB patients at the German Nepal Tuberculosis Project from June 2017 to June 2018. The MTBDRsl line probe assay identified pre-XDR-TB and XDR-TB. Pre-XDR-TB included MDR/RR-TB with resistance to any fluoroquinolone (FLQ), while XDR-TB included MDR/RR-TB with resistance to any FLQ and at least one additional group A drug. Mutation status was determined by comparing bands on reaction zones [gyrA and gyrB for FLQ resistance, rrs for SILD resistance, and eis for low-level kanamycin resistance, according to the GenoType MTBDRsl VER 2.0, Hain Lifescience GmbH, Nehren, Germany definition of pre-XDR and XDR] to the evaluation sheet. SPSS version 17.0 was used for data analysis. RESULTS: Out of a total of 171 patients with MDR/RR-TB, 160 had (93.57%) had MTBC, of whom 57 (35.63%) had pre-XDR-TB and 10 (6.25%) had XDR-TB. Among the pre-XDR-TB strains, 56 (98.25%) were FLQ resistant, while 1 (1.75%) was SLID resistant. The most frequent mutations were found at codons MUT3C (57.14%, 32/56) and MUT1 (23.21%, 13/56) of the gyrA gene. One patient had SLID resistant genotype at the MUT1 codon of the rrs gene (100%, 1/1). XDR-TB mutation bands were mostly detected on MUT1 (30%, 3/10) of the gyrA and rrs, MUT3C (30%, 3/10) of the gyrA, and MUT1 (30%, 3/10) of the rrs. CONCLUSIONS: Pre-XDR-TB had a significantly higher likelihood than XDR-TB, with different specific mutation bands present in gyrA and rrs genes.


Subject(s)
Antitubercular Agents , Extensively Drug-Resistant Tuberculosis , Mutation , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Nepal/epidemiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Male , Female , Adult , Cross-Sectional Studies , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Middle Aged , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Microbial Sensitivity Tests , Rifampin/therapeutic use , Rifampin/pharmacology , Isoniazid/therapeutic use , Isoniazid/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Young Adult , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Adolescent , Aged
4.
Front Public Health ; 12: 1356826, 2024.
Article in English | MEDLINE | ID: mdl-38566794

ABSTRACT

Purpose: This study examined the patterns and frequency of genetic changes responsible for resistance to first-line (rifampicin and isoniazid), fluoroquinolones, and second-line injectable drugs in drug-resistant Mycobacterium tuberculosis (MTB) isolated from culture-positive pulmonary tuberculosis (PTB) symptomatic attendees of spiritual holy water sites (HWSs) in the Amhara region. Patients and methods: From June 2019 to March 2020, a cross-sectional study was carried out. A total of 122 culture-positive MTB isolates from PTB-suspected attendees of HWSs in the Amhara region were evaluated for their drug resistance profiles, and characterized gene mutations conferring resistance to rifampicin (RIF), isoniazid (INH), fluoroquinolones (FLQs), and second-line injectable drugs (SLIDs) using GenoType®MTBDRplus VER2.0 and GenoType®MTBDRsl VER2.0. Drug-resistant MTB isolates were Spoligotyped following the manufacturer's protocol. Results: Genetic changes (mutations) responsible for resistance to RIF, INH, and FLQs were identified in 15/122 (12.3%), 20/122 (16.4%), and 5/20 (25%) of MTB isolates, respectively. In RIF-resistant, rpoB/Ser531Lue (n = 12, 80%) was most frequent followed by His526Tyr (6.7%). Amongst INH-resistant isolates, katG/Ser315Thr1 (n = 19, 95%) was the most frequent. Of 15 MDR-TB, the majority (n = 12, 80%) isolates had mutations at both rpoB/Ser531Leu and katG/Ser315Thr1. All 20 INH and/or RIF-resistant isolates were tested with the MTBDRsl VER 2.0, yielding 5 FLQs-resistant isolates with gene mutations at rpoB/Ser531Lue, katG/Ser315Thr1, and gyrA/Asp94Ala genes. Of 20 Spoligotyped drug-resistant MTB isolates, the majority (n = 11, 55%) and 6 (30%) were SIT149/T3-ETH and SIT21/CAS1-Kili sublineages, respectively; and they were any INH-resistant (mono-hetero/multi-). Of 15 RIF-resistant (RR/MDR-TB) isolates, 7 were SIT149/T3-ETH, while 6 were SIT21/CAS1-Kili sublineages. FLQ resistance was detected in four SIT21/CAS1-Kili lineages. Conclusion: In the current study, the most common gene mutations responsible for resistance to INH, RIF, and FLQs were identified. SIT149/T3-ETH and SIT21/CAS1-Kili constitute the majority of drug-resistant TB (DR-TB) isolates. To further understand the complete spectrum of genetic changes/mutations and related genotypes, a sequencing technology is warranted.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Isoniazid/pharmacology , Rifampin/pharmacology , Ethiopia , Cross-Sectional Studies , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/microbiology , Mutation , Genotype , Fluoroquinolones
5.
J Mater Chem B ; 12(18): 4502-4508, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38646996

