Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 340
Filter
1.
Mol Cell Proteomics ; 22(11): 100663, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37832788

ABSTRACT

Ticks are ectoparasites that feed on blood and have an impressive ability to consume and process enormous amounts of host blood, allowing extremely long periods of starvation between blood meals. The central role in the parasitic lifestyle of ticks is played by the midgut. This organ efficiently stores and digests ingested blood and serves as the primary interface for the transmission of tick-borne pathogens. In this study, we used a label-free quantitative approach to perform a novel dynamic proteomic analysis of the midgut of Ixodesricinus nymphs, covering their development from unfed to pre-molt stages. We identified 1534 I. ricinus-specific proteins with a relatively low proportion of host proteins. This proteome dataset, which was carefully examined by manual scrutiny, allowed precise annotation of proteins important for blood meal processing and their dynamic changes during nymphal ontogeny. We focused on midgut molecules related to lipid hydrolysis, storage, and transport, opening a yet unexplored avenue for studying lipid metabolism in ticks. Further dynamic profiling of the tick's multi-enzyme digestive network, protease inhibitors, enzymes involved in redox homeostasis and detoxification, antimicrobial peptides, and proteins responsible for midgut colonization by Borrelia spirochetes promises to uncover new targets for targeting tick nymphs, the most critical life stage for transmission the pathogens that cause tick-borne diseases.


Subject(s)
Ixodes , Animals , Ixodes/parasitology , Proteome , Proteomics , Digestive System
2.
Vet Microbiol ; 286: 109892, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37866329

ABSTRACT

Ticks are the main vectors for the transmission of bacterial, protist and viral pathogens in Europe affecting wildlife and domestic animals. However, some of them are zoonotic and can cause serious, sometimes fatal, problems in human health. A systematic review in PubMed/MEDLINE database was conducted to determine the spatial distribution and host and tick species ranges of a selection of tick-borne bacteria (Anaplasma spp., Borrelia spp., Coxiella spp., and Rickettsia spp.), protists (Babesia spp. and Theileria spp.), and viruses (Orthonairovirus, and flaviviruses tick-borne encephalitis virus and louping ill virus) on the European continent in a five-year period (November 2017 - November 2022). Only studies using PCR methods were selected, retrieving a total of 429 articles. Overall, up to 85 species of the selected tick-borne pathogens were reported from 36 European countries, and Anaplasma spp. was described in 37% (159/429) of the articles, followed by Babesia spp. (34%, 148/429), Borrelia spp. (34%, 147/429), Rickettsia spp. (33%, 142/429), Theileria spp. (11%, 47/429), tick-borne flaviviruses (9%, 37/429), Orthonairovirus (7%, 28/429) and Coxiella spp. (5%, 20/429). Host and tick ranges included 97 and 50 species, respectively. The highest tick-borne pathogen diversity was detected in domestic animals, and 12 species were shared between humans, wildlife, and domestic hosts, highlighting the following zoonotic species: Anaplasma phagocytophilum, Babesia divergens, Babesia microti, Borrelia afzelii, Borrelia burgdorferi s.s., Borrelia garinii, Borrelia miyamotoi, Crimean-Congo hemorrhagic fever virus, Coxiella burnetii, Rickettsia monacensis and tick-borne encephalitis virus. These results contribute to the implementation of effective interventions for the surveillance and control of tick-borne diseases.


Subject(s)
Babesia , Borrelia , Encephalitis Viruses, Tick-Borne , Ixodes , Rickettsia , Theileria , Tick-Borne Diseases , Animals , Humans , Babesia/genetics , Encephalitis Viruses, Tick-Borne/genetics , Anaplasma/genetics , Coxiella , Ixodes/microbiology , Ixodes/parasitology , Borrelia/genetics , Rickettsia/genetics , Animals, Domestic , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology , Animals, Wild
3.
Parasite ; 30: 24, 2023.
Article in English | MEDLINE | ID: mdl-37404115

ABSTRACT

Filarial nematodes of the Dipetalonema lineage are widespread parasites and include some species that are transmitted by ticks. In this study, we conducted a large molecular survey of ticks in French Guiana, South America, to understand the overall diversity of tick-borne filarioids in this remote region largely covered by dense tropical forests. Out of 682 ticks belonging to 22 species and 6 genera, 21 ticks (3.1%) of the species Amblyomma cajennense, A. oblongoguttatum, A. romitii, Ixodes luciae and Rhipicephalus sanguineus sensu lato were positive for infection by filarioids. Molecular typing and phylogenetic analysis identified all these filarioids as members of the Dipetalonema lineage. While the filarioid of R. sanguineus sensu lato is a previously described species, the canine worm Cercopithifilaria bainae Almeida & Vicente, 1984, all other filarioids detected in this study are related but distinct to already known species in the genera Cercopithifilaria, Cruorifilaria and Dipetalonema. Their vertebrate host range may include a wide variety of mammals present in French Guiana, but dogs, capybaras, and opossums are the best candidate hosts for some of these filarioids. Although the detection of members of the Dipetalonema lineage in ticks of significant medical or veterinary interest is of concern, the risk of contracting a tick-borne filarial infection is still largely unknown. The pathogenicity of these filarioids, their epidemiology, developmental cycles, and mechanisms of transmission by South American tick species now require further study.


