Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 670
Filter
1.
Biochem Biophys Res Commun ; 715: 149963, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38676999

ABSTRACT

Keloids represent a prevalent dermal fibroproliferative disorder. They only affect humans and exhibit several tumor characteristics, such as excessive extracellular matrix (ECM) deposition, which usually occurs after skin injury. Kreotoxin type A (KTA) can inhibit the release of acetylcholine, and thereby inhibit the proliferation of keloid fibroblasts and reducing the formation of scars. Thus, KTA could be used as a therapeutic agent for keloids. However, the mechanisms of action of KTA in keloid treatment remain unclear. In this study, we aimed to explore the underlying mechanisms of action of KTA in human keloid treatment using human tissue and a cell-based model. Integrative microarray analysis revealed that hypoxia-inducible factor 1-alpha (HIF-1α) expression was frequently upregulated in hypertrophic scar and keloid tissues, whereas it was downregulated in the KTA-treated samples. Furthermore, KTA addition to keloid-derived fibroblasts (KDFs) reduced the growth rate and viability, induced apoptosis, and decreased inflammation and oxidative stress in KDFs. However, overexpression of HIF-1α restored cell number and survival, decreased apoptosis, and promoted inflammation and oxidative stress in KTA-treated KDFs. Furthermore, KTA treatment reduced the expression of ECM proteins, including vascular endothelial growth factor (VEGF), collagen I and III, whereas HIF-1α overexpression abolished the effects of KTA on KDFs. In conclusion, our findings provide novel insights into the mechanisms of action of KTA as a potential therapeutic agent for keloids via modulating HIF-1α expression.


Subject(s)
Cell Proliferation , Down-Regulation , Fibroblasts , Hypoxia-Inducible Factor 1, alpha Subunit , Inflammation , Keloid , Humans , Keloid/metabolism , Keloid/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , Cell Proliferation/drug effects , Down-Regulation/drug effects , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Cells, Cultured , Apoptosis/drug effects
2.
Article in Chinese | MEDLINE | ID: mdl-38664034

ABSTRACT

Skin fibrosis diseases mainly include hypertrophic scar, keloid, and systemic sclerosis, etc. The main pathological features are excessive activation of fibroblasts and abnormal deposition of extracellular matrix. In recent years, studies have shown that aerobic glycolysis is closely related to the occurrence and development of skin fibrosis diseases. Drugs targeting aerobic glycolysis has provided new ideas for skin anti-fibrosis treatment. This article reviews the role of enzymes and products related to aerobic glycolysis in the occurrence and development of skin fibrosis diseases and the drugs targeting aerobic glycolysis for the treatment of skin fibrosis diseases.


Subject(s)
Fibrosis , Glycolysis , Humans , Fibrosis/metabolism , Fibrosis/pathology , Skin Diseases/metabolism , Skin Diseases/pathology , Skin Diseases/drug therapy , Skin/pathology , Skin/metabolism , Keloid/metabolism , Keloid/pathology , Keloid/drug therapy , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Scleroderma, Systemic/drug therapy
3.
Sci Rep ; 14(1): 8725, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38622256

ABSTRACT

Keloids are characterized by abnormal wound healing with excessive accumulation of extracellular matrix. Myofibroblasts are the primary contributor to extracellular matrix secretion, playing an essential role in the wound healing process. However, the differences between myofibroblasts involved in keloid formation and normal wound healing remain unclear. To identify the specific characteristics of keloid myofibroblasts, we initially assessed the expression levels of well-established myofibroblast markers, α-smooth muscle actin (α-SMA) and transgelin (TAGLN), in scar and keloid tissues (n = 63 and 51, respectively). Although myofibroblasts were present in significant quantities in keloids and immature scars, they were absent in mature scars. Next, we conducted RNA sequencing using myofibroblast-rich areas from keloids and immature scars to investigate the difference in RNA expression profiles among myofibroblasts. Among significantly upregulated 112 genes, KN motif and ankyrin repeat domains 4 (KANK4) was identified as a specifically upregulated gene in keloids. Immunohistochemical analysis showed that KANK4 protein was expressed in myofibroblasts in keloid tissues; however, it was not expressed in any myofibroblasts in immature scar tissues. Overexpression of KANK4 enhanced cell mobility in keloid myofibroblasts. Our results suggest that the KANK4-mediated increase in myofibroblast mobility contributes to keloid pathogenesis.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Humans , Keloid/metabolism , Myofibroblasts/metabolism , Cicatrix, Hypertrophic/metabolism , Fibroblasts/metabolism , Wound Healing/genetics
4.
Skin Res Technol ; 30(5): e13686, 2024 May.
Article in English | MEDLINE | ID: mdl-38682767