ABSTRACT

Development of metal-free nanozymes has raised concern for their extensive applications in photocatalysis and sensing fields. As novel metal-free nanomaterials, covalent organic frameworks (COFs) have engendered intense interest in the construction of nanozymes due to their structural controllability and molecular functionality. The formation of the molecular arrangement by embedding orderly donor-acceptors (D-A) linked in the framework topology to modulate material properties for highly efficient enzyme mimicking activity is of importance but challenging. Here, a strong D-A type of COF was designed and synthesized by integrating electron donor units (pyrene) and electron acceptor units (phenanthroline), named Py-PD COF. Using experiments and theoretical calculations, the introduction of a phenanthroline ring endowed the Py-PD COF with a narrowed band gap, and efficient charge transfer and separation. Further, the Py-PD COF exhibited a superior light-responsive oxidase-mimicking characteristic under visible light irradiation, which could catalyze the oxidation of 3,3',5,5-tetramethylbenzidine (TMB) and give the corresponding evolution of color. The nanoenzymatic activity of the Py-PD COF was light-regulated, which offers a fascinating advantage because of its high efficiency and spatial controllability. Based on previously mentioned characteristics, an "on-off" sensing platform for the colorimetric analysis of isoniazid (INH) could be constructed with a good linear relationship (2-100 µM) and a low limit of detection (1.26 µM). This research shows that not only is Py-PD COF an environmentally friendly compound for the colorimetric detection of INH, but it is also capable of providing the interesting D-A type COF-based material for designing an excellent nanozyme.


Subject(s)
Colorimetry , Isoniazid , Metal-Organic Frameworks , Phenanthrolines , Colorimetry/methods , Metal-Organic Frameworks/chemistry , Phenanthrolines/chemistry , Isoniazid/chemistry , Isoniazid/analysis , Photochemical Processes , Light , Nanostructures/chemistry , Particle Size , Catalysis , Molecular Structure
7.
Int J Pharm ; 656: 124114, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38615804

ABSTRACT

Personalized medicine aims to effectively and efficiently provide customized drugs that cater to diverse populations, which is a significant yet challenging task. Recently, the integration of artificial intelligence (AI) and three-dimensional (3D) printing technology has transformed the medical field, and was expected to facilitate the efficient design and development of customized drugs through the synergy of their respective advantages. In this study, we present an innovative method that combines AI and 3D printing technology to design and fabricate customized capsules. Initially, we discretized and encoded the geometry of the capsule, simulated the dissolution process of the capsule with classical drug dissolution model, and verified it by experiments. Subsequently, we employed a genetic algorithm to explore the capsule geometric structure space and generate a complex multi-layer structure that satisfies the target drug release profiles, including stepwise release and zero-order release. Finally, Two model drugs, isoniazid and acetaminophen, were selected and fused deposition modeling (FDM) 3D printing technology was utilized to precisely print the AI-designed capsule. The reliability of the method was verified by comparing the in vitro release curve of the printed capsules with the target curve, and the f2 value was more than 50. Notably, accurate and autonomous design of the drug release curve was achieved mainly by changing the geometry of the capsule. This approach is expected to be applied to different drug needs and facilitate the development of customized oral dosage forms.