Title: Détection moléculaire des nématodes filaires de type Cercopithifilaria, Cruorifilaria et Dipetalonema chez les tiques de Guyane française. Abstract: Les nématodes filaires de la lignée Dipetalonema sont des parasites répandus dont plusieurs espèces sont transmises par les tiques. Dans cette étude, nous avons mené une vaste surveillance moléculaire des tiques en Guyane française, en Amérique du Sud, afin de caractériser la diversité des filaires transmis par les tiques dans cette région largement couverte de forêts tropicales denses. Sur 682 tiques appartenant à 22 espèces et 6 genres, 21 tiques (3.1 %) des espèces Amblyomma cajennense, A. oblongoguttatum, A. romitii, Ixodes luciae et Rhipicephalus sanguineus sensu lato étaient positives pour la détection des filaires. Le typage moléculaire et l'analyse phylogénétique ont permis d'identifier toutes ces filaires comme des membres de la lignée Dipetalonema. Alors que la filaire de R. sanguineus sensu lato est une espèce décrite, la filaire canine Cercopithifilaria bainae Almeida & Vicente, 1984, toutes les autres filaires détectées ici sont apparentées mais distinctes des espèces déjà connues au sein des genres Cercopithifilaria, Cruorifilaria et Dipetalonema. Leur spectre d'hôtes vertébrés pourrait inclure une grande variété de mammifères présents en Guyane française, mais les chiens, les capibaras et les opossums sont les hôtes candidats probables pour certaines de ces filaires. Bien que la détection de membres de la lignée Dipetalonema chez des tiques d'intérêt médical ou vétérinaire soit préoccupante, le risque de contracter une filariose à tiques est encore largement inconnu. La pathogénicité de ces filaires à tiques, leur épidémiologie, leurs cycles de développement et les mécanismes de transmission par les espèces de tiques sud-américaines doivent maintenant être étudiés plus en détail.


Subject(s)
Dipetalonema , Dog Diseases , Filarioidea , Ixodes , Tick-Borne Diseases , Animals , Dogs , French Guiana/epidemiology , Phylogeny , Dog Diseases/parasitology , Filarioidea/genetics , Ixodes/parasitology , Tick-Borne Diseases/parasitology , Mammals
4.
Curr Biol ; 33(14): 3041-3047.e4, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37392744

ABSTRACT

Most terrestrial animals naturally accumulate electrostatic charges, meaning that they will generate electric forces that interact with other charges in their environment, including those on or within other organisms. However, how this naturally occurring static electricity influences the ecology and life history of organisms remains largely unknown.1 Mammals, birds, and reptiles are known to carry appreciable net electrostatic charges, equivalent to surface potentials on the order of hundreds to tens of thousands of volts.1,2,3,4,5,6,7 Therefore, we hypothesize that their parasites, such as ticks, are passively attracted onto their surfaces by electrostatic forces acting across air gaps. This biophysical mechanism is proposed by us to assist these ectoparasites in making contact with their hosts, increasing their effective "reach" because they are otherwise incapable of jumping. Herein, experimental and theoretical evidence show that the tick Ixodes ricinus (Figure 1A) can close the gap to their hosts using ecologically relevant electric fields. We also find that this electrostatic interaction is not significantly influenced by the polarity of the electric field, revealing that the mechanism of attraction relies upon induction of an electrical polarization within the tick, as opposed to a static charge on its surface. These findings open a new dimension to our understanding of how ticks, and possibly many other terrestrial organisms, find and attach to their hosts or vectors. Furthermore, this discovery may inspire novel solutions for mitigating the notable and often devastating economic, social, and public health impacts of ticks on humans and livestock.8,9,10,11,12,13,14,15.


Subject(s)
Ixodes , Animals , Humans , Static Electricity , Ixodes/parasitology , Ecology , Mammals , Birds
5.
Ticks Tick Borne Dis ; 14(6): 102221, 2023 11.
Article in English | MEDLINE | ID: mdl-37406478

ABSTRACT

Babesia microti is a tick-transmitted protozoan parasite of wildlife that can also cause serious disease in humans. It is now well established that B. microti represents an assemblage of different strains or species, only some of which are important zoonotic pathogens. Therefore, in order to assess the potential public health risk associated with B. microti in any given location, it is important to determine the strains that are present. This is the first study on the presence and identity of B. microti in Ireland. Overall, 314 wood mice (Apodemus sylvaticus), 243 bank voles (Myodes glareolus) and 634 questing Ixodes ricinus nymphs collected in various locations across Ireland were screened for the presence of B. microti by metabarcoding and nested PCR, respectively. Overall 8 rodent spleen samples (1.4%) were positive for B. microti, while all tick samples tested negative. Rodent isolates were identified as the 'Munich' strain which rarely causes human disease and is chiefly transmitted by the mouse tick, Ixodes trianguliceps. Together with reports from the UK these results suggest that B. microti does not represent a significant public health risk in Britain or Ireland.