ABSTRACT

BACKGROUND: Our study aims to delineate the miRSNP-microRNA-gene-pathway interactions in the context of hypertrophic scars (HS) and keloids. MATERIALS AND METHODS: We performed a computational biology study involving differential expression analysis to identify genes and their mRNAs in HS and keloid tissues compared to normal skin, identifying key hub genes and enriching their functional roles, comprehensively analyzing microRNA-target genes and related signaling pathways through bioinformatics, identifying MiRSNPs, and constructing a pathway-based network to illustrate miRSNP-miRNA-gene-signaling pathway interactions. RESULTS: Our results revealed a total of 429 hub genes, with a strong enrichment in signaling pathways related to proteoglycans in cancer, focal adhesion, TGF-ß, PI3K/Akt, and EGFR tyrosine kinase inhibitor resistance. Particularly noteworthy was the substantial crosstalk between the focal adhesion and PI3K/Akt signaling pathways, making them more susceptible to regulation by microRNAs. We also identified specific miRNAs, including miRNA-1279, miRNA-429, and miRNA-302e, which harbored multiple SNP loci, with miRSNPs rs188493331 and rs78979933 exerting control over a significant number of miRNA target genes. Furthermore, we observed that miRSNP rs188493331 shared a location with microRNA302e, microRNA202a-3p, and microRNA20b-5p, and these three microRNAs collectively targeted the gene LAMA3, which is integral to the focal adhesion signaling pathway. CONCLUSIONS: The study successfully unveils the complex interactions between miRSNPs, miRNAs, genes, and signaling pathways, shedding light on the genetic factors contributing to HS and keloid formation.


Subject(s)
Cicatrix, Hypertrophic , Keloid , MicroRNAs , Polymorphism, Single Nucleotide , Signal Transduction , Humans , Keloid/genetics , Keloid/metabolism , Cicatrix, Hypertrophic/genetics , Cicatrix, Hypertrophic/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction/genetics , Computational Biology
5.
Exp Dermatol ; 33(5): e15088, 2024 May.
Article in English | MEDLINE | ID: mdl-38685820

ABSTRACT

Recently, the pathomechanisms of keloids have been extensively researched using transcriptomic analysis, but most studies did not consider the activity of keloids. We aimed to profile the transcriptomics of keloids according to their clinical activity and location within the keloid lesion, compared with normal and mature scars. Tissue samples were collected (keloid based on its activity (active and inactive), mature scar from keloid patients and normal scar (NS) from non-keloid patients). To reduce possible bias, all keloids assessed in this study had no treatment history and their location was limited to the upper chest or back. Multiomics assessment was performed by using single-cell RNA sequencing and multiplex immunofluorescence. Increased mesenchymal fibroblasts (FBs) was the main feature in keloid patients. Noticeably, the proportion of pro-inflammatory FBs was significantly increased in active keloids compared to inactive ones. To explore the nature of proinflammatory FBs, trajectory analysis was conducted and CCN family associated with mechanical stretch exhibited higher expression in active keloids. For vascular endothelial cells (VECs), the proportion of tip and immature cells increased in keloids compared to NS, especially at the periphery of active keloids. Also, keloid VECs highly expressed genes with characteristics of mesenchymal activation compared to NS, especially those from the active keloid center. Multiomics analysis demonstrated the distinct expression profile of active keloids. Clinically, these findings may provide the future appropriate directions for development of treatment modalities of keloids. Prevention of keloids could be possible by the suppression of mesenchymal activation between FBs and VECs and modulation of proinflammatory FBs may be the key to the control of active keloids.


