Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Language
Publication year range
1.
Food Res Int ; 193: 114812, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39160037

ABSTRACT

Microgreens, also called superfoods, emerge because of their high levels of nutrients, diverse flavour profiles, and sustainable cultivation methods, which make them culinary delights and valuable to a healthy and flavorful diet. The present study investigated Brassicaceae family microgreens, proposing a novel system (quality indices) that allows scoring among them. Fourteen Brassica microgreen species were morphological, phytochemical, and sensorial investigated. The morphological assessment revealed that radish microgreens exhibited the highest leaf area (p < 0.05), while red mizuna demonstrated superior yield. Cauliflower microgreens contained the highest concentrations of ascorbic acid (HPLC-DAD) and total phenolic content (p < 0.05). Phytochemical analysis using HPLC-MS/MS identified over 18 glucosinolates and phenolic compounds. Red mustard and red cabbage showed the highest glucosinolate content (p < 0.05). Watercress exhibited the highest phenolic compound content (p < 0.05), primarily flavonoids, while broccoli and radish contained the highest isothiocyanate levels. Cauliflower microgreens resulted in the most consumer-accepted variety. Appling quality indices scoring system identified radish, cauliflower, and broccoli microgreens as the most promising species. This study underscores the potential of Brassica microgreens as an excellent source of health-promoting phytochemicals with favorable market acceptance, providing valuable insights for both nutritional research and commercial applications.


Subject(s)
Brassicaceae , Glucosinolates , Phenols , Phytochemicals , Taste , Phytochemicals/analysis , Glucosinolates/analysis , Phenols/analysis , Brassicaceae/chemistry , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Humans , Ascorbic Acid/analysis , Flavonoids/analysis , Brassica/chemistry , Plant Leaves/chemistry , Isothiocyanates/analysis , Raphanus/chemistry
2.
Microsc Res Tech ; 85(10): 3382-3390, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35836361

ABSTRACT

The colocalization of taurine and zinc transporters (TAUT, ZnTs) has not been explored in retina. Our objective is to evaluate the effect of the intracellular zinc chelator N,N,N,N-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN) on zinc localization and colocalization TAUT and ZnT-1 (of plasma membrane), 3 (vesicular), and 7 (vesicular and golgi apparatus) in layers of retina by immunohistochemistry. To mark zinc, it was used cell-permeable fluorescent Zinquin ethyl ester. Specific first and secondary antibodies, conjugated with rhodamine or fluorescein-isothiocyanate were used to mark TAUT and ZnTs. The fluorescence results were reported as integrated optical density (IOD). Zinc was detected in all layers of the retina. The treatment with TPEN produced changes in the distribution of zinc in layers of retina less in the outer nuclear layer compared with the control. TAUT was detected in all layers of retina and TPEN chelator produced decrease of IOD in all layers of retina except in the photoreceptor compared with the control. ZnT 1, 3, and 7 were distributed in all retina layers, with more intensity in ganglion cell layer (GCL) and in the layers where there is synaptic connection. For all transporters, the treatment with TPEN produced significant decrease of IOD in layers of retina least in the inner nuclear layer for ZnT1, in the photoreceptor for ZnT3 and in the GCL and outer plexiform layer for ZnT7. The distribution of zinc, TAUT, and ZnTs in the layers of retina is indicative of the interaction of taurine and zinc for the function of the retina and normal operation of said layers. HIGHLIGHTS: Taurine and zinc are two molecules highly concentrated in the retina and with relevant functions in this structure. Maintaining zinc homeostasis in this tissue is necessary for the normal function of the taurine system in the retina. The study of the taurine transporter and the different zinc transporters in the retina (responsible for maintaining adequate levels of taurine and zinc) is relevant and novel, since it is indicative of the interactions between both molecules in this structure.


Subject(s)
Ethylenediamines , Zinc , Animals , Carrier Proteins , Chelating Agents/analysis , Esters/analysis , Esters/metabolism , Esters/pharmacology , Ethylenediamines/chemistry , Ethylenediamines/metabolism , Ethylenediamines/pharmacology , Fluoresceins/metabolism , Isothiocyanates/analysis , Isothiocyanates/metabolism , Isothiocyanates/pharmacology , Rats , Retina , Rhodamines/analysis , Taurine/analysis , Taurine/metabolism , Taurine/pharmacology , Zinc/chemistry
3.
Molecules ; 26(13)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34279379