Subject(s)
Artificial Intelligence , Capsules , Delayed-Action Preparations , Drug Liberation , Precision Medicine , Printing, Three-Dimensional , Precision Medicine/methods , Delayed-Action Preparations/chemistry , Acetaminophen/chemistry , Acetaminophen/administration & dosage , Isoniazid/chemistry , Isoniazid/administration & dosage , Technology, Pharmaceutical/methods , Drug Compounding/methods , Algorithms
8.
Pharmacol Res Perspect ; 12(3): e1179, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38666760

ABSTRACT

In Peru, 29 292 people were diagnosed with tuberculosis in 2022. Although tuberculosis treatments are effective, 3.4%-13% are associated with significant adverse drug reactions, with drug-induced liver injury (DILI) considered the most predominant. Among the first-line antituberculosis drugs, isoniazid is the main drug responsible for the appearance of DILI. In liver, isoniazid (INH) is metabolized by N-acetyltransferase-2 (NAT2) and cytochrome P450 2E1 (CYP2E1). Limited information exists on genetic risk factors associated with the presence of DILI to antituberculosis drugs in Latin America, and even less is known about these factors in the native and mestizo Peruvian population. The aim of this study was to determine the prevalence of NAT2 and CYP2E1 genotypes in native and mestizo population. An analytical cross-sectional analysis was performed using genetic data from mestizo population in Lima and native participants from south of Peru. NAT2 metabolizer was determined as fast, intermediate and slow, and CYP2E1 genotypes were classified as c1/c1, c1/c2 and c2/c2, from molecular tests and bioinformatic analyses. Of the 472 participants, 36 and 6 NAT2 haplotypes were identified in the mestizo and native population, respectively. In mestizo population, the most frequent NAT2*5B and NAT2*7B haplotypes were associated with DILI risk; while in natives, NAT2*5G and NAT2*13A haplotypes were associated with decreased risk of DILI. For CYP2E1, c1/c1 and c1/c2 genotypes are the most frequent in natives and mestizos, respectively. The linkage disequilibrium of NAT2 single nucleotide polymorphisms (SNPs) was estimated, detecting a block between all SNPs natives. In addition, a block between rs1801280 and rs1799929 for NAT2 was detected in mestizos. Despite the limitations of a secondary study, it was possible to report associations between NAT2 and CYP2E alleles with Peruvian native and mestizo by prevalence ratios. The results of this study will help the development of new therapeutic strategies for a Tuberculosis efficient control between populations.


Subject(s)
Antitubercular Agents , Arylamine N-Acetyltransferase , Chemical and Drug Induced Liver Injury , Cytochrome P-450 CYP2E1 , Isoniazid , Tuberculosis , Humans , Peru , Arylamine N-Acetyltransferase/genetics , Antitubercular Agents/therapeutic use , Antitubercular Agents/adverse effects , Female , Male , Adult , Middle Aged , Tuberculosis/genetics , Tuberculosis/drug therapy , Isoniazid/adverse effects , Isoniazid/therapeutic use , Cytochrome P-450 CYP2E1/genetics , Cross-Sectional Studies , Chemical and Drug Induced Liver Injury/genetics , Young Adult , Genotype , Indians, South American/genetics , Biomarkers , Adolescent , Aged , Pharmacogenetics
9.
AAPS J ; 26(3): 54, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658473

ABSTRACT

This work shows the utilization of a physiologically based biopharmaceutics model (PBBM) to mechanistically explain the impact of diverse food types on the pharmacokinetics (PK) of isoniazid (INH) and acetyl-isoniazid (Ac-INH). The model was established and validated using published PK profiles for INH along with a combination of measured and predicted values for the physico-chemical and biopharmaceutical propertied of INH and Ac-INH. A dedicated ontogeny model was developed for N-acetyltransferase 2 (NAT2) in human integrating Michaelis Menten parameters for this enzyme in the physiologically based pharmacokinetic (PBPK) model tissues and in the gut, to explain the pre-systemic and systemic metabolism of INH across different acetylator types. Additionally, a novel equation was proposed to calculate the luminal drug degradation related to the presence of reducing sugars, using individual sugar molar concentrations in the meal. By incorporating luminal degradation into the model, adjusting bile salt concentrations and gastric emptying according to food type and quantity, the PBBM was able to accurately predict the negative effect of carbohydrate-rich diets on the PK of INH.


Subject(s)
Antitubercular Agents , Food-Drug Interactions , Isoniazid , Models, Biological , Isoniazid/pharmacokinetics , Isoniazid/administration & dosage , Humans , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/administration & dosage , Arylamine N-Acetyltransferase/metabolism , Biopharmaceutics/methods
10.
Bull Math Biol ; 86(6): 61, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662288

ABSTRACT

In this paper, we presented a mathematical model for tuberculosis with treatment for latent tuberculosis cases and incorporated social implementations based on the impact they will have on tuberculosis incidence, cure, and recovery. We incorporated two variables containing the accumulated deaths and active cases into the model in order to study the incidence and mortality rate per year with the data reported by the model. Our objective is to study the impact of social program implementations and therapies on latent tuberculosis in particular the use of once-weekly isoniazid-rifapentine for 12 weeks (3HP). The computational experimentation was performed with data from Brazil and for model calibration, we used the Markov Chain Monte Carlo method (MCMC) with a Bayesian approach. We studied the effect of increasing the coverage of social programs, the Bolsa Familia Programme (BFP) and the Family Health Strategy (FHS) and the implementation of the 3HP as a substitution therapy for two rates of diagnosis and treatment of latent at 1% and 5%. Based of the data obtained by the model in the period 2023-2035, the FHS reported better results than BFP in the case of social implementations and 3HP with a higher rate of diagnosis and treatment of latent in the reduction of incidence and mortality rate and in cases and deaths avoided. With the objective of linking the social and biomedical implementations, we constructed two different scenarios with the rate of diagnosis and treatment. We verified with results reported by the model that with the social implementations studied and the 3HP with the highest rate of diagnosis and treatment of latent, the best results were obtained in comparison with the other independent and joint implementations. A reduction of the incidence by 36.54% with respect to the model with the current strategies and coverage was achieved, and a greater number of cases and deaths from tuberculosis was avoided.


Subject(s)
Antitubercular Agents , Bayes Theorem , Isoniazid , Latent Tuberculosis , Markov Chains , Mathematical Concepts , Monte Carlo Method , Rifampin , Humans , Brazil/epidemiology , Incidence , Isoniazid/administration & dosage , Antitubercular Agents/administration & dosage , Rifampin/administration & dosage , Rifampin/analogs & derivatives , Rifampin/therapeutic use , Latent Tuberculosis/epidemiology , Latent Tuberculosis/drug therapy , Latent Tuberculosis/mortality , Models, Biological , Tuberculosis/mortality , Tuberculosis/epidemiology , Tuberculosis/drug therapy , Computer Simulation
11.
PLoS One ; 19(4): e0296993, 2024.
Article in English | MEDLINE | ID: mdl-38625930

ABSTRACT

BACKGROUND: Tuberculosis (TB) preventive treatment (TPT) is recommended by the World Health Organization (WHO) for persons living with HIV, including pregnant and breastfeeding women. Given the President's Emergency Plan for AIDS Relief (PEPFAR)'s investment in TPT services for persons living with HIV as a strategy to prevent TB as well as uncertainty in guidelines and policy regarding use of TPT during pregnancy and the postpartum period, we conducted a review of current relevant national guidelines among PEPFAR-supported countries. METHODS: Our review included 44/49 PEPFAR-supported countries to determine if TB screening and TPT are recommended specifically for pregnant and breastfeeding women living with HIV (WLHIV). National guidelines reviewed and abstracted included TB, HIV, prevention of vertical HIV transmission, TPT, and any other relevant guidelines. We abstracted information regarding TB screening, including screening tools and frequency; and TPT, including timing, regimen, frequency, and laboratory monitoring. RESULTS: Of 44 PEPFAR-supported countries for which guidelines were reviewed, 66% were high TB incidence countries; 41% were classified by WHO as high TB burden countries, and 43% as high HIV-associated TB burden countries. We found that 64% (n = 28) of countries included TB screening recommendations for pregnant WLHIV in their national guidelines, and most (n = 35, 80%) countries recommend TPT for pregnant WLHIV. Fewer countries included recommendations for breastfeeding as compared to pregnant WLHIV, with only 32% (n = 14) mentioning TB screening and 45% (n = 20) specifically recommending TPT for this population; most of these recommend isoniazid-based TPT regimens for pregnant and breastfeeding WLHIV. However, several countries also recommend isoniazid combined with rifampicin (3RH) or rifapentine (3HP). CONCLUSIONS: Despite progress in the number of PEPFAR-supported countries that specifically include TB screening and TPT recommendations for pregnant and breastfeeding WLHIV in their national guidelines, many PEPFAR-supported countries still do not include specific screening and TPT recommendations for pregnant and breastfeeding WLHIV.