Subject(s)
Babesia microti , Ixodes , Animals , Humans , Mice , Babesia microti/genetics , Ireland/epidemiology , Ixodes/parasitology , Animals, Wild , Murinae , Arvicolinae
6.
J Med Entomol ; 60(5): 1099-1107, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37348952

ABSTRACT

Rapid environmental change in Alaska and other regions of the Arctic and sub-Arctic has raised concerns about increasing human exposure to ticks and the pathogens they carry. We tested a sample of ticks collected through a combination of passive and active surveillance from humans, domestic animals, and wildlife hosts in Alaska for a panel of the most common tick-borne pathogens in the contiguous United States to characterize the diversity of microbes present in this region. We tested 189 pooled tick samples collected in 2019-2020 for Borrelia spp., Anaplasma spp., Ehrlichia spp., and Babesia spp. using a multiplex PCR amplicon sequencing assay. We found established populations of Ixodes angustus Neumann (Acari: Ixodidae), Ixodes uriae White (Acari: Ixodidae), and Haemaphysalis leporispalustris Packard (Acari: Ixodidae) in Alaska, with I. angustus found on a variety of hosts including domestic companion animals (dogs and cats), small wild mammals, and humans. Ixodes angustus were active from April through October with peaks in adult and nymphal activity observed in summer months (mainly July). Although no known human pathogens were detected, Babesia microti-like parasites and candidatus Ehrlichia khabarensis were identified in ticks and small mammals. The only human pathogen detected (B. burgdorferi s.s.) was found in a tick associated with a dog that had recently traveled to New York, where Lyme disease is endemic. This study highlights the value of a combined passive and active tick surveillance system to detect introduced tick species and pathogens and to assess which tick species and microbes are locally established.


Subject(s)
Cat Diseases , Dog Diseases , Ixodes , Ixodidae , Tick-Borne Diseases , Animals , Humans , Cats , Dogs , Alaska , Cat Diseases/parasitology , Watchful Waiting , Dog Diseases/parasitology , Ixodes/parasitology , Ixodidae/parasitology , Animals, Domestic , Ehrlichia , Mammals , Tick-Borne Diseases/epidemiology
7.
Microbiol Spectr ; 11(3): e0140423, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37184407

ABSTRACT

Ticks in the family Ixodidae are important vectors of zoonoses, including Lyme disease (LD), which is caused by spirochete bacteria from the Borreliella (Borrelia) burgdorferi sensu lato complex. The blacklegged tick (Ixodes scapularis) continues to expand across Canada, creating hot spots of elevated LD risk at the leading edge of its expanding range. Current efforts to understand the risk of pathogen transmission associated with I. scapularis in Canada focus primarily on targeted screens, while natural variation in the tick microbiome remains poorly understood. Using multiomics consisting of 16S metabarcoding and ribosome-depleted, whole-shotgun RNA transcriptome sequencing, we examined the microbial communities associated with adult I. scapularis (n = 32), sampled from four tissue types (whole tick, salivary glands, midgut, and viscera) and three geographical locations within a LD hot spot near Kingston, Ontario, Canada. The communities consisted of both endosymbiotic and known or potentially pathogenic microbes, including RNA viruses, bacteria, and a Babesia sp. intracellular parasite. We show that ß-diversity is significantly higher between the bacterial communities of individual tick salivary glands and midguts than that of whole ticks. Linear discriminant analysis effect size (LEfSe) determined that the three potentially pathogenic bacteria detected by V4 16S rRNA sequencing also differed among dissected tissues only, including a Borrelia strain from the B. burgdorferi sensu lato complex, Borrelia miyamotoi, and Anaplasma phagocytophilum. Importantly, we find coinfection of I. scapularis by multiple microbes, in contrast to diagnostic protocols for LD, which typically focus on infection from a single pathogen of interest (B. burgdorferi sensu stricto). IMPORTANCE As a vector of human health concern, blacklegged ticks (Ixodes scapularis) transmit pathogens that cause tick-borne diseases (TBDs), including Lyme disease (LD). Several hot spots of elevated LD risk have emerged across Canada as I. scapularis expands its range. Focusing on a hot spot in southeastern Ontario, we used high-throughput sequencing to characterize the microbiome of whole ticks and dissected salivary glands and midguts. Compared with whole ticks, salivary glands and midguts were more diverse and associated with distinct bacterial communities that are less dominated by Rickettsia endosymbiont bacteria and are enriched for pathogenic bacteria, including a B. burgdorferi sensu lato-associated Borrelia sp., Borrelia miyamotoi, and Anaplasma phagocytophilum. We also found evidence of coinfection of I. scapularis by multiple pathogens. Overall, our study highlights the challenges and opportunities associated with the surveillance of the microbiome of I. scapularis for pathogen detection using metabarcoding and metatranscriptome approaches.


Subject(s)
Anaplasma phagocytophilum , Borrelia burgdorferi , Borrelia , Coinfection , Ixodes , Lyme Disease , Microbiota , Animals , Humans , Ixodes/genetics , Ixodes/microbiology , Ixodes/parasitology , Ontario/epidemiology , Multiomics , RNA, Ribosomal, 16S/genetics , Coinfection/epidemiology , Disease Hotspot , Borrelia/genetics , Borrelia burgdorferi/genetics , Anaplasma phagocytophilum/genetics
8.
MMWR Morb Mortal Wkly Rep ; 72(11): 273-277, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36928071

ABSTRACT

Babesiosis is a tickborne disease caused by intraerythrocytic Babesia parasites. In the United States, most babesiosis cases are caused by Babesia microti, transmitted from bites of blacklegged ticks, Ixodes scapularis, in northeastern and midwestern states. Transmission can also occur through blood transfusions, transplantation of organs from infected donors, or congenital (mother-to-child) transmission (1). Babesia infection can be asymptomatic or cause mild to severe illness that can be fatal. Overall, U.S. tickborne disease cases have increased 25%, from 40,795 reported in 2011 to 50,856 in 2019 (2). Babesiosis trends were assessed in 10 states* where babesiosis was reportable during 2011-2019. Incidence increased significantly in Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont (p<0.001), with the largest increases reported in Vermont (1,602%, from two to 34 cases), Maine (1,422%, from nine to 138), New Hampshire (372%, from 13 to 78), and Connecticut (338%, from 74 to 328). Unlike the other seven states, Maine, New Hampshire, and Vermont, were not included as states with endemic disease in previous CDC babesiosis surveillance summaries. These three states should now be considered to have endemic transmission comparable to that in other high-incidence states; they have consistently identified newly acquired cases every year during 2011-2019 and documented presence of Babesia microti in the associated tick vector (3). Because incidence in Northeastern states, including Maine, New Hampshire, and Vermont, is increasing, tick prevention messaging, provider education, and awareness of infection risk among travelers to these states should be emphasized.


Subject(s)
Babesia microti , Babesiosis , Ixodes , Animals , United States/epidemiology , Humans , Female , Babesiosis/epidemiology , Infectious Disease Transmission, Vertical , Ixodes/parasitology , Connecticut/epidemiology
9.
Parasit Vectors ; 16(1): 3, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36604731

ABSTRACT

BACKGROUND: Trypanosomes are protozoan parasites of vertebrates that are of medical and veterinary concern. A variety of blood-feeding invertebrates have been identified as vectors, but the role of ticks in trypanosome transmission remains unclear. METHODS: In this study, we undertook extensive molecular screening for the presence and genetic diversity of trypanosomes in field ticks. RESULTS: Examination of 1089 specimens belonging to 28 tick species from Europe and South America led to the identification of two new trypanosome strains. The prevalence may be as high as 4% in tick species such as the castor bean tick Ixodes ricinus, but we found no evidence of transovarial transmission. Further phylogenetic analyses based on 18S rRNA, EF1-α, hsp60 and hsp85 gene sequences revealed that different tick species, originating from different continents, often harbour phylogenetically related trypanosome strains and species. Most tick-associated trypanosomes cluster in a monophyletic clade, the Trypanosoma pestanai clade, distinct from clades of trypanosomes associated with transmission by other blood-feeding invertebrates. CONCLUSIONS: These observations suggest that ticks may be specific arthropod hosts for trypanosomes of the T. pestanai clade. Phylogenetic analyses provide further evidence that ticks may transmit these trypanosomes to a diversity of mammal species (including placental and marsupial species) on most continents.


Subject(s)
Ixodes , Trypanosoma , Animals , Ixodes/parasitology , Phylogeny , Trypanosoma/genetics
10.
Parasit Vectors ; 16(1): 27, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36694253

ABSTRACT

BACKGROUND: Hepatozoon spp. are tick-borne parasites causing subclinical to clinical disease in wild and domestic animals. Aim of this study was to determine Hepatozoon prevalence and species distribution among wild mammals and ticks in Europe. METHODS: Samples of wild mammals and ticks, originating from Austria, Bosnia and Herzegovina, Croatia, Belgium and the Netherlands, were tested with PCR to amplify a ~ 670-bp fragment of the small subunit ribosomal RNA gene. RESULTS: Of the 2801 mammal samples that were used for this study, 370 (13.2%) tested positive. Hepatozoon canis was detected in samples of 178 animals (3 Artiodactyla, 173 Carnivora, 1 Eulipotyphia, 1 Lagomorpha), H. martis in 125 (3 Artiodactyla, 122 Carnivora), H. sciuri in 13 (all Rodentia), Hepatozoon sp. in 47 (among which Hepatozoon sp. Vole isolate, all Rodentia) and H. ayorgbor in 4 (all Rodentia). Regarding origin, 2.9% (6/208) tested positive from Austria, 2.8% (1/36) from Bosnia and Herzegovina, 14.6% (173/1186) from Croatia and 13.9% (190/1371) from Belgium/the Netherlands. Of the 754 ticks collected, 0.0% (0/35) Hyalomma sp., 16.0% (4/25) Dermacentor spp., 0.0% (0/23) Haemaphysalis spp., 5.3% (24/50) Ixodes and 1.4% (3/221) Rhipicephalus spp. tested positive for Hepatozoon (4.2%; 32/754), most often H. canis (n = 22). CONCLUSIONS: Hepatozoon canis is most present in mammals (especially in Carnivora such as gray wolves and golden jackals) and ticks, followed by H. martis, which was found merely in stone martens and pine martens. None of the rodent-associated Hepatozoon spp. were detected in the ticks, suggesting the possible implication of other arthropod species or non-vectorial routes in the transmission cycle of the hemoprotozoans in rodents. Our findings of H. canis in ticks other than R. sanguineus add to the observation that other ticks are also involved in the life cycle of Hepatozoon. Now that presence of Hepatozoon has been demonstrated in red foxes, gray wolves, mustelids and rodents from the Netherlands and/or Belgium, veterinary clinicians should be aware of the possibility of spill-over to domestic animals, such as dogs.


Subject(s)
Coccidiosis , Eucoccidiida , Ixodes , Ixodidae , Mustelidae , Wolves , Dogs , Animals , Coccidiosis/epidemiology , Coccidiosis/veterinary , Coccidiosis/parasitology , Eucoccidiida/genetics , Ixodes/parasitology , Ixodidae/parasitology , Foxes/parasitology , Europe/epidemiology , Rodentia , Animals, Domestic
11.
J Med Entomol ; 59(1): 363-371, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34642760

ABSTRACT

Tick-borne pathogens are contributing factors for the increased incidence of vector-borne diseases throughout the world, including Lyme borreliosis, one of the most prevalent spirochetes belonging to the Borrelia burgdorferi sensu lato group. The present study focused on the detection of Borrelia species from hard ticks collected at U.S. Army Garrison Humphreys, Republic of Korea (ROK), using molecular and genotypic analyses. Tick-borne disease surveillance was conducted from January to December, 2018-2019. A total of 24,281 ticks (2 genera and 5 species) were collected from road-killed Korean Water deer (KWD) and by tick drag. Haemaphysalis longicornis (92.0%) was the most commonly collected species, followed by Haemaphysalis flava (4.9%), Ixodes nipponensis (3.1%), Haemaphysalis phasiana (0.07%), and Haemaphysalis japonica (<0.01%). The ospA gene sequences of Borrelia afzelii were detected in 12/529 pools of I. nipponensis. Three and one pools were positive for B. afzelii and Borrelia miyamotoi, respectively, using the 16s rRNA gene. None of the pools of Haemaphysalis ticks collected from KWD or by tick drag were positive for Borrelia species. I. nipponensis was collected throughout the year from KWD and from February to November by tick drag, suggesting that they were active throughout the year, and expanding the risk period for acquiring Lyme borreliosis and Borrelia relapsing fever in the ROK. This study assessed disease risk factors associated with the prevalence of Lyme disease in ticks collected from KWD and by tick drag using molecular analysis. These results provide an understanding and awareness into the prevalence and molecular characteristics of Borrelia species in the ROK.


Subject(s)
Borrelia , Deer/parasitology , Animals , Borrelia/genetics , Borrelia/isolation & purification , Borrelia burgdorferi Group/genetics , Borrelia burgdorferi Group/isolation & purification , DNA, Protozoan , Ixodes/parasitology , Ixodidae/parasitology , Lyme Disease/epidemiology , RNA, Ribosomal, 16S/genetics , Republic of Korea/epidemiology , Tick Infestations/veterinary , Tick-Borne Diseases/epidemiology
12.
mSphere ; 6(5): e0068221, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34585963

ABSTRACT

Tick-borne diseases have expanded over the last 2 decades as a result of shifts in tick and pathogen distributions. These shifts have significantly increased the need for accurate portrayal of real-time pathogen distributions and prevalence in hopes of stemming increases in human morbidity. Traditionally, pathogen distribution and prevalence have been monitored through case reports or scientific collections of ticks or reservoir hosts, both of which have challenges that impact the extent, availability, and accuracy of these data. Citizen science tick collections and testing campaigns supplement these data and provide timely estimates of pathogen prevalence and distributions to help characterize and understand tick-borne disease threats to communities. We utilized our national citizen science tick collection and testing program to describe the distribution and prevalence of four Ixodes-borne pathogens, Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Anaplasma phagocytophilum, and Babesia microti, across the continental United States. IMPORTANCE In the 21st century, zoonotic pathogens continue to emerge, while previously discovered pathogens continue to have changes within their distribution and prevalence. Monitoring these pathogens is resource intensive, requiring both field and laboratory support; thus, data sets are often limited within their spatial and temporal extents. Citizen science collections provide a method to harness the general public to collect samples, enabling real-time monitoring of pathogen distribution and prevalence.


Subject(s)
Anaplasma phagocytophilum/physiology , Babesia microti/physiology , Borrelia/physiology , Ixodes/physiology , Anaplasma phagocytophilum/isolation & purification , Animal Distribution , Animals , Babesia microti/isolation & purification , Borrelia/isolation & purification , Citizen Science , Host-Pathogen Interactions , Ixodes/microbiology , Ixodes/parasitology , Tick-Borne Diseases/transmission , United States
13.
Vet Parasitol ; 298: 109539, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34375806

ABSTRACT

Zoonotic babesiosis caused by Babesia divergens, B. microti and B. venatorum is a vector-borne protozoan zoonosis of increasing public health importance worldwide. A complex system of animal reservoirs including a wide range of mammals and a limited number of birds play a central role in maintaining the infection. Governed by the PRISMA guidelines, we conducted a systematic review and meta-analysis to determine the global prevalence, distribution and the diversity of zoonotic Babesia species in animal reservoirs. We pooled data using the random-effects model and determined quality of individual studies, heterogeneity and across study bias using the Joanna Briggs Institute critical appraisal instrument for prevalence studies, Cochran's Q-test and Egger's regression test respectively. Seventy nine studies from 29 countries reported a total 9311 positive cases of zoonotic Babesia infections from 46,649 animal reservoirs, yielding an overall estimated prevalence of 12.45% (95% CI: 10.09-15.27). Continental prevalence ranged between 8.55 (95% CI: 1.90-31.11) in Africa and 27.81% (95% CI: 21.25-35.48) in North America. Estimated prevalence in relation to country income levels, methods of diagnosis, study periods, sample sizes and reservoir categories ranged between 4.97 (95% CI: 1.80-13.00) and 30.12% (95% CI: 22.49-39.04). B. divergens was the most prevalent (12.50%, 95% CI: 8.30-18.39) of the 3 species of zoonotic Babesia reported in animal reservoirs. Zoonotic Babesia infections are prevalent in animal reservoirs across the world with the highest prevalence in North America and domestic animals. B. microti had the widest geographic distribution. We recommend tick control as well as strategic and prophylactic treatment against these parasites in animal reservoirs to curtail the economic losses associated with zoonotic Babesia species and possible transmission to humans.


Subject(s)
Babesia , Babesiosis , Biodiversity , Ixodes , Animals , Babesia/classification , Babesiosis/epidemiology , Babesiosis/parasitology , Ixodes/parasitology , Prevalence , Zoonoses/epidemiology , Zoonoses/parasitology
14.
Ticks Tick Borne Dis ; 12(6): 101800, 2021 11.
Article in English | MEDLINE | ID: mdl-34352531

ABSTRACT

Lyme borreliosis is a zoonotic tick-borne infection representing the most frequent vector-borne disease in the northern hemisphere. The Mediterranean rim is generally described as unsuitable for the European vector, Ixodes ricinus. We conducted an epidemiological study to assess whether I. ricinus was present and study its infection status for tick-borne bacteria. Ticks originating from southeastern France were obtained from flagging sampling and removed from animals and tick-bitten patients. Species level identification used morphological keys and MALDI-TOF MS. Quantitative PCR and sequencing assays were used to detect and identify tick-associated bacteria (Borrelia, Rickettsia, Anaplasmataceae, Bartonella, Coxiella burnetii) in each specimen. A total of 1232 ticks were collected in several localities. Among these, 863 were identified as I. ricinus (70%). Bacterial screening allowed identification of Lyme group Borrelia among I. ricinus ticks originating from various regional areas. Other emerging tick-borne pathogens like Borrelia miyamotoi and Rickettsia species were also detected. The Alpes-Maritimes region, part of the French Riviera, harbours I. ricinus ticks infected with Lyme group Borrelia and several other tick-borne bacterial agents. Clinicians and outdoor activity participants should be aware of the local Lyme borreliosis transmission risk.


Subject(s)
Animal Distribution , Communicable Diseases, Emerging/epidemiology , Ixodes , Tick-Borne Diseases/epidemiology , Animals , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/parasitology , Communicable Diseases, Emerging/virology , France/epidemiology , Ixodes/microbiology , Ixodes/parasitology , Ixodes/physiology , Ixodes/virology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/virology
15.
Parasit Vectors ; 14(1): 348, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34210355

ABSTRACT

BACKGROUND: Lyme borreliosis (LB) is the most common vector-borne disease in Europe. Monitoring changes in the prevalence of different Borrelia species in ticks may be an important indicator of risk assessment and of differences in pathogenicity in humans. The objective of our study was to assess the prevalence, co-infection and distribution of Borrelia and Babesia species in ticks removed from humans in a large sample collected during a study period of 4 years. METHODS: The ticks were collected throughout Poland from March to November over 4-year period from 2016 to 2019. All ticks (n = 1953) were morphologically identified in terms of species and developmental stage. Molecular screening for Borrelia and Babesia by amplification of the flagellin gene (flaB) or 18S rRNA marker was performed. Pathogen identity was confirmed by Sanger sequencing or PCR-restriction fragment length polymorphism analysis. RESULTS: The ticks removed from humans in Poland during this study belonged to two species: Ixodes ricinus (97%) and Dermacentor reticulatus (3%). High Borrelia prevalence (25.3%), including B. miyamotoi (8.4%), was confirmed in Ixodes ricinus ticks removed from humans, as was the change in frequency of occurrence of Borrelia species during the 4-year study. Despite Babesia prevalence being relatively low (1.3%), the majority of tested isolates are considered to be pathogenic to humans. Babesia infection was observed more frequently among Borrelia-positive ticks (2.7%) than among ticks uninfected with Borrelia (0.8%). The most frequent dual co-infections were between Borrelia afzelii and Babesia microti. The presence of Borrelia was also confirmed in D. reticulatus (12.7%); however the role of these ticks in spirochete transmission to susceptible hosts is still unclear. CONCLUSIONS: Although the overall risk of developing LB after a tick bite is low in Europe, knowledge of the prevalence and distribution of Borrelia and Babesia species in ticks might be an important indicator of the risk of both these tick-borne diseases.


Subject(s)
Babesia/genetics , Babesiosis/epidemiology , Borrelia/genetics , Coinfection , Ixodes/microbiology , Ixodes/parasitology , Lyme Disease/epidemiology , Tick-Borne Diseases/epidemiology , Animals , Babesia/isolation & purification , Babesia/pathogenicity , Borrelia/isolation & purification , Borrelia/pathogenicity , Coinfection/microbiology , Coinfection/parasitology , Female , Humans , Longitudinal Studies , Male , Poland/epidemiology , Prevalence , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology
16.
PLoS Pathog ; 17(7): e1009725, 2021 07.
Article in English | MEDLINE | ID: mdl-34265024

ABSTRACT

In this study, we examined the relationship between c-di-GMP and its only known effector protein, PlzA, in Borrelia burgdorferi during the arthropod and mammalian phases of the enzootic cycle. Using a B. burgdorferi strain expressing a plzA point mutant (plzA-R145D) unable to bind c-di-GMP, we confirmed that the protective function of PlzA in ticks is c-di-GMP-dependent. Unlike ΔplzA spirochetes, which are severely attenuated in mice, the plzA-R145D strain was fully infectious, firmly establishing that PlzA serves a c-di-GMP-independent function in mammals. Contrary to prior reports, loss of PlzA did not affect expression of RpoS or RpoS-dependent genes, which are essential for transmission, mammalian host-adaptation and murine infection. To ascertain the nature of PlzA's c-di-GMP-independent function(s), we employed infection models using (i) host-adapted mutant spirochetes for needle inoculation of immunocompetent mice and (ii) infection of scid mice with in vitro-grown organisms. Both approaches substantially restored ΔplzA infectivity, suggesting that PlzA enables B. burgdorferi to overcome an early bottleneck to infection. Furthermore, using a Borrelia strain expressing a heterologous, constitutively active diguanylate cyclase, we demonstrate that 'ectopic' production of c-di-GMP in mammals abrogates spirochete virulence and interferes with RpoS function at the post-translational level in a PlzA-dependent manner. Structural modeling and SAXS analysis of liganded- and unliganded-PlzA revealed marked conformational changes that underlie its biphasic functionality. This structural plasticity likely enables PlzA to serve as a c-di-GMP biosensor that in its respective liganded and unliganded states promote vector- and host-adaptation by the Lyme disease spirochete.


Subject(s)
Adaptation, Physiological/physiology , Bacterial Proteins/metabolism , Borrelia burgdorferi/metabolism , Borrelia burgdorferi/pathogenicity , Virulence/physiology , Animals , Cyclic GMP/analogs & derivatives , Female , Host-Pathogen Interactions/physiology , Immune Evasion/physiology , Ixodes/parasitology , Lyme Disease/metabolism , Mice
17.
Ticks Tick Borne Dis ; 12(5): 101786, 2021 09.
Article in English | MEDLINE | ID: mdl-34280697

ABSTRACT

Babesia canis, a widely distributed European tick-borne protozoan haemoparasite, causes canine babesiosis, the most important tick-borne disease afflicting dogs worldwide. The meadow tick, Dermacentor reticulatus, is considered to be the primary vector of this parasite in central Europe. Females of the more broadly distributed and medically important castor bean tick, Ixodes ricinus, also commonly feed upon dogs, but their role in the enzootic transmission cycle of B. canis is unclear. Here, we screened 1,598 host-seeking I. ricinus ticks collected from two different ecosystems, forest stands vs. urban recreational forests, for the presence of B. canis DNA. Ticks were sampled during their two seasonal peaks of activity, spring (May/June) and late summer (September). Babesia species were identified by amplification and sequencing of a hypervariable 18S rRNA gene fragment. Babesia canis was the only piroplasm detected in 13% of 200 larvae and 8.2% of 324 nymphs in the forest ecosystems. In urban recreational areas, B. canis DNA was found in 1.5% of 460 nymphs, 3.5% of 289 females and 3.2% of 280 males. Additionally, three samples, including one female, one male, and one nymph, were co-infected with B. venatorum and one nymph with B. divergens or B. capreoli. Our findings implicate that B. canis can be transmitted transovarially and maintained transstadially within populations of I. ricinus, but the vector competence of I. ricinus for transmitting B. canis remains to be investigated.


Subject(s)
Babesia/isolation & purification , DNA, Protozoan/analysis , Ixodes/parasitology , Animals , Cities , Ecosystem , Forests , Poland
18.
J Med Entomol ; 58(6): 2484-2487, 2021 11 09.
Article in English | MEDLINE | ID: mdl-33939830

ABSTRACT

Limited evidence suggests that the cervid parasite, Babesia odocoilei, is transovarially transmitted from adult female Ixodes scapularis Say to offspring. The prevalence of B. odocoilei in unfed larval I. scapularis and whether vertical transmission is crucial to pathogen maintenance are currently unknown. To investigate these questions, 275 unfed larvae from two Wisconsin counties were tested for B. odocoilei genetic material. Sixteen of 29 pools were positive for the parasite. The maximum likelihood estimation for overall larval infection prevalence was 7.8% (95% confidence interval: 4.7-12). This vertically acquired infection appears to be sustained transstadially in nymphal ticks the following year; however, our relatively small sample and replicate size warrants additional evaluation. Our study revealed further evidence of vertical transmission, a low and consistent infection prevalence in larvae, and the potential importance of vertical transmission in B. odocoilei maintenance.


Subject(s)
Babesia/physiology , Ixodes/parasitology , Animals , Deer/parasitology , Female , Ixodes/growth & development , Larva/growth & development , Larva/parasitology , Pupa/growth & development , Pupa/parasitology , Wisconsin
19.
Parasit Vectors ; 14(1): 260, 2021 May 17.
Article in English | MEDLINE | ID: mdl-34001256

ABSTRACT

BACKGROUND: The universal nature of the human-companion animal relationship and their shared ticks and tick-borne pathogens offers an opportunity for improving public and veterinary health surveillance. With this in mind, we describe the spatiotemporal trends for blacklegged tick (Ixodes scapularis) submissions from humans and companion animals in Ontario, along with pathogen prevalence. METHODS: We tested tick samples submitted through passive surveillance (2011-2017) from humans and companion animals for Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum and Babesia microti. We describe pathogen prevalence in ticks from humans and from companion animals and constructed univariable Poisson and negative binomial regression models to explore the spatiotemporal relationship between the rates of tick submissions by host type. RESULTS: During the study, there were 17,230 blacklegged tick samples submitted from humans and 4375 from companion animals. Tick submission rates from companion animals were higher than expected in several public health units (PHUs) lacking established tick populations, potentially indicating newly emerging populations. Pathogen prevalence in ticks was higher in PHUs where established blacklegged tick populations exist. Borrelia burgdorferi prevalence was higher in ticks collected from humans (maximum likelihood estimate, MLE = 17.5%; 95% confidence interval, CI 16.97-18.09%) than from companion animals (9.9%, 95% CI 9.15-10.78%). There was no difference in pathogen prevalence in ticks by host type for the remaining pathogens, which were found in less than 1% of tested ticks. The most common co-infection B. burgdorferi + B. miyamotoi occurred in 0.11% of blacklegged ticks from humans and animals combined. Borrelia burgdorferi prevalence was higher in unengorged (21.9%, 95% CI 21.12-22.65%) than engorged ticks (10.0%, 95% CI 9.45-10.56%). There were no consistent and significant spatiotemporal relationships detected via regression models between the annual rates of submission of each host type. CONCLUSIONS: While B. burgdorferi has been present in blacklegged ticks in Ontario for several decades, other tick-borne pathogens are also present at low prevalence. Blacklegged tick and pathogen surveillance data can be used to monitor risk in human and companion animal populations, and efforts are under consideration to unite surveillance efforts for the different target populations.


Subject(s)
Ixodes/microbiology , Ixodes/parasitology , Pets/microbiology , Pets/parasitology , Anaplasma phagocytophilum/isolation & purification , Anaplasma phagocytophilum/pathogenicity , Animals , Babesia microti/isolation & purification , Babesia microti/pathogenicity , Borrelia/isolation & purification , Borrelia/pathogenicity , Borrelia burgdorferi/isolation & purification , Borrelia burgdorferi/pathogenicity , Coinfection/microbiology , Coinfection/parasitology , Female , Humans , Male , Ontario , Spatio-Temporal Analysis
20.
J Med Entomol ; 58(4): 1891-1899, 2021 07 16.
Article in English | MEDLINE | ID: mdl-33855361

ABSTRACT

Borrelia burgdorferi, the spirochete that causes Lyme disease, is endemic and widespread in Wisconsin. Research in the northeastern United States has revealed a positive association between Babesia microti, the main pathogen that causes babesiosis in humans, and Bo. burgdorferi in humans and in ticks. This study was conducted to examine associations between the disease agents in the Upper midwestern United States. Ixodes scapularis Say nymphs (N = 2,858) collected between 2015 and 2017 from nine locations in Wisconsin were tested for Babesia spp. and Borrelia spp. using real-time PCR. Two species of Babesia were detected; Ba. microti and Babesia odocoilei (a parasite of members of the family Cervidae). Prevalence of infection at the nine locations ranged from 0 to 13% for Ba. microti, 11 to 31% for Bo. burgdorferi sensu stricto, and 5.7 to 26% for Ba. odocoilei. Coinfection of nymphs with Bo. burgdorferi and Ba. odocoilei was detected in eight of the nine locations and significant positive associations were observed in two of the eight locations. The prevalence of nymphal coinfection with both and Bo. burgdorferi and Ba. microti ranged from 0.81 to 6.5%. These two pathogens were significantly positively associated in one of the five locations where both pathogens were detected. In the other four locations, the observed prevalence of coinfection was higher than expected in all but one site-year. Clinics and healthcare providers should be aware of the association between Ba. microti and Bo. burgdorferi pathogens when treating patients who report tick bites.


Subject(s)
Babesia/isolation & purification , Borrelia burgdorferi/isolation & purification , Coinfection , Ixodes , Animals , Babesiosis/transmission , Ixodes/microbiology , Ixodes/parasitology , Lyme Disease/transmission , Nymph/microbiology , Nymph/parasitology , Prevalence , Tick Bites/microbiology , Tick Bites/parasitology , Wisconsin
SELECTION OF CITATIONS
SEARCH DETAIL
...