ABSTRACT

Sulforaphane (SFN) is a powerful health-promoting compound found in broccoli in the form of its inactive precursor, glucoraphanin (GFN). SFN formation occurs through the enzymatic hydrolysis of glucoraphanin by myrosinase under specific chemical conditions. Its incorporation in food formulations has been hindered by the thermal instability of SFN and low concentration in Brassicaceae. Then, extracting SFN from broccoli at a temperature below 40 °C appears as an option to recover and stabilize SFN, aiming at delivering it as a nutraceutical. We studied an eco-friendly extraction process to obtain an SFN-rich extract from broccoli. The effect of the broccoli mass/solvent ratio, ethanol concentration in the extractant solution, and extraction time on the recovery of SFN, GFN, phenolic compounds, and antioxidant activity were studied through a Box-Behnken design. The regression models explained more than 70% of the variability in the responses, adequately representing the system. The experimental factors differently affected the bioactive compound recovery and antioxidant activity of the extracts. The extraction conditions that allowed the highest recovery of bioactive compounds and antioxidant activity were identified and experimentally validated. The results may provide the basis for the design of a process to produce a sulforaphane-rich food supplement or nutraceutical by using a GRAS extractant.


Subject(s)
Brassica/chemistry , Chemical Fractionation/methods , Isothiocyanates/chemistry , Sulfoxides/chemistry , Ethanol/chemistry , Glucosinolates/analysis , Glucosinolates/chemistry , Isothiocyanates/analysis , Oximes/analysis , Oximes/chemistry , Plant Extracts/chemistry , Sulfoxides/analysis
4.
Food Chem ; 145: 264-71, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24128476

ABSTRACT

A blanching step was designed to favor sulforaphane synthesis in broccoli. Blanching was optimised through a central composite design, and the effects of temperature (50-70 °C) and immersion time in water (5-15 min) on the content of total glucosinolates, glucoraphanin, sulforaphane, and myrosinase activity were determined. Results were analysed by ANOVA and the optimal condition was determined through response surface methodology. Temperature between 50 and 60 °C significantly increased sulforaphane content (p<0.05), whilst blanching at 70 and 74 °C diminished significantly this content, compared to fresh broccoli. The optimal blanching conditions given by the statistical model were immersion in water at 57 °C for 13 min; coinciding with the minimum glucosinolates and glucoraphanin content, and with the maximum myrosinase activity. In the optimal conditions, the predicted response of 4.0 µmol sulforaphane/g dry matter was confirmed experimentally. This value represents a 237% increase with respect to the fresh vegetable.


Subject(s)
Brassica/chemistry , Food Handling/methods , Glucosinolates/analysis , Imidoesters/analysis , Isothiocyanates/analysis , Glycoside Hydrolases/metabolism , Hot Temperature , Oximes , Sulfoxides
5.
Electron. j. biotechnol ; Electron. j. biotechnol;16(6): 1-1, Nov. 2013. ilus, tab
Article in English | LILACS | ID: lil-696542

ABSTRACT

Background: Natural sulforaphane (SF) has been of increasing interest for nutraceutical and pharmaceutical industries due to its anti-cancer effect. The main objective of the present work was to optimize the production of SF from broccoli seed using response surface methodology. Results: Three major factors (hydrolysis time, water volume and ethyl acetate volume) were screened out through Plackett-Burman (PB) factorial design. The methods of steepest ascent combined with central composite design (CCD) were employed for optimization of the SF production process. The optimal extraction conditions for SF production were a hydrolysis time of 13 min, a hydrolysis volume/weight ratio of 2.9:1 (v/g) and an extraction volume/weight ratio of 17.5:1 (v/g). The maximum SF yield was 14.8 ± 0.1 mg/g, a value that was in perfect agreement with the actual experimental value (14.8 mg/g). Conclusions: These results suggested that PB design combined with CCD were proved effective in screening and optimization of the parameters of SF production.


Subject(s)
Seeds/metabolism , Sulfoxides/metabolism , Brassica , Isothiocyanates/metabolism , Sulfoxides/analysis , Data Interpretation, Statistical , Chromatography, High Pressure Liquid , Isothiocyanates/analysis
6.
J Agric Food Chem ; 59(4): 1095-103, 2011 Feb 23.
Article in English | MEDLINE | ID: mdl-21254774

ABSTRACT

This study investigated the effects of broccoli sprouts (BS) on sterol and lipid homeostasis in Syrian hamsters with dietary-induced hypercholesterolemia. Treatments included freeze-dried BS containing 2 or 20 µmol of glucoraphanine (BSX, BS10X), glucoraphanine-rich BS extract (GRE), sulforaphane-rich BS extract (SFE), and simvastatin. Each experimental diet was offered to eight animals (male and female) for 7 weeks. Hepatic cholesterol was reduced by BS10X and SFE treatments in all animals. This correlated with a down-regulation of gene expression of sterol regulatory element-binding proteins (SREBP-1 and -2) and fatty acid synthase (FAS) caused by GRE and SFE diets. BS10X caused changes in gene expression in a gender-specific manner; additionally, it increased coprostanol excretion in females. With the same concentration of glucoraphanin, consumption of broccoli sprouts (BS10X) had more marked effects on cholesterol homeostasis than GRE; this finding reinforces the importance of the matrix effects on the bioactivity of functional ingredients.