Subject(s)
HIV Infections , Tuberculosis , Pregnancy , Humans , Female , HIV Infections/diagnosis , HIV Infections/drug therapy , HIV Infections/epidemiology , Isoniazid , Breast Feeding , World Health Organization , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/epidemiology
12.
Clin Transl Sci ; 17(4): e13795, 2024 04.
Article in English | MEDLINE | ID: mdl-38629592

ABSTRACT

N-acetyltransferase 2 (NAT2) genetic polymorphisms might alter isoniazid metabolism leading to toxicity. We reviewed the impact of NAT2 genotype status on the pharmacokinetics, efficacy, and safety of isoniazid, a treatment for tuberculosis (TB). A systematic search for research articles published in Scopus, PubMed, and Embase until August 31, 2023, was conducted without filters or limits on the following search terms and Boolean operators: "isoniazid" AND "NAT2." Studies were selected if NAT2 phenotypes with pharmacokinetics or efficacy or safety of isoniazid in patients with TB were reported. Patient characteristics, NAT2 status, isoniazid pharmacokinetic parameters, early treatment failure, and the prevalence of drug-induced liver injury were extracted. If the data were given as a median, these values were standardized to the mean. Forty-one pharmacokinetics and 53 safety studies were included, but only one efficacy study was identified. The average maximum concentrations of isoniazid were expressed as supratherapeutic concentrations in adults (7.16 ± 4.85 µg/mL) and children (6.43 ± 3.87 µg/mL) in slow acetylators. The mean prevalence of drug-induced liver injury was 36.23 ± 19.84 in slow acetylators, which was significantly different from the intermediate (19.49 ± 18.20) and rapid (20.47 ± 20.68) acetylators. Subgroup analysis by continent showed that the highest mean drug-induced liver injury prevalence was in Asian slow acetylators (42.83 ± 27.61). The incidence of early treatment failure was decreased by genotype-guided isoniazid dosing in one study. Traditional weight-based dosing of isoniazid in most children and adults yielded therapeutic isoniazid levels (except for slow acetylators). Drug-induced liver injury was more commonly observed in slow acetylators. Genotype-guided dosing may prevent early treatment failure.


Subject(s)
Antitubercular Agents , Arylamine N-Acetyltransferase , Chemical and Drug Induced Liver Injury , Isoniazid , Tuberculosis , Adult , Child , Humans , Antitubercular Agents/adverse effects , Antitubercular Agents/pharmacokinetics , Arylamine N-Acetyltransferase/genetics , Arylamine N-Acetyltransferase/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , Genotype , Isoniazid/adverse effects , Isoniazid/pharmacokinetics , Polymorphism, Genetic , Tuberculosis/drug therapy , Tuberculosis/genetics
13.
J Korean Med Sci ; 39(13): e104, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38599596

ABSTRACT

BACKGROUND: The hollow-fiber infection model (HFIM) is a valuable tool for evaluating pharmacokinetics/pharmacodynamics relationships and determining the optimal antibiotic dose in monotherapy or combination therapy, but the application for personalized precision medicine in tuberculosis treatment remains limited. This study aimed to evaluate the efficacy of adjusted antibiotic doses for a tuberculosis patient using HFIM. METHODS: Model-based Bayesian forecasting was utilized to assess the proposed reduction of the isoniazid dose from 300 mg daily to 150 mg daily in a patient with an ultra-slow-acetylation phenotype. The efficacy of the adjusted 150-mg dose was evaluated in a time-to-kill assay performed using the bacterial isolate Mycobacterium tuberculosis (Mtb) H37Ra in a HFIM that mimicked the individual pharmacokinetic profile of the patient. RESULTS: The isoniazid concentration observed in the HFIM adequately reflected the target drug exposures simulated by the model. After 7 days of repeated dose administration, isoniazid killed 4 log10 Mtb CFU/mL in the treatment arm, while the control arm without isoniazid increased 1.6 log10 CFU/mL. CONCLUSION: Our results provide an example of the utility of the HFIM for predicting the efficacy of specific recommended doses of anti-tuberculosis drugs in real clinical setting.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Isoniazid/pharmacology , Isoniazid/therapeutic use , Bayes Theorem , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis/drug therapy , Tuberculosis/microbiology
14.
Ann Clin Microbiol Antimicrob ; 23(1): 29, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581051

ABSTRACT

BACKGROUND: The prevalence of multidrug-resistant tuberculosis (MDR-TB) among Korean tuberculosis patients is about 4.1%, which is higher than the OECD average of 2.6%. Inadequate drug use and poor patient compliance increase MDR-TB prevalence through selective pressure. Therefore, prompt detection of drug resistance in tuberculosis patients at the time of diagnosis and quantitative monitoring of these resistant strains during treatment are crucial. METHODS: A multiplex droplet digital PCR (ddPCR) assay was developed and assessed using DNA material of nine Mycobacterium tuberculosis strains with known mutation status that were purchased from the Korean National Tuberculosis Association. We collected a total of 18 MDR-TB residual samples referred for PCR analysis. Total DNA was extracted from the samples and subjected to the quadruplex ddPCR assay. Their results were compared to those of known resistance phenotypes. RESULTS: The analytical sensitivity and specificity of the multiplex ddPCR assay for detecting INH, RIF, EMB, FQ, and SM resistance-causing mutations ranged from 71.43 to 100% and 94.12-100%, respectively. Follow-up sample results showed that the quadruplex ddPCR assay was sensitive enough to detect IS6110 and other mutations even after onset of treatment. CONCLUSIONS: We developed a sensitive and accurate multiplex ddPCR assay that can detect the presence of tuberculosis quantitatively and resistance-conveying mutations concurrently. This tool could aid clinicians in the diagnosis and treatment monitoring of tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Isoniazid/therapeutic use , Rifampin/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Polymerase Chain Reaction , Mutation , Sensitivity and Specificity , Microbial Sensitivity Tests , DNA/therapeutic use
15.
Indian J Tuberc ; 71(2): 153-162, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38589119

ABSTRACT

BACKGROUND: Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis is one of the top ten causes of death worldwide. Isoniazid (INH) is an important component of anti-tuberculosis therapy (ATT). Low isoniazid levels can serve as a risk factor for the development of treatment failure, relapse of disease and acquired secondary resistance. Hence, serum level of isoniazid becomes a critical factor in determining the treatment outcome of patients on ATT. This study aimed to evaluate the correlation between serum isoniazid concentration and therapeutic response in patients of pulmonary tuberculosis in Central India. METHODS: This was a prospective single cohort observational study conducted at a tertiary care hospital. Therapeutic response in newly diagnosed patients of pulmonary TB was determined based the microbiological, clinical and radiological parameters. Serum INH levels were estimated based on a spectrophotometric method using nano-spectrophotometer. RESULTS: In this study, patients had a significant improvement in treatment outcome as evident by a significant decrease in the TB score I at end of IP (p = 0.001) and a significant decline in the Timika score at end of CP (p = 0.001). Although all patients converted to sputum negative at end of CP, 20% remained positive at end of IP. Lower INH levels were seen in 13.3% of the study population. Higher INH levels were observed in sputum converters, patients with low TB score I and low Timika score, although no statistically significant difference was noted (p > 0.05). CONCLUSION: In this study, we could not find any statistically significant association between serum INH levels and therapeutic outcome of the patients. Further studies on a larger population could provide better understanding about the prevalence of low serum isoniazid levels among the Indian population and establish its relationship with therapeutic outcome. Also, the usage of a comparatively less expensive spectrophotometric method of analysis makes this feasible in almost every district hospital without the need of high-performance liquid chromatography which is costlier and needs more expertise.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Humans , Isoniazid/therapeutic use , Antitubercular Agents/therapeutic use , Prospective Studies , Tuberculosis, Pulmonary/drug therapy , Tuberculosis/drug therapy , India
16.
Mikrochim Acta ; 191(5): 260, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38607575

ABSTRACT

Isoniazid and streptomycin are vital drugs for treating tuberculosis, which are utilized as efficient anti-tuberculosis agents. This paper presents a novel visible-light-driven composite photocatalyst Ti3C2/Bi/BiOI, which was built from Ti3C2 nanosheets and Bi/BiOI microspheres. Photoelectrochemical (PEC) sensors based on Ti3C2/Bi/BiOI were synthesized for isoniazid identification, which showed a linear concentration range of 0.1-125 µM with a detection limit of 0.05 µM (S/N = 3). Moreover, we designed a PEC aptasensors based on aptamer/Ti3C2/Bi/BiOI to detect streptomycin in 0.1 M PBS covering the electron donor isoniazid, because the isoniazid consumes photogenerated holes thus increasing the photocurrent effectively and preventing photogenerated electron-hole pairs from being recombined. Furthermore, PEC aptasensors based on aptamer/Ti3C2/Bi/BiOI were synthesized for streptomycin identification, which exhibited a linear concentration range of 0.01-1000 nM with a detection limit of 2.3 × 10-3 nM (S/N = 3), and are well stable in streptomycin sensing.


Subject(s)
Isoniazid , Streptomycin , Microspheres , Titanium , Books , Metals , Oligonucleotides
17.
Antimicrob Agents Chemother ; 68(5): e0158323, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38597667

ABSTRACT

Clofazimine is included in drug regimens to treat rifampicin/drug-resistant tuberculosis (DR-TB), but there is little information about its interaction with other drugs in DR-TB regimens. We evaluated the pharmacokinetic interaction between clofazimine and isoniazid, linezolid, levofloxacin, and cycloserine, dosed as terizidone. Newly diagnosed adults with DR-TB at Klerksdorp/Tshepong Hospital, South Africa, were started on the then-standard treatment with clofazimine temporarily excluded for the initial 2 weeks. Pharmacokinetic sampling was done immediately before and 3 weeks after starting clofazimine, and drug concentrations were determined using validated liquid chromatography-tandem mass spectrometry assays. The data were interpreted with population pharmacokinetics in NONMEM v7.5.1 to explore the impact of clofazimine co-administration and other relevant covariates on the pharmacokinetics of isoniazid, linezolid, levofloxacin, and cycloserine. Clofazimine, isoniazid, linezolid, levofloxacin, and cycloserine data were available for 16, 27, 21, 21, and 6 participants, respectively. The median age and weight for the full cohort were 39 years and 52 kg, respectively. Clofazimine exposures were in the expected range, and its addition to the regimen did not significantly affect the pharmacokinetics of the other drugs except levofloxacin, for which it caused a 15% reduction in clearance. A posteriori power size calculations predicted that our sample sizes had 97%, 90%, and 87% power at P < 0.05 to detect a 30% change in clearance of isoniazid, linezolid, and cycloserine, respectively. Although clofazimine increased the area under the curve of levofloxacin by 19%, this is unlikely to be of great clinical significance, and the lack of interaction with other drugs tested is reassuring.


Subject(s)
Antitubercular Agents , Clofazimine , Cycloserine , Drug Interactions , Isoniazid , Levofloxacin , Linezolid , Tuberculosis, Multidrug-Resistant , Clofazimine/pharmacokinetics , Clofazimine/therapeutic use , Humans , Tuberculosis, Multidrug-Resistant/drug therapy , Adult , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/therapeutic use , Male , Female , Linezolid/pharmacokinetics , Linezolid/therapeutic use , Isoniazid/pharmacokinetics , Isoniazid/therapeutic use , Levofloxacin/pharmacokinetics , Levofloxacin/therapeutic use , Cycloserine/pharmacokinetics , Cycloserine/therapeutic use , Middle Aged , South Africa , Young Adult , Drug Therapy, Combination
18.
Phys Chem Chem Phys ; 26(18): 14018-14036, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38683598

ABSTRACT

In this study, the potential of aluminum nitride (h-AlN), boron nitride (h-BN) and silicon carbide (h-SiC) nanosheets as the drug delivery systems (DDS) of isoniazid (INH) was scrutinized through density functional theory (DFT) and molecular dynamic (MD) simulations. We performed DFT periodic calculations on the geometry and electronic features of nanosheets adsorbed with INH by the DFT functional (DZP/GGA-PBE) employed in the SIESTA code. In the energetically favorable model, an oxygen atom of the C-O group of the INH molecule interacts with a Si atom of the h-SiC at 2.077 Å with an interaction energy of -1.361 eV. Charge transfer (CT) calculation by employing the Mulliken, Hirshfeld and Voronoi approaches reveals that the monolayers and drug molecules act as donors and acceptors, respectively. The density of states (DOS) calculations indicate that the HOMO-LUMO energy gap (HLG) of the h-SiC nanosheet declines significantly from 2.543 to 1.492 eV upon the adsorption of the INH molecule, which causes an electrical conductivity increase and then produces an electrical signal. The signal is linked to the existence of INH, demonstrating that h-SiC may be an appropriate sensor for INH sensing. The decrease in HLG for the interaction of INH and h-SiC is the uppermost (up to 41%) representing the uppermost sensitivity, whereas the sensitivity trend is σ(h-SiC) > σ(h-AlN) > σ(h-BN). Quantum theory of atoms in molecules (QTAIM) investigations is employed to scrutinize the nature of the INH/nanosheet interactions. The QTAIM analysis reveals that the interaction of the INH molecule and h-SiC has a partially covalent nature, while INH/h-AlN model electrostatic interaction occurs in the system and noncovalent and electrostatic interaction for the INH/h-BN model. Finally, the state-of-the-art DFT-MD simulations utilized in this study can mimic ambient conditions. The results obtained from the MD simulation show that it takes more time to bond the INH drug and h-SiC, and the INH/h-SiC system becomes stable. The results of the current research demonstrate the potential of h-SiC as a suitable sensor and drug delivery platform for INH drugs to remedy tuberculosis.


Subject(s)
Boron Compounds , Carbon Compounds, Inorganic , Density Functional Theory , Isoniazid , Molecular Dynamics Simulation , Silicon Compounds , Isoniazid/chemistry , Silicon Compounds/chemistry , Carbon Compounds, Inorganic/chemistry , Boron Compounds/chemistry , Drug Delivery Systems , Nanostructures/chemistry , Antitubercular Agents/chemistry , Nitrogen Compounds/chemistry , Drug Carriers/chemistry , Aluminum Compounds
19.
J Mater Chem B ; 12(18): 4389-4397, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38623831

ABSTRACT

A robust and easily manufactured high-strength and long-term release hydrazone-based isoniazid acrylic (HIA) bone cement is reported. The mechanical strength of HIA bone cement is similar to that of normal polymethyl methacrylate (PMMA) bone cement, far surpassing that of traditional isoniazid-containing antibiotic-loaded bone cement (INH bone cement). Isoniazid is connected to the bone cement through bioorthogonal hydrazone chemistry, and it possesses release properties superior to those of INH bone cement, allowing for the sustained release of isoniazid for up to 12 weeks. In vivo and in vitro studies also indicate that HIA cement exhibits better biocompatibility than INH bone cement. The results of this study not only signify progress in the realm of antimicrobial bone cement for addressing bone tuberculosis but also enhance our capacity to create and comprehend high-performing antimicrobial bone cement.


Subject(s)
Bone Cements , Hydrazones , Isoniazid , Isoniazid/chemistry , Isoniazid/pharmacology , Bone Cements/chemistry , Animals , Hydrazones/chemistry , Hydrazones/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/administration & dosage , Mice , Drug Liberation , Polymethyl Methacrylate/chemistry , Materials Testing , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...