Subject(s)
Fibroblasts , Keloid , Keloid/pathology , Keloid/metabolism , Humans , Fibroblasts/metabolism , Transcriptome , Endothelial Cells/metabolism , Female , Adult , Male , Gene Expression Profiling , Single-Cell Analysis
6.
J Gene Med ; 26(5): e3688, 2024 May.
Article in English | MEDLINE | ID: mdl-38686583

ABSTRACT

BACKGROUND: Despite the interest in mesenchymal stem cells (MSC), their potential to treat abnormal scarring, especially keloids, is yet to be described. The present study aimed to investigate the therapeutic potential of exosomes derived from human bone marrow MSCs (hBMSC-Exos) in alleviating keloid formation. METHODS: Exosomes were isolated from hBMSC, and keloid fibroblasts (KFs) were treated with hBMSC-Exos. Cell counting kit-8, wound healing, transwell invasion, immunofluorescence, and western blot assays were conducted to study the malignant phenotype of KFs. Mice were induced with keloids and treated with hBMSC-Exos. The effect of hBMSC-Exos on keloid formation in vivo was evaluated by hematoxylin and eosin staining, Masson staining, immunohistochemistry, and western blotting. The GSE182192 dataset was screened for differentially expressed long non-coding RNA during keloid formation. Next, maternally expressed gene 3 (MEG3) was knocked down in hBMSC to obtain hBMSC-Exossh-MEG3. The molecular mechanism of MEG3 was investigated by bioinformatic screening, and the relationship between MEG3 and TP53 or MCM5 was verified. RESULTS: hBMSC-Exos inhibited the malignant proliferation, migration, and invasion of KFs at same time as promoting their apoptosis, Moreover, hBMSC-Exos reduced the expression of fibrosis- and collagen-related proteins in the cells and the formation of keloids caused by KFs. The reduction in MEG3 enrichment in hBMSC-Exos weakened the inhibitory effect of hBMSC-Exos on KF activity. hBMSC-Exos delivered MEG3 to promote MCM5 transcription by TP53 in KFs. Overexpression of MCM5 in KFs reversed the effects of hBMSC-Exossh-MEG3, leading to reduced KF activity. CONCLUSIONS: hBMSC-Exos delivered MEG3 to promote the protein stability of TP53, thereby activating MCM5 and promoting KF activity.


Subject(s)
Exosomes , Fibroblasts , Keloid , Mesenchymal Stem Cells , RNA, Long Noncoding , Tumor Suppressor Protein p53 , Animals , Female , Humans , Male , Mice , Cell Proliferation , Disease Models, Animal , Exosomes/metabolism , Exosomes/genetics , Fibroblasts/metabolism , Gene Expression Regulation , Keloid/metabolism , Keloid/genetics , Keloid/pathology , Keloid/therapy , Mesenchymal Stem Cells/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167125, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508477

ABSTRACT

Scarring, a prevalent issue in clinical settings, is characterized by the excessive generation of extracellular matrix within the skin tissue. Among the numerous regulatory factors implicated in fibrosis across various organs, the apelin/APJ axis has emerged as a potential regulator of fibrosis. Given the shared attribute of heightened extracellular matrix production between organ fibrosis and scarring, we hypothesize that the apelin/APJ axis also plays a regulatory role in scar development. In this study, we examined the expression of apelin and APJ in scar tissue, normal skin, and fibroblasts derived from these tissues. We investigated the impact of the hypoxic microenvironment in scars on apelin/APJ expression to identify the transcription factors influencing apelin/APJ expression. Through overexpressing or knocking down apelin/APJ expression, we observed their effects on fibroblast secretion of extracellular matrix proteins. We further validated these effects in animal experiments while exploring the underlying mechanisms. Our findings demonstrated that the apelin/APJ axis is expressed in fibroblasts from keloid, hypertrophic scar, and normal skin. The regulation of apelin/APJ expression by the hypoxic environment in scars plays a significant role in hypertrophic scar and keloid development. This regulation promotes extracellular matrix secretion through upregulation of TGF-ß1 expression via the PI3K/Akt/CREB1 pathway.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Animals , Apelin/genetics , Apelin/metabolism , Apelin Receptors/genetics , Apelin Receptors/metabolism , Fibrosis , Keloid/metabolism , Phosphatidylinositol 3-Kinases , Humans
8.
Adv Sci (Weinh) ; 11(15): e2308253, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38353381

ABSTRACT

Pathological dermal scars such as keloids present significant clinical challenges lacking effective treatment options. Given the distinctive feature of highly stiffened scar tissues, deciphering how matrix mechanics regulate pathological progression can inform new therapeutic strategies. Here, it is shown that pathological dermal scar keloid fibroblasts display unique metamorphoses to stiffened matrix. Compared to normal fibroblasts, keloid fibroblasts show high sensitivity to stiffness rather than biochemical stimulation, activating cytoskeletal-to-nuclear mechanosensing molecules. Notably, keloid fibroblasts on stiff matrices exhibit nuclear softening, concomitant with reduced lamin A/C expression, and disrupted anchoring of lamina-associated chromatin. This nuclear softening, combined with weak adhesion and high contractility, facilitates the invasive migration of keloid fibroblasts through confining matrices. Inhibiting lamin A/C-driven nuclear softening, via lamin A/C overexpression or actin disruption, mitigates such invasiveness of keloid fibroblasts. These findings highlight the significance of the nuclear mechanics of keloid fibroblasts in scar pathogenesis and propose lamin A/C as a potential therapeutic target for managing pathological scars.


Subject(s)
Keloid , Humans , Keloid/etiology , Keloid/metabolism , Keloid/pathology , Lamin Type A/metabolism , Fibroblasts/metabolism
9.
Adv Sci (Weinh) ; 11(14): e2305489, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38311578

ABSTRACT

Keloids are benign fibroproliferative tumors that severely diminish the quality of life due to discomfort, dysfunction, and disfigurement. Recently, ultrasound technology as a noninvasive adjuvant therapy is developed to optimize treatment protocols. However, the biophysical mechanisms have not yet been fully elucidated. Here, it is proposed that piezo-type mechanosensitive ion channel component 1 (Piezo1) plays an important role in low-frequency sonophoresis (LFS) induced mechanical transduction pathways that trigger downstream cellular signaling processes. It is demonstrated that patient-derived primary keloid fibroblasts (PKF), NIH 3T3, and HFF-1 cell migration are inhibited, and PKF apoptosis is significantly increased by LFS stimulation. And the effects of LFS is diminished by the application of GsMTx-4, the selective inhibitor of Piezo1, and the knockdown of Piezo1. More importantly, the effects of LFS can be imitated by Yoda1, an agonist of Piezo1 channels. Establishing a patient-derived xenograft keloid implantation mouse model further verified these results, as LFS significantly decreased the volume and weight of the keloids. Moreover, blocking the Piezo1 channel impaired the effectiveness of LFS treatment. These results suggest that LFS inhibits the malignant characteristics of keloids by activating the Piezo1 channel, thus providing a theoretical basis for improving the clinical treatment of keloids.


Subject(s)
Keloid , Animals , Humans , Mice , Fibroblasts/metabolism , Ion Channels/metabolism , Keloid/metabolism , Keloid/therapy , Quality of Life , Signal Transduction
10.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38396801

ABSTRACT

It is unclear whether normal human skin tissue or abnormal scarring are photoreceptive. Therefore, this study investigated photosensitivity in normal skin tissue and hypertrophic scars. The expression of opsins, which are photoreceptor proteins, in normal dermal fibroblasts (NDFs) and hypertrophic scar fibroblasts (HSFs) was examined. After exposure to blue light (BL), changes in the expression levels of αSMA and clock-related genes, specifically PER2 and BMAL1, were examined in both fibroblast types. Opsins were expressed in both fibroblast types, with OPN3 exhibiting the highest expression levels. After peripheral circadian rhythm disruption, BL induced rhythm formation in NDFs. In contrast, although HSFs showed changes in clock-related gene expression levels, no distinct rhythm formation was observed. The expression level of αSMA was significantly higher in HSFs and decreased to the same level as that in NDFs upon BL exposure. When OPN3 knocked-down HSFs were exposed to BL, the reduction in αSMA expression was inhibited. This study showed that BL exposure directly triggers peripheral circadian synchronization in NDFs but not in HSFs. OPN3-mediated BL exposure inhibited HSFs. Although the current results did not elucidate the relationship between peripheral circadian rhythms and hypertrophic scars, they show that BL can be applied for the prevention and treatment of hypertrophic scars and keloids.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Humans , Cicatrix, Hypertrophic/metabolism , Skin/metabolism , Keloid/metabolism , Fibroblasts/metabolism , Opsins/metabolism , Rod Opsins/metabolism
11.
J Biomed Sci ; 31(1): 12, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38254097

ABSTRACT

BACKGROUND: Pathologic scars, including keloids and hypertrophic scars, represent a common form of exaggerated cutaneous scarring that is difficult to prevent or treat effectively. Additionally, the pathobiology of pathologic scars remains poorly understood. We aim at investigating the impact of TEM1 (also known as endosialin or CD248), which is a glycosylated type I transmembrane protein, on development of pathologic scars. METHODS: To investigate the expression of TEM1, we utilized immunofluorescence staining, Western blotting, and single-cell RNA-sequencing (scRNA-seq) techniques. We conducted in vitro cell culture experiments and an in vivo stretch-induced scar mouse model to study the involvement of TEM1 in TGF-ß-mediated responses in pathologic scars. RESULTS: The levels of the protein TEM1 are elevated in both hypertrophic scars and keloids in comparison to normal skin. A re-analysis of scRNA-seq datasets reveals that a major profibrotic subpopulation of keloid and hypertrophic scar fibroblasts greatly expresses TEM1, with expression increasing during fibroblast activation. TEM1 promotes activation, proliferation, and ECM production in human dermal fibroblasts by enhancing TGF-ß1 signaling through binding with and stabilizing TGF-ß receptors. Global deletion of Tem1 markedly reduces the amount of ECM synthesis and inflammation in a scar in a mouse model of stretch-induced pathologic scarring. The intralesional administration of ontuxizumab, a humanized IgG monoclonal antibody targeting TEM1, significantly decreased both the size and collagen density of keloids. CONCLUSIONS: Our data indicate that TEM1 plays a role in pathologic scarring, with its synergistic effect on the TGF-ß signaling contributing to dermal fibroblast activation. Targeting TEM1 may represent a novel therapeutic approach in reducing the morbidity of pathologic scars.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Transforming Growth Factor beta , Animals , Humans , Mice , Antigens, CD , Antigens, Neoplasm , Cicatrix, Hypertrophic/metabolism , Fibroblasts , Keloid/metabolism , Skin
12.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279232

ABSTRACT

Keloid is a disease in which fibroblasts abnormally proliferate and synthesize excessive amounts of extracellular matrix, including collagen and fibronectin, during the healing process of skin wounds, causing larger scars that exceed the boundaries of the original wound. Currently, surgical excision, cryotherapy, radiation, laser treatment, photodynamic therapy, pressure therapy, silicone gel sheeting, and pharmacotherapy are used alone or in combinations to treat this disease, but the outcomes are usually unsatisfactory. The purpose of this review is to examine whether natural products can help treat keloid disease. I introduce well-established therapeutic targets for this disease and various other emerging therapeutic targets that have been proposed based on the phenotypic difference between keloid-derived fibroblasts (KFs) and normal epidermal fibroblasts (NFs). We then present recent studies on the biological effects of various plant-derived extracts and compounds on KFs and NFs. Associated ex vivo, in vivo, and clinical studies are also presented. Finally, we discuss the mechanisms of action of the plant-derived extracts and compounds, the pros and cons, and the future tasks for natural product-based therapy for keloid disease, as compared with existing other therapies. Extracts of Astragalus membranaceus, Salvia miltiorrhiza, Aneilema keisak, Galla Chinensis, Lycium chinense, Physalis angulate, Allium sepa, and Camellia sinensis appear to modulate cell proliferation, migration, and/or extracellular matrix (ECM) production in KFs, supporting their therapeutic potential. Various phenolic compounds, terpenoids, alkaloids, and other plant-derived compounds could modulate different cell signaling pathways associated with the pathogenesis of keloids. For now, many studies are limited to in vitro experiments; additional research and development are needed to proceed to clinical trials. Many emerging therapeutic targets could accelerate the discovery of plant-derived substances for the prevention and treatment of keloid disease. I hope that this review will bridge past, present, and future research on this subject and provide insight into new therapeutic targets and pharmaceuticals, aiming for effective keloid treatment.


Subject(s)
Drugs, Chinese Herbal , Keloid , Tannins , Humans , Keloid/drug therapy , Keloid/prevention & control , Keloid/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism , Collagen/metabolism , Drugs, Chinese Herbal/pharmacology , Fibroblasts/metabolism , Cell Proliferation , Cells, Cultured
13.
EBioMedicine ; 99: 104904, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061241

ABSTRACT

BACKGROUND: The pathology of keloid and especially the roles of bacteria on it were not well understood. METHODS: In this study, multi-omics analyses including microbiome, metaproteomics, metabolomic, single-cell transcriptome and cell-derived xenograft (CDX) mice model were used to explore the roles of bacteria on keloid disease. FINDINGS: We found that the types of bacteria are significantly different between keloid and healthy skin. The 16S rRNA sequencing and metaproteomics showed that more catalase (CAT) negative bacteria, Clostridium and Roseburia existed in keloid compared with the adjacent healthy skin. In addition, protein mass spectrometry shows that CAT is one of the differentially expressed proteins (DEPs). Overexpression of CAT inhibited the proliferation, migration and invasion of keloid fibroblasts, and these characteristics were opposite when CAT was knocked down. Furthermore, the CDX model showed that Clostridium butyricum promote the growth of patient's keloid fibroblasts in BALB/c female nude mice, while CAT positive bacteria Bacillus subtilis inhibited it. Single-cell RNA sequencing verified that oxidative stress was up-regulated and CAT was down-regulated in mesenchymal-like fibroblasts of keloid. INTERPRETATION: In conclusion, our findings suggest that bacteria and CAT contribute to keloid disease. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Subject(s)
Keloid , Humans , Female , Animals , Mice , Keloid/genetics , Keloid/metabolism , Keloid/pathology , Catalase/genetics , Mice, Nude , Multiomics , RNA, Ribosomal, 16S/genetics , Cell Proliferation , Cells, Cultured
14.
J Burn Care Res ; 45(1): 104-111, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37436955

ABSTRACT

Keloids are benign skin tumors characterized by excessive fibroblast proliferation and collagen deposition. The current treatment of keloids with hormone drug injection, surgical excision, radiotherapy, physical compression, laser therapy, cryotherapy often have unsatisfactory outcomes. The phytochemical compounds have shown great potential in treating keloids. Tripterine, a natural triterpene derived from the traditional Chinese medicine Thunder God Vine (Tripterygium wilfordii), was previously reported to exhibit an anti-scarring bioactivity in mouse embryonic fibroblast NIH/3T3 cells. Accordingly, our study was dedicated to explore its role in regulating the pathological phenotypes of keloid fibroblasts. Human keloid fibroblasts were treated with tripterine (0-10 µM) for 24 hours. Cell viability, proliferation, migration, apoptosis, and extracellular matrix (ECM) deposition were determined by CCK-8, EdU, wound healing, Transwell, flow cytometry, western blotting, and RT-qPCR assays. The effects of tripterine treatment on reactive oxygen species (ROS) generation and JNK activation in keloid fibroblasts were assessed by DCFH-DA staining and western blotting analysis. Tripterine at the concentrations higher than 4 µM attenuated the viability of human keloid fibroblasts in a dose-dependent manner. Treatment with tripterine (4, 6, and 8 µM) dose-dependently inhibited cell proliferation and migration, promoted cell apoptosis, reduced α-SMA, Col1, and Fn expression, induced ROS production, and enhanced JNK phosphorylation in keloid fibroblasts. Collectively, tripterine ameliorates the pathological characteristics of keloid fibroblasts that are associated with keloidformation and growth by inducing ROS generation and activating JNK signalingpathway.


Subject(s)
Burns , Keloid , Humans , Animals , Mice , Keloid/metabolism , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/pharmacology , Reactive Oxygen Species/therapeutic use , Fibroblasts/metabolism , Burns/pathology , Cell Proliferation , Apoptosis , Cells, Cultured
15.
Burns ; 50(3): 641-652, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38097445

ABSTRACT

BACKGROUND: Keloid scars occur as a result of abnormal wound healing caused by trauma or inflammation of the skin. The progression of keloids is dependent on genetic and environmental influences. The incidence is more prevalent in people with darker skin tones (African, Asian and Hispanic origin). Studies have demonstrated that transforming growth factor (TGF) ß/Smad signalling has an essential function in keloid as well as that USP11 could modulate the activation of TGFß/Smad signalling and impact the progression of the fibrotic disease. Nonetheless, the potential mechanisms of USP11 in keloid were still unclear. The authors postulated that USP11 up-regulates and augments the ability of proliferation, invasion, migration and collagen deposition of keloid-derived fibroblasts (KFBs) through deubiquitinating TGF-ß receptor II (TßRII). METHODS: Fibroblast cells were isolated from keloid scars in vitro. Lentivirus infection was utilized to knockdown and over-express the USP11 in KFBs. Influence of USP11 on proliferation, invasion and migration of KFBs, and expression level of TßRII, Smad2, Smad3, α-SMA, collagen1 and collagen3 were assayed by CCK8, scratching, transwell, Western blot and real-time quantitative polymerase chain reaction. The interactions between USP11 and TßRII were examined using ubiquitination assays and co-immunoprecipitation. To further confirm the role of USP11 in keloid growth, we performed animal experiments. RESULTS: Results show that down-regulated USP11 markedly suppressed the ability of proliferation, invasion and migration of keloid derived-fibroblasts in vitro and reduce the expression of TßRII, Smad2, Smad3, αSMA, collagen1 and collagen3. In addition, over-expression of USP11 demonstrated the contrary tendency. Ubiquitination experiments and co-immunoprecipitation demonstrated that USP11 was interacting with TßRII and deubiquitinated TßRII. Interferences with USP11 inhibited growth of keloid in vivo. Additionally, we have verified that knockdown of USP11 has no significant effect on normal skin fibroblasts. CONCLUSION: USP11 elevates the ability of proliferation, collagen deposition, invasion and migration of keloid-derived fibroblasts by deubiquitinating TßRII.


Subject(s)
Burns , Keloid , Animals , Humans , Burns/pathology , Cell Proliferation , Cells, Cultured , Collagen , Fibroblasts , Keloid/metabolism , Thiolester Hydrolases/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Ubiquitin-Specific Proteases/metabolism
16.
Commun Biol ; 6(1): 1235, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38062202

ABSTRACT

Keloids are benign fibroproliferative skin tumors caused by aberrant wound healing that can negatively impact patient quality of life. The lack of animal models has limited research on pathogenesis or developing effective treatments, and the etiology of keloids remains unknown. Here, we found that the characteristics of stem-like cells from keloid lesions and the surrounding dermis differ from those of normal skin. Furthermore, the HEDGEHOG (HH) signal and its downstream transcription factor GLI1 were upregulated in keloid patient-derived stem-like cells. Inhibition of the HH-GLI1 pathway reduced the expression of genes involved in keloids and fibrosis-inducing cytokines, including osteopontin. Moreover, the HH signal inhibitor vismodegib reduced keloid reconstituted tumor size and keloid-related gene expression in nude mice and the collagen bundle and expression of cytokines characteristic for keloids in ex vivo culture of keloid tissues. These results implicate the HH-GLI1 pathway in keloid pathogenesis and suggest therapeutic targets of keloids.


Subject(s)
Keloid , Animals , Humans , Mice , Cytokines , Hedgehog Proteins/genetics , Keloid/drug therapy , Keloid/genetics , Keloid/metabolism , Mice, Nude , Quality of Life , Zinc Finger Protein GLI1/genetics , Signal Transduction
17.
Tissue Cell ; 85: 102218, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913601

ABSTRACT

BACKGROUND: Thanks to their multi-potency and secretory functions, mesenchymal stem cells (MSCs) have long been established as an ideal cell type for skin wound healing and a candidate therapeutic strategy for excessive pathological scarring in the meantime. This study focuses on the effect of placental MSCs (PMSCs) on the activity of keloid fibroblasts (KFs) and the potential involvement of proenkephalin (PENK). METHODS: Secretory protein of PMSC that are lowly expressed in KFs were predicted by bioinformatics analyses. The expression of PENK in KFs was detected by RT-qPCR and western blot analysis. PMSCs were co-cultured with KFs and dermal fibroblasts (DFs) to examine their effect on proliferation, migration, invasion, and apoptosis of the distinct cell types. PENK secretion by PMSCs and its uptake by KFs were examined by ELISA, WB, and immunofluorescence staining. Loss-of-functions of PENK and p38-MAPK were induced to examine the activity of KFs in vitro and in mice. RESULTS: PENK, a secretory protein of PMSCs, was conspicuously downregulated in KFs compared to normal DFs. PMSC stimulation suppressed proliferation, migration, invasion, and resistance to apoptosis of the co-cultured KFs but not DFs, which was ascribed to the upregulation of PENK protein in KFs. PMSCs-secreted PENK suppressed p38 phosphorylation in KFs. The proliferative and aggressive properties of KFs in vitro and the nodule-forming capacity of KFs in vivo were promoted upon PENK downregulation but suppressed by the p38 MAPK inhibitor SB202190. CONCLUSION: This work unravels that PMSCs-secreted PENK suppresses the p38 MAPK signaling to block hyperproliferation of KFs.


Subject(s)
Keloid , Mesenchymal Stem Cells , Female , Mice , Pregnancy , Animals , Keloid/drug therapy , Keloid/metabolism , Keloid/pathology , Placenta/metabolism , Fibroblasts/metabolism , Mesenchymal Stem Cells/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Cell Proliferation , Cells, Cultured
18.
Int J Mol Sci ; 24(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37895153

ABSTRACT

Keloids are a type of fibrotic disease characterized by excessive collagen production and extracellular matrix (ECM) deposition. The symptoms of pain and itching and frequent recurrence after treatment significantly impact the quality of life and mental health of patients. A deeper understanding of the pathogenesis of keloids is crucial for the development of an effective therapeutic approach. Fibroblasts play a central role in the pathogenesis of keloids by producing large amounts of collagen fibers. Recent evidence indicates that keloids exhibit high immune cell infiltration, and these cells secrete cytokines or growth factors to support keloid fibroblast proliferation. This article provides an update on the knowledge regarding the keloid microenvironment based on recent single-cell sequencing literature. Many inflammatory cells gathered in keloid lesions, such as macrophages, mast cells, and T lymphocytes, indicate that keloids may be an inflammatory skin disease. In this review, we focus on the communication from immune cells to the fibroblasts and the potential of immunotherapy for keloids. We hope that this review will trigger interest in investigating keloids as an inflammatory disease, which may open up new avenues for drug development by targeting immune mediators.


Subject(s)
Keloid , Humans , Keloid/metabolism , Quality of Life , Collagen/metabolism , Fibroblasts/metabolism , Cells, Cultured , Immunotherapy , Communication
19.
J Vis Exp ; (197)2023 07 28.
Article in English | MEDLINE | ID: mdl-37578255

ABSTRACT

Fibroblasts, the major cell type in keloid tissue, play an essential role in the formation and development of keloids. The isolation and culture of primary fibroblasts derived from keloid tissue are the basis for further studies of the biological function and molecular mechanisms of keloids, as well as new therapeutic strategies for treating them. The traditional method of obtaining primary fibroblasts has limitations, such as poor cellular state, mixing with other types of cells, and susceptibility to contamination. This paper describes an optimized and easily reproducible protocol that could reduce the occurrence of possible issues when obtaining fibroblasts. In this protocol, fibroblasts can be observed 5 days after isolation and reach nearly 80% confluency after 10 days of culture. Then, the fibroblasts are passaged and verified using PDGFRα and vimentin antibodies for immunofluorescence assays and CD90 antibodies for flow cytometry. In conclusion, fibroblasts from keloid tissue can be easily acquired through this protocol, which can provide an abundant and stable source of cells in the laboratory for keloid research.


Subject(s)
Keloid , Humans , Keloid/metabolism , Keloid/pathology , Cells, Cultured , Proteins/metabolism , Fibroblasts/metabolism
20.
Exp Dermatol ; 32(7): 1096-1107, 2023 07.
Article in English | MEDLINE | ID: mdl-37148203

ABSTRACT

Keloid scars are hypertrophic and proliferating pathological scars extending beyond the initial lesion and without tendency to regression. Usually, keloids are considered and treated as a single entity but clinical observations suggest heterogeneity in keloid morphologies with distinction of superficial/extensive and nodular entities. Within a keloid, heterogeneity could also be detected between superficial and deep dermis or centre and periphery. Focusing on fibroblasts as main actors of keloid formation, we aimed at evaluating intra- and inter-keloid fibroblast heterogeneity by analysing their gene expression and functional capacities (proliferation, migration, traction forces), in order to improve our understanding of keloid pathogenesis. Fibroblasts were obtained from centre, periphery, papillary and reticular dermis from extensive or nodular keloids and were compared to control fibroblasts from healthy skin. Transcriptional profiling of fibroblasts identified a total of 834 differentially expressed genes between nodular and extensive keloids. Quantification of ECM-associated gene expression by RT-qPCR brought evidence that central reticular fibroblasts of nodular keloids are the population which synthesize higher levels of mature collagens, TGFß, HIF1α and αSMA as compared to control skin, suggesting that this central deep region is the nucleus of ECM production with a centrifuge extension in keloids. Although no significant variations were found for basal proliferation, migration of peripheral fibroblasts from extensive keloids was higher than that of central ones and from nodular cells. Moreover, these peripheral fibroblasts from extensive keloids exhibited higher traction forces than central cells, control fibroblasts and nodular ones. Altogether, studying fibroblast features demonstrate keloid heterogeneity, leading to a better understanding of keloid pathophysiology and treatment adaptation.


Subject(s)
Keloid , Humans , Keloid/metabolism , Skin/metabolism , Dermis/metabolism , Fibroblasts/metabolism , Collagen/metabolism , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...