Subject(s)
Brassica/chemistry , Glucosinolates/analysis , Isothiocyanates/analysis , Lipid Metabolism/genetics , Plant Extracts/chemistry , Plant Extracts/pharmacology , Animals , Anticholesteremic Agents , Cholesterol/metabolism , Cricetinae , Fatty Acid Synthases/genetics , Female , Gene Expression/drug effects , Homeostasis/drug effects , Male , Mesocricetus , Plant Shoots/chemistry , Sex Factors , Sterol Regulatory Element Binding Proteins/genetics
7.
Braz. j. microbiol ; Braz. j. microbiol;40(4): 1002-1008, Oct.-Dec. 2009. graf
Article in English | LILACS | ID: lil-528186

ABSTRACT

There is an increasing tendency to add natural antimicrobials of plant origin into food. The objective of this work was to develop a microbial sachet incorporated with allyl isothiocyanate (AIT), a volatile compound of plant origin, and to test its efficiency against growth of yeasts and molds, Staphylococcus sp. and psychrotrophic bacteria on sliced mozzarella cheese. Another objective was to quantify the concentration of AIT in the headspace of cheese packaging. A reduction of 3.6 log cycles was observed in yeasts and molds counts in the mozzarella packed with the antimicrobial sachet over 15-day storage time. The sachet also showed an antibacterial effect on Staphylococcus sp., reducing 2.4 log cycles after 12-day storage. Psychrotrophic bacteria species were the most resistant to the antimicrobial action. The highest concentration of AIT (0.08µg.mL-1) inside the active packaging system was observed at the 6-day of storage at 12 ºC ± 2 ºC. At the end of the storage time, AIT concentration decreased to only 10 percent of the initial concentration. Active packaging containing antimicrobial sachet has a potential use for sliced mozzarella, with molds and yeasts being the most sensitive to the antimicrobial effects.


Subject(s)
Food Preservation/methods , Food Analysis , Food Packaging , Isothiocyanates/analysis , Yeasts/growth & development , Cheese/analysis , Staphylococcus/isolation & purification , Food Samples , Methods , Methods
8.
J Agric Food Chem ; 56(20): 9592-9, 2008 Oct 22.
Article in English | MEDLINE | ID: mdl-18826320

ABSTRACT

Papaya is a climacteric fruit that has high amounts of benzylglucosinolates (BG) and benzylisothiocyanates (BITC), but information regarding levels of BG or BITC during fruit development and ripening is limited. Because BG and BITC are compounds of importance from both a nutritional and a crop yield standpoint, the aim of this work was to access data on the distribution and changes of BG and BITC levels during fruit development and ripening. BG and BITC levels were quantified in peel, pulp, and seeds of papaya fruit. Volatile BITC was also verified in the internal cavity of the fruit during ripening. The influence of the ethylene in BG and BITC levels and mirosinase activity was tested by exposing mature green fruits to ethylene and 1-methylcyclopropene (1-MCP). The highest BG levels were detected in seeds, followed by the peel and pulp being decreased in all tissues during fruit development. Similarly, the levels of BITC were much higher in the seeds than the peel and pulp. The levels of BG for control and ethylene-treated fruit were very similar, increasing in the pulp and peel during late ripening but not changing significantly in seeds. On the other hand, fruit exposed to 1-MCP showed a decrease in BG amount in the pulp and accumulation in seed. The treatments did not result in clear differences regarding the amount of BITC in the pulp and peel of the fruit. According to the results, ethylene does not have a clear effect on BITC accumulation in ripening papaya fruit. The fact that BG levels in the pulp did not decrease during ripening, regardless of the treatment employed, and that papaya is consumed mainly as fresh fruit, speaks in favor of this fruit as a good dietary source for glucosinolate and isothiocyanates.


Subject(s)
Carica/chemistry , Carica/growth & development , Fruit/growth & development , Glycoside Hydrolases/genetics , Isothiocyanates/analysis , Plant Proteins/genetics , Thiocyanates/analysis , Thioglucosides/analysis , Amino Acid Sequence , Carica/enzymology , Carica/genetics , Cyclopropanes/metabolism , Ethylenes/metabolism , Fruit/chemistry , Fruit/enzymology , Fruit/physiology , Gene Expression , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL