Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 523
Filter
1.
PLoS One ; 19(5): e0302689, 2024.
Article in English | MEDLINE | ID: mdl-38722854

ABSTRACT

The states of Kansas and Oklahoma, in the central Great Plains, lie at the western periphery of the geographic distributions of several tick species. As the focus of most research on ticks and tick-borne diseases has been on Lyme disease which commonly occurs in areas to the north and east, the ticks of this region have seen little research attention. Here, we report on the phenology and activity patterns shown by tick species observed at 10 sites across the two states and explore factors associated with abundance of all and life specific individuals of the dominant species. Ticks were collected in 2020-2022 using dragging, flagging and carbon-dioxide trapping techniques, designed to detect questing ticks. The dominant species was A. americanum (24098, 97%) followed by Dermacentor variabilis (370, 2%), D. albipictus (271, 1%), Ixodes scapularis (91, <1%) and A. maculatum (38, <1%). Amblyomma americanum, A. maculatum and D. variabilis were active in Spring and Summer, while D. albipictus and I. scapularis were active in Fall and Winter. Factors associated with numbers of individuals of A. americanum included day of year, habitat, and latitude. Similar associations were observed when abundance was examined by life-stage. Overall, the picture is one of broadly distributed tick species that shows seasonal limitations in the timing of their questing activity.


Subject(s)
Seasons , Animals , Oklahoma , Kansas , Ticks/growth & development , Ticks/physiology , Ixodes/physiology , Ixodes/growth & development , Female , Dermacentor/physiology , Dermacentor/growth & development , Ixodidae/physiology , Ixodidae/growth & development , Male , Ecosystem , Amblyomma/growth & development , Amblyomma/physiology
2.
Ticks Tick Borne Dis ; 15(4): 102341, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593668

ABSTRACT

The nidicolous tick Ixodes laguri is a nest-dwelling parasite of small mammals that mainly infest rodents of the families Cricetidae, Gliridae, Muridae and Sciuridae. There is no proven vectorial role for I. laguri, although it is suggested that it is a vector of Francisella tularensis. In this study, a first map depicting the entire geographical distribution of I. laguri based on georeferenced locations is presented. For this purpose, a digital data set of 142 georeferenced locations from 16 countries was compiled. Particular attention is paid to the description of the westernmost record of I. laguri in the city of Vienna, Austria. There, I. laguri is specifically associated with its main hosts, the critically endangered European hamster (Cricetus cricetus) and the European ground squirrel (Spermophilus citellus). These two host species have also been mapped in the present paper to estimate the potential distribution of I. laguri in the Vienna metropolitan region. The range of I. laguri extends between 16-108∘ E and 38-54∘ N, i.e. from Vienna in the east of Austria to Ulaanbaatar, the capital of Mongolia. In contrast to tick species that are expanding their range and are also becoming more abundant as a result of global warming, I. laguri has become increasingly rare throughout its range. However, I. laguri is not threatened by climate change, but by anthropogenic influences on its hosts and their habitats, which are typically open grasslands and steppes. Rural habitats are threatened by the intensification of agriculture and semi-urban habitats are increasingly being destroyed by urban development.


Subject(s)
Animal Distribution , Ixodes , Tick Infestations , Animals , Austria , Ixodes/growth & development , Ixodes/physiology , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Endangered Species , Sciuridae/parasitology , Cricetinae , Rodent Diseases/parasitology , Rodent Diseases/epidemiology
3.
J Med Entomol ; 61(3): 686-700, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38491994

ABSTRACT

Forest management practices designed to meet varied landowner objectives affect wildlife habitat and may interrupt the life-cycle stages of disease vectors, including the black-legged tick, Ixodes scapularis Say (Acari: Ixodidae). Ixodes scapularis transmits multiple pathogens including Borrelia burgdorferi, the causative agent of Lyme disease, which is the most common tick-borne disease in the United States. There is evidence that a range of active forest management practices (e.g., invasive plant removal, prescribed burning) can alter tick densities and pathogen transmission. However, few studies have investigated relationships between forest stand structural variables commonly manipulated by timber harvesting and tick ecology. Foresters may harvest timber to create certain forest structural conditions like the mean number of trees, or basal area, per hectare. This study used a spatially replicated experiment in a blocked design to compare forest stands with a range of overstory structures and document variations in the midstory, understory, and forest floor, as well as microclimate conditions within tick off-host habitat. Greater numbers of trees or basal area per hectare correlated with greater canopy closure but less understory cover, stabilized microclimate temperature, higher microclimate humidity, and greater I. scapularis nymph densities. A random forest model identified understory forest structure as the strongest predictor of nymph densities. There was no relationship between the number of trees or basal area per hectare and daily deer (Odocoileus virginianus Zimmermann) activity or nymphal infection prevalence. These findings provide a deeper understanding of tick-habitat associations within a forest stand and have the potential to inform forest management decisions.


Subject(s)
Forestry , Forests , Ixodes , Microclimate , Population Density , Animals , Ixodes/growth & development , Ixodes/physiology , Nymph/growth & development , Nymph/physiology
4.
J Med Entomol ; 61(3): 798-801, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38493309

ABSTRACT

The hard tick, Ixodes keiransi Beati, Nava, Venzal, & Guglielmone, formerly the North American lineage of Ixodes affinis Neumann, is expanding its range northward along the US East Coast. In July 2023, we collected I. keiransi adult female and nymph in a single sampling event, suggesting its range now includes southern New Jersey. In this area, I. keiransi is sympatric with northern populations of Ixodes scapularis Say (Acari: Ixodidae), the primary vector of Lyme disease. Given its status as an enzootic vector of spirochaetes in the Borrelia burgdorferi sensu lato complex, proper differentiation of these 2 species will be critical for accurate estimates of entomological risk. Targeted surveillance should be implemented to monitor further I. keiransi expansion and to elucidate the phenology and enzootic role of this and other understudied Ixodes spp. in the northeastern United States.


Subject(s)
Animal Distribution , Ixodes , Nymph , Animals , Ixodes/growth & development , Ixodes/physiology , New Jersey , Female , Nymph/growth & development
5.
J Med Entomol ; 59(1): 162-172, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34642748

ABSTRACT

Tick-borne disease control and prevention have been largely ineffective compared to the control of other vector-borne diseases. Although control strategies exist, they are costly or ineffective at large spatial scales. We need tools to target these strategies to places of highest tick exposure risk. Here we present a geographic information system (GIS) method for mapping predicted tick exposure risk at a 200 m by 200 m resolution, appropriate for public health intervention. We followed the approach used to map tick habitat suitability over large areas. We used drag-cloth sampling to measure the density of nymphal blacklegged ticks (Ixodes scapularis, Say (Acari: Ixodidae)) at 24 sites in Addison and Rutland Counties, VT, United States. We used a GIS to average habitat, climatological, land-use/land-cover, and abiotic characteristics over 100 m, 400 m, 1,000 m, and 2,000 m buffers around each site to evaluate which characteristic at which buffer size best predicted density of nymphal ticks (DON). The relationships between predictor variables and DON were determined with random forest models. The 100 m buffer model performed best and explained 37.7% of the variation in DON, although was highly accurate at classifying sites as having below or above average DON. This model was applied to Addison County, VT, to predict tick exposure risk at a 200 m resolution. This GIS approach to map predicted DON over a small area with fine resolution, could be used to target public health campaigns and land management practices to reduce human exposure to ticks.


Subject(s)
Ecosystem , Geographic Information Systems , Ixodes , Public Health , Animals , Female , Ixodes/growth & development , Lyme Disease/transmission , Male , Nymph/growth & development , Population Density , Vermont
6.
Parasit Vectors ; 14(1): 570, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34749794

ABSTRACT

BACKGROUND: The tick Ixodes ricinus is an important vector of tick-borne diseases including Lyme borreliosis. In continental Europe, the nymphal stage of I. ricinus often has a bimodal phenology with a large spring peak and a smaller fall peak. There is consensus about the origin of the spring nymphal peak, but there are two alternative hypotheses for the fall nymphal peak. In the direct development hypothesis, larvae quest as nymphs in the fall of the same year that they obtained their larval blood meal. In the developmental diapause hypothesis, larvae overwinter in the engorged state and quest as nymphs one year after they obtained their larval blood meal. These two hypotheses make different predictions about the time lags that separate the larval blood meal and the density of questing nymphs (DON) in the spring and fall. METHODS: Inter-annual variation in seed production (masting) by deciduous trees is a time-lagged index for the density of vertebrate hosts (e.g., rodents) which provide blood meals for larval ticks. We used a long-term data set on the masting of the European beech tree and a 15-year study on the DON at 4 different elevation sites in western Switzerland to differentiate between the two alternative hypotheses for the origin of the fall nymphal peak. RESULTS: Questing I. ricinus nymphs had a bimodal phenology at the three lower elevation sites, but a unimodal phenology at the top elevation site. At the lower elevation sites, the DON in the fall was strongly correlated with the DON in the spring of the following year. The inter-annual variation in the densities of I. ricinus nymphs in the fall and spring was best explained by a 1-year versus a 2-year time lag with the beech tree masting index. Fall nymphs had higher fat content than spring nymphs indicating that they were younger. All these observations are consistent with the direct development hypothesis for the fall peak of I. ricinus nymphs at our study site. Our study provides new insight into the complex bimodal phenology of this important disease vector. CONCLUSIONS: Public health officials in Europe should be aware that following a strong mast year, the DON will increase 1 year later in the fall and 2 years later in the spring. Studies of I. ricinus populations with a bimodal phenology should consider that the spring and fall peak in the same calendar year represent different generations of ticks.


Subject(s)
Fagus/parasitology , Ixodes/growth & development , Animals , Arachnid Vectors/growth & development , Europe , Larva/growth & development , Nymph/growth & development , Population Density , Seasons , Trees/parasitology
7.
Ticks Tick Borne Dis ; 12(6): 101819, 2021 11.
Article in English | MEDLINE | ID: mdl-34520993

ABSTRACT

This study assessed the duration of tick attachment necessary for a successful transmission of Anaplasma phagocytophilum by an infected I. scapularis nymph. Individual nymphs were placed upon BALB/c mice and allowed to feed for predetermined time intervals of 4 to 72 h. Ticks removed from mice at predetermined intervals were tested by PCR for verification of infection and evaluation of the bacterial load. The success of pathogen transmission to mice was assessed by blood-PCR at 7, 14 and 21 days postinfestation, and IFA at 21 days postinfestation. Anaplasma phagocytophilum infection was documented in 10-30 % of mice, from which ticks were removed within the first 20 h of feeding. However, transmission success was ≥70% if ticks remained attached for 36 h or longer. Notably, none of the PCR-positive mice that were exposed to infected ticks for 4 to 8 h and only half of PCR-positive mice exposed for 24 h developed antibodies within 3 weeks postinfestation. On the other hand, all mice with detectable bacteremia after being infested for 36 h seroconverted. This suggests that although some of the ticks removed prior to 24 h of attachment succeed in injecting a small amount of A. phagocytophilum, this amount is insufficient for stimulating humoral immunity and perhaps for establishing disseminated infection in BALB/c mice. Although A. phagocytophilum may be present in salivary glands of unfed I. scapularis nymphs, the amount of A. phagocytophilum initially contained in saliva appears insufficient to cause sustainable infection in a host. Replication and, maybe, reactivation of the agent for 12-24 h in a feeding tick is required before a mouse can be consistently infected.


Subject(s)
Anaplasma phagocytophilum/physiology , Ehrlichiosis/transmission , Ixodes/physiology , Anaplasmosis/microbiology , Anaplasmosis/transmission , Animals , Ehrlichiosis/microbiology , Feeding Behavior , Female , Ixodes/growth & development , Mice , Mice, Inbred BALB C , Nymph/growth & development , Nymph/physiology
8.
Ticks Tick Borne Dis ; 12(6): 101809, 2021 11.
Article in English | MEDLINE | ID: mdl-34454337

ABSTRACT

Francisella tularensis subsp. holarctica is the causative agent of tularaemia in Europe. Finland is a high-incidence region for tularaemia, with mosquito bites as the most common sources of infection. However, in Central and Western Europe, ticks (Acari: Ixodidae) have been suggested as the main vectors. Indeed, several studies have reported the pathogen from the locally most common human-biting tick species, Ixodes ricinus. In Finland, the occurrence of the pathogen in ticks has started receiving attention only recently. Here, we collate previous tick screening data from Finland regarding F. tularensis as well as present the results from a novel screening of roughly 15 000 I. ricinus and I. persulcatus collected from across the country. In total, 14 878 ticks collected between 2015 and 2020 were screened for F. tularensis using a TaqMan-based qPCR assay targeting the 23 KDa gene. The combined screening efforts of the current and previous studies, encompassing roughly 20 000 ticks, did not find any positive ticks. Given the negative results despite the considerable sample size, it appears that the pathogen is not circulating in local tick populations in Finland. We discuss some possible reasons for the lack of the bacterium in ticks in this high-incidence region of tularaemia.


Subject(s)
Francisella/isolation & purification , Ixodes/microbiology , Animals , Finland , Ixodes/growth & development , Larva/growth & development , Larva/microbiology , Nymph/growth & development , Nymph/microbiology , Species Specificity , Tularemia/microbiology
9.
J Med Entomol ; 58(6): 2358-2367, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34397096

ABSTRACT

As tick-borne disease incidence increases and pathogens expand into new areas, the need for effective tick management strategies is paramount. In this 5-yr study (2014-2018) conducted in south central Wisconsin, we assessed whether an integrated tick management approach, deployed during peak tick activity (May-August), was more effective at reducing black-legged ticks (Ixodes scapularis Say (Ixodida: Ixodidae)), than individual interventions. Using a factorial design, invasive vegetation removal (Amur honeysuckle, Lonicera maackii Ruprecht (Dipsacales: Caprifoliaceae) and common buckthorn, Rhamnus cathartica Linnaeus (Rosales: Rhamnaceae)) was coupled with deployments of permethrin-treated cotton nesting materials (tick tubes) that target the white-footed mouse (Peromyscus leucopus Rafinesque (Rodentia: Cricetidae)). Results show that the probability of encountering a larval tick by drag sampling was unaffected by treatments at the cumulative 5-yr level. However, vegetation removal significantly reduced larval encounters in 2014, 2015, and 2018, by 33%, 57%, and 61% respectively, and reduced the density of questing nymphal (DON) ticks by 45% in 2015 compared to controls. Despite the limited effect on DON, vegetation removal significantly reduced the cumulative 5-yr density of Borrelia burgdorferi sensu stricto infected nymphs (DIN) (70%) compared to controls as a result of decreased nymphal infection prevalence. Sites treated with tick tubes had lower DIN (66%) and DON (54%) across the study and nymphs were reduced every year following the initial year of deployment compared to controls. Combining treatments did not further reduce DIN or DONs. We conclude that long-term integration of tick tubes with invasive vegetation removal does not provide additional benefit over individual treatments alone.


Subject(s)
Acaricides , Ixodes , Lonicera , Permethrin , Plants , Rhamnus , Tick Control , Animals , Ixodes/growth & development , Nymph/growth & development , Population Density , Tick Control/instrumentation , Wisconsin
10.
Ticks Tick Borne Dis ; 12(6): 101811, 2021 11.
Article in English | MEDLINE | ID: mdl-34411794

ABSTRACT

This paper presents data on free-living ticks collected by flagging and using CO2 traps in three natural areas in Costa Rica: Carara National Park (CNP), Palo Verde National Park (PVNP), and a Private Forest Reserve in Sarapiquí (SPR). Data were analyzed calculating aspects of alpha diversity (species richness, entropy; dominance index, and evenness); and for beta diversity, compositional similarity between communities of ticks was also calculated. We collected 12,795 ticks belonging to 10 species: Amblyomma coelebs, Amblyomma dissimile, Amblyomma mixtum, Amblyomma naponense, Amblyomma cf. oblongoguttatum, Amblyomma cf. parvum, Amblyomma sabanerae, Amblyomma tapirellum, Haemaphysalis juxtakochi and Ixodes affinis. The number of species and individuals varied between sites: 5970 ticks were collected in CNP, 4443 in PVNP, and 2382 in SPR. Amblyomma cf. oblongoguttatum and A. cf. parvum were collected at all three sites, but A. mixtum was the most abundant species, even though it was not collected in SPR. Values of alpha diversity were calculated for CNP and SPR, while diversity in PVNP was the lowest of the three locations. Evenness was highest in SPR and lowest in CNP. The only community that presented dominance was PVNP. Beta diversity showed low similarity between the three locations with the lowest being CNP and SPR. For the three localities, estimates of the number of tick species based on presence/absence data was higher using flagging than CO2; and considering the stage of the ticks collected. More larvae were captured using CO2 traps than by flagging, while flagging was better for collecting adults. To our knowledge this is the first study in Costa Rica that compares these two sampling methods in three different environmental areas.


Subject(s)
Animal Distribution , Biodiversity , Ixodes/physiology , Animals , Costa Rica , Environment , Ixodes/growth & development , Larva/growth & development , Larva/physiology , Nymph/growth & development , Nymph/physiology , Parks, Recreational
11.
J Med Entomol ; 58(6): 2484-2487, 2021 11 09.
Article in English | MEDLINE | ID: mdl-33939830

ABSTRACT

Limited evidence suggests that the cervid parasite, Babesia odocoilei, is transovarially transmitted from adult female Ixodes scapularis Say to offspring. The prevalence of B. odocoilei in unfed larval I. scapularis and whether vertical transmission is crucial to pathogen maintenance are currently unknown. To investigate these questions, 275 unfed larvae from two Wisconsin counties were tested for B. odocoilei genetic material. Sixteen of 29 pools were positive for the parasite. The maximum likelihood estimation for overall larval infection prevalence was 7.8% (95% confidence interval: 4.7-12). This vertically acquired infection appears to be sustained transstadially in nymphal ticks the following year; however, our relatively small sample and replicate size warrants additional evaluation. Our study revealed further evidence of vertical transmission, a low and consistent infection prevalence in larvae, and the potential importance of vertical transmission in B. odocoilei maintenance.


Subject(s)
Babesia/physiology , Ixodes/parasitology , Animals , Deer/parasitology , Female , Ixodes/growth & development , Larva/growth & development , Larva/parasitology , Pupa/growth & development , Pupa/parasitology , Wisconsin
12.
Parasit Vectors ; 14(1): 251, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33975641

ABSTRACT

BACKGROUND: Ixodes scapularis ticks are medically important arthropod vectors that transmit several pathogens to humans. The observations of morphological abnormalities, including nanism, missing leg, extra leg, and gynandromorphism, have been reported in these ticks. In this study, we report the presence of two anuses in a laboratory-reared I. scapularis nymph. RESULTS: Larval ticks were allowed to feed on mice and to molt to nymphs. Two anuses were observed in one of the freshly molted nymphs. Stereo and scanning electron microscopy confirmed the presence of two anuses in one nymph within a single anal groove. CONCLUSIONS: This report confirms the rare occurrence of double anus in I. scapularis.


Subject(s)
Arthropod Vectors/anatomy & histology , Ixodes/anatomy & histology , Nymph/anatomy & histology , Anal Canal/abnormalities , Anal Canal/anatomy & histology , Animals , Arthropod Vectors/growth & development , Ixodes/growth & development , Nymph/growth & development
13.
Sci Rep ; 11(1): 10649, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34017054

ABSTRACT

The European roe deer (Capreolus capreolus) is the most common deer species in Europe. The species can be a reservoir of some tick-borne diseases but it is primarily recognized for its contribution as an amplifier host. In Central Europe, two roe deer ecotypes are living in adjacent areas: field and forest. We investigated differences in tick load and species composition on these two ecotypes. We collected ticks from 160 (80 the forest ecotype and 80 the field ecotype) roe deer culled in Wielkopolska Region (West-Central Poland). The most common was Ixodes ricinus (n = 1610; 99%) followed by Ixodes hexagonus (n = 22; 1%). The dominant life stage of the ticks was female. Prevalence was higher for forest roe deer. Mean number of ticks found on the forest ecotype was almost fivefold higher than on the field ecotype (3.75 ± 0.83 vs. 0.77 ± 0.20 ticks). The mean probability of tick occurrence was threefold higher in the forest (0.915 ± 0.050) than the field ecotype (0.279 ± 0.125). The most infested body parts of roe deer from both ecotypes were the neck and the head.


Subject(s)
Deer/parasitology , Ecotype , Forests , Ixodes/physiology , Analysis of Variance , Animals , Deer/anatomy & histology , Female , Geography , Ixodes/growth & development , Linear Models , Male , Nymph , Poland/epidemiology , Tick Infestations/epidemiology , Tick Infestations/veterinary
14.
Sci Rep ; 11(1): 10686, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021230

ABSTRACT

Arthropod vectors carry vector-borne pathogens that cause infectious disease in vertebrate hosts, and arthropod-associated microbiota, which consists of non-pathogenic microorganisms. Vector-borne pathogens and the microbiota can both influence the fitness of their arthropod vectors, and hence the epidemiology of vector-borne diseases. The bacterium Borrelia afzelii, which causes Lyme borreliosis in Europe, is transmitted among vertebrate reservoir hosts by Ixodes ricinus ticks, which also harbour a diverse microbiota of non-pathogenic bacteria. The purpose of this controlled study was to test whether B. afzelii and the tick-associated microbiota influence the fitness of I. ricinus. Eggs obtained from field-collected adult female ticks were surface sterilized (with bleach and ethanol), which reduced the abundance of the bacterial microbiota in the hatched I. ricinus larvae by 28-fold compared to larvae that hatched from control eggs washed with water. The dysbiosed and control larvae were subsequently fed on B. afzelii-infected or uninfected control mice, and the engorged larvae were left to moult into nymphs under laboratory conditions. I. ricinus larvae that fed on B. afzelii-infected mice had a significantly faster larva-to-nymph moulting time compared to larvae that fed on uninfected control mice, but the effect was small (2.4% reduction) and unlikely to be biologically significant. We found no evidence that B. afzelii infection or reduction of the larval microbiota influenced the four other life history traits of the immature I. ricinus ticks, which included engorged larval weight, unfed nymphal weight, larva-to-nymph moulting success, and immature tick survival. A retrospective power analysis found that our sampling effort had sufficient power (> 80%) to detect small effects (differences of 5% to 10%) of our treatments. Under the environmental conditions of this study, we conclude that B. afzelii and the egg surface microbiota had no meaningful effects on tick fitness and hence on the R0 of Lyme borreliosis.


Subject(s)
Borrelia burgdorferi Group , Insect Vectors/microbiology , Ixodes/microbiology , Lyme Disease/epidemiology , Lyme Disease/transmission , Physical Fitness , Animals , Antibodies, Bacterial/immunology , Borrelia burgdorferi Group/immunology , Disease Models, Animal , Disease Reservoirs/microbiology , Host-Pathogen Interactions/immunology , Immunoglobulin G/immunology , Ixodes/growth & development , Larva/microbiology , Life Cycle Stages , Lyme Disease/immunology , Mice , Prevalence , Tick Bites
15.
Ticks Tick Borne Dis ; 12(4): 101724, 2021 07.
Article in English | MEDLINE | ID: mdl-33878571

ABSTRACT

The literature on Lyme disease includes a lively debate about the paradoxical role of changing deer populations. A decrease in the number of deer will both (1) reduce the incidence of Lyme disease by decreasing the host populations for ticks and therefore tick populations, and (2) enhance the incidence of Lyme disease by offering fewer reservoir-incompetent hosts for ticks, forcing the vector to choose reservoir-competent, and therefore possibly diseased, hosts to feed on. A review of field studies exploring the net impact of changing deer populations shows mixed results. In this manuscript, we investigate the hypothesis that the balance of these two responses to changing deer populations depends on the relative population sizes of reservoir-competent vs. reservoir-incompetent hosts and the presence of host preference in larval and adult stages. A temperature driven seasonal model of Borrelia burgdorferi sensu stricto (cause of Lyme disease) transmission among three host types (reservoir-competent infected and uninfected hosts, and reservoir-incompetent hosts) is constructed as a system of nonlinear ordinary differential equations. The model, which produces biologically reasonable results for both the tick vector Ixodes scapularis Say 1921 and the hosts, is used to investigate the effects of reservoir-incompetent host removal on both tick populations and disease prevalence for various relative population sizes of reservoir-competent hosts vs. reservoir-incompetent hosts. In summary, the simulation results show that the model with host preference appears to be more accurate than the one with no host preference. Given these results, we found that removal of adult I. scapularis(Say) hosts is likely to reduce questing nymph populations. At very low levels questing adult abundance may rise with lack of adult hosts. There is a dilution effect at low reservoir-competent host populations and there is an amplification effect at high reservoir-competent host populations.


Subject(s)
Borrelia burgdorferi/physiology , Disease Reservoirs/microbiology , Disease Vectors , Ixodes/microbiology , Lyme Disease/transmission , Animals , Ixodes/growth & development , Larva/growth & development , Larva/microbiology , Models, Biological , Nymph/growth & development , Nymph/microbiology
16.
Ticks Tick Borne Dis ; 12(4): 101716, 2021 07.
Article in English | MEDLINE | ID: mdl-33812343

ABSTRACT

Borreliosis is one of the most common vector-borne zoonotic diseases in the world. Limited data are available regarding Borrelia spp. and their genotypes in Kazakhstan. The goal of this study was to investigate the prevalence of Borrelia spp. in ixodid ticks collected in the southeastern region of Kazakhstan. A total of 1907 ixodid ticks were collected by flagging vegetation at three collection areas in the Almaty oblast between 2015 and 2018. They were grouped into 407 pools and examined by qPCR for Borrelia burgdorferi sensu lato (s.l.). A conventional PCR with specific primers targeting 16S rRNA gene was used to differentiate B. burgdorferi s.l. genospecies. Sequence analysis of the PCR products was performed for sixteen samples. Lyme borreliosis agents were only detected in adult questing Ixodes persulcatus. The overall B. burgdorferi s.l. prevalence in I. persulcatus estimated as the minimum infection rate reached 10.7 %. Borrelia burgdorferi sensu stricto was not detected in any of the tick pools. Partial 16S rRNA gene sequencing revealed the presence of B. miyamotoi, B. afzelii, and B. garinii. Borrelia afzelii was the dominant genospecies in Almaty oblast. A significantly lower proportion of B. garinii positive tick pools was detected in the Zailiyskiy Alatau as compared to the Dzungarian Alatau (χ2 = 16.243; p = 0.0001) and Yenbekshikazakh district (χ2 = 7.4156; p = 0.0065). The obtained results indicate the epidemiological significance of B. afzelii and B. garinii in southeastern Kazakhstan. These new data aim to improve the diagnostics of Lyme borreliosis and monitoring of tick-borne infections in Kazakhstan.


Subject(s)
Borrelia/isolation & purification , Ixodes/microbiology , Animals , Borrelia/classification , Female , Ixodes/growth & development , Kazakhstan , Male , Nymph/growth & development , Nymph/microbiology
17.
Ticks Tick Borne Dis ; 12(4): 101707, 2021 07.
Article in English | MEDLINE | ID: mdl-33813285

ABSTRACT

Ticks harbour rich and diverse microbiota and, among the microorganisms associated with them, endosymbionts are the subject of a growing interest due to their crucial role in the biology of their arthropod host. Midichloria mitochondrii is the main endosymbiont of the European tick Ixodes ricinus and is found in abundance in all I. ricinus females, while at a much lower density in males, where it is even absent in 56 % of the individuals. This endosymbiont is also known to increase in numbers after the blood meal of larvae, nymphs or females. Because of this difference in the prevalence of M. mitochondrii between the two sexes, surveying the density of these bacteria in nymphs that will become either females or males could help to understand the behaviour of Midichloria in its arthropod host. To this aim, we have set up an experimental design by building 3 groups of unfed nymphs based on their scutum and hypostome lengths. After engorgement, weighing and moulting of a subset of the nymphs, a significant difference in sex-ratio among the 3 groups was observed. In parallel, Midichloria load in individual nymphs was quantified by qPCR both before and after engorgement. No difference in either body mass or Midichloria load was observed at the unfed stage, but following engorgement, both features were significantly different between each size group. Our results demonstrate that symbiont dynamics during nymphal engorgement is different between the two sexes, resulting in a significantly higher Midichloria load in nymphs that will become females. The consequences of those findings on our understanding of the interplay between the endosymbiont and its arthropod host are discussed.


Subject(s)
Ixodes/microbiology , Rickettsiales/physiology , Symbiosis , Animals , Female , Ixodes/growth & development , Male , Nymph/growth & development , Nymph/microbiology , Sex Factors
18.
J Med Entomol ; 58(3): 1470-1475, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33629730

ABSTRACT

Investigations that analyze interspecific associations of vectors on their hosts are important for understanding community structure and implementing ways to comprehend mechanisms of pathogen transmission. We assessed the interspecific association of two tick species (Ixodes scapularis Say (Ixodida: Ixodidae) and Dermacentor variabilis Say (Ixodida: Ixodidae)) on the rodent host Peromyscus leucopus Rafinesque (Rodentia: Cricetidae) at the Hobart Ames Research and Education Center in southwestern Tennessee. Of the rodents captured, 95 (63%) had neither species of tick, 6 (4%) had both tick species, 25 (16%) had I. scapularis only, and 26 (17%) had D. variabilis only. A coefficient of association (C7 = -0.08) was calculated, which suggested there was competition between the two species of ectoparasites, but this value was not significant, indicating that there was a neutral relationship between the tick species on P. leucopus. The co-occurrence of both tick species on their host at the same time suggested that the two tick species can occupy the same host and use the same resources without competing.


Subject(s)
Dermacentor/physiology , Host-Parasite Interactions , Ixodes/physiology , Peromyscus , Rodent Diseases/epidemiology , Tick Infestations/veterinary , Animals , Dermacentor/growth & development , Ixodes/growth & development , Larva/growth & development , Larva/physiology , Nymph/growth & development , Nymph/physiology , Prevalence , Rodent Diseases/parasitology , Tennessee/epidemiology , Tick Infestations/epidemiology , Tick Infestations/parasitology
19.
Parasit Vectors ; 14(1): 121, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33627166

ABSTRACT

BACKGROUND: The incidence of Lyme borreliosis varies over time and space through as yet incompletely understood mechanisms. In Europe, Lyme borreliosis is caused by infection with a Borrelia burgdorferi (s.l.) genospecies, which is primarily transmitted by a bite of Ixodes ricinus nymphs. The aim of this study was to investigate the spatial and temporal variation in nymphal infection prevalence of B. burgdorferi (s.l.) (NIP), density of questing nymphs (DON) and the resulting density of infected nymphs (DIN). METHODS: We investigated the infection rates in I. ricinus nymphs that were collected monthly between 2009 and 2016 in 12 locations in the Netherlands. Using generalized linear mixed models, we explored how the NIP, DON and DIN varied during the seasons, between years and between locations. We also determined the genospecies of the Borrelia infections and investigated whether the genospecies composition differed between locations. RESULTS: The overall NIP was 14.7%. A seasonal pattern in infection prevalence was observed, with higher estimated prevalences in the summer than in the spring and autumn. This, combined with higher nymphal densities in summer, resulted in a pronounced summer peak in the estimated DIN. Over the 7.5-year study period, a significant decrease in infection prevalence was found, as well as a significant increase in nymphal density. These two effects appear to cancel each other out; the density of infected nymphs, which is the product of NIP × DON, showed no significant trend over years. Mean infection prevalence (NIP, averaged over all years and all months) varied considerably between locations, ranging from 5 to 26%. Borrelia genospecies composition differed between locations: in some locations almost all infections consisted of B. afzelii, whereas other locations had more diverse genospecies compositions. CONCLUSION: In the Netherlands, the summer peak in DIN is a result of peaks in both NIP and DON. No significant trend in DIN was observed over the years of the study, and variations in DIN between locations were mostly a result of the variation in DON. There were considerable differences in acarological risk between areas in terms of infection prevalence and densities of ticks as well as in Borrelia genospecies composition.


Subject(s)
Borrelia burgdorferi/physiology , Ixodes/microbiology , Animals , Borrelia/classification , Borrelia/genetics , Borrelia/isolation & purification , Borrelia burgdorferi/classification , Borrelia burgdorferi/genetics , Borrelia burgdorferi/isolation & purification , Ixodes/growth & development , Netherlands , Nymph/growth & development , Nymph/microbiology , Seasons
20.
J Med Entomol ; 58(3): 1345-1351, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33386731

ABSTRACT

Tick-borne pathogens are of growing concern. The U.S. Centers for Disease Control and Prevention (CDC) developed guidelines standardizing surveys of tick vectors to better monitor the changes in their occurrences. Unbiased surveillance data, from standardized surveys, are presumed critical to generate valid species distribution models (SDMs). We tested previously generated SDMs from standardized protocols for three medically important ticks [Amblyomma americanum (Linnaeus, Ixodida, Ixodidae), Ixodes scapularis (Say, Ixodida, Ixodidae), and Dermacentor variabilis (Say, Ixodida, Ixodidae)]. These previous models ruled out a quarter to half of the state as having these species, with consensus occurrence in about a quarter of the state. New surveys performed throughout 2019 on 250 transects at 43 sites indicated the rule-out functions were 100% accurate for I. scapularis and D. variabilis and 91.9% for A. americanum. As SDM concordance increased, the proportion of transects yielding ticks increased. Independent surveys of SDMs provide external validation-an aspect missing from many SDM studies.


Subject(s)
Amblyomma/physiology , Animal Distribution , Dermacentor/physiology , Ixodes/physiology , Amblyomma/growth & development , Animals , Dermacentor/growth & development , Florida , Ixodes/growth & development , Nymph/growth & development , Nymph/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...