Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 298
Filter
1.
FASEB J ; 38(17): e23875, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39229897

ABSTRACT

Polycystic kidney disease (PKD) is a common hereditary kidney disease. Although PKD occurrence is associated with certain gene mutations, its onset regulatory mechanisms are still not well understood. Here, we first report that the key enzyme geranylgeranyl diphosphate synthase (GGPPS) is specifically expressed in renal tubular epithelial cells of mouse kidneys. We aimed to explore the role of GGPPS in PKD. In this study, we established a Ggppsfl/fl:Cdh16cre mouse model and compared its phenotype with that of wild-type mice. A Ggpps-downregulation HK2 cell model was also used to further determine the role of GGPPS. We found that GGPPS was specifically expressed in renal tubular epithelial cells of mouse kidneys. Its expression also increased with age. Low GGPPS expression was observed in human ADPKD tissues. In the Ggppsfl/fl:Cdh16cre mouse model, Ggpps deletion in renal tubular epithelial cells induced the occurrence and development of renal tubule cystic dilation and caused the death of mice after birth due to abnormal renal function. Enhanced proliferation of cyst-lining epithelial cells was also observed after the knockout of Ggpps. These processes were related to the increased rate of Rheb on membrane/cytoplasm and hyperactivation of mTORC1 signaling. In conclusion, the deficiency of GGPPS in kidney tubules induced the formation of renal cysts. It may play a critical role in PKD pathophysiology. A novel therapeutic strategy could be designed according to this work.


Subject(s)
Kidney Tubules , Animals , Mice , Kidney Tubules/metabolism , Kidney Tubules/pathology , Humans , Farnesyltranstransferase/metabolism , Farnesyltranstransferase/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/pathology , Polycystic Kidney Diseases/metabolism , Male , Disease Models, Animal , Mice, Inbred C57BL , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Kidney Diseases, Cystic/pathology , Mice, Knockout , Cell Line , Multienzyme Complexes
2.
Physiol Rep ; 12(17): e70038, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39238069

ABSTRACT

Osteopontin (OPN) is a multi-functional glycoprotein that coordinates the innate immune response, prevents nanocrystal formation in renal tubule fluid, and is a biomarker for kidney injury. OPN expression is markedly increased in cystic epithelial cells of polycystic kidney disease (PKD) kidneys; however, its role in PKD progression remains unclear. We investigated the in vitro effects of recombinant OPN on the proliferation of tubular epithelial cells from PKD and normal human kidneys and in vivo effects of OPN deletion on kidney cyst formation, fibrosis, and mineral metabolism in pcy/pcy mice, a non-orthologous model of autosomal-dominant PKD. In vitro studies revealed that OPN enhanced the proliferation of PKD cells but had no effect on normal kidney cells. Deletion of OPN in pcy/pcy mice significantly reduced kidney cyst burden; however, this was accompanied by increased fibrosis and no change in kidney function. The loss of OPN had no effect on kidney macrophage numbers, cyst epithelial cell proliferation, or apoptosis. Furthermore, there was no difference in kidney mineral deposition or mineral metabolism parameters between pcy/pcy mice with and without OPN expression. Global deletion of OPN reduced kidney cyst burden, while paradoxically exacerbating kidney fibrosis in mice with cystic kidney disease.


Subject(s)
Fibrosis , Osteopontin , Animals , Female , Humans , Male , Mice , Cell Proliferation , Epithelial Cells/metabolism , Epithelial Cells/pathology , Kidney/metabolism , Kidney/pathology , Kidney Diseases, Cystic/metabolism , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Mice, Inbred C57BL , Mice, Knockout , Osteopontin/metabolism , Osteopontin/genetics , Polycystic Kidney Diseases/metabolism , Polycystic Kidney Diseases/pathology , Polycystic Kidney Diseases/genetics
3.
Cell Mol Biol Lett ; 29(1): 125, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333852

ABSTRACT

BACKGROUND: Patients with tuberous sclerosis complex (TSC) develop renal cysts and/or angiomyolipomas (AMLs) due to inactive mutations of either TSC1 or TSC2 and consequential mTOR hyperactivation. The molecular events between activated mTOR and renal cysts/AMLs are still largely unknown. METHODS: The mouse model of TSC-associated renal cysts were constructed by knocking out Tsc2 specifically in renal tubules (Tsc2f/f; ksp-Cre). We further globally deleted PRAS40 in these mice to investigate the role of PRAS40. Tsc2-/- cells were used as mTOR activation model cells. Inhibition of DNA methylation was used to increase miR-142-3p expression to examine the effects of miR-142-3p on PRAS40 expression and TSC-associated renal cysts. RESULTS: PRAS40, a component of mTOR complex 1, was overexpressed in Tsc2-deleted cell lines and mouse kidneys (Tsc2f/f; ksp-Cre), which was decreased by mTOR inhibition. mTOR stimulated PRAS40 expression through suppression of miR-142-3p expression. Unleashed PRAS40 was critical to the proliferation of Tsc2-/- cells and the renal cystogenesis of Tsc2f/f; ksp-Cre mice. In contrast, inhibition of DNA methylation increased miR-142-3p expression, decreased PRAS40 expression, and hindered cell proliferation and renal cystogenesis. CONCLUSIONS: Our data suggest that mTOR activation caused by TSC2 deletion increases PRAS40 expression through miR-142-3p repression. PRAS40 depletion or the pharmacological induction of miR-142-3p expression impaired TSC2 deficiency-associated renal cystogenesis. Therefore, harnessing mTOR/miR-142-3p/PRAS40 signaling cascade may mitigate hyperactivated mTOR-related diseases.


Subject(s)
Adaptor Proteins, Signal Transducing , MicroRNAs , Signal Transduction , TOR Serine-Threonine Kinases , Tuberous Sclerosis Complex 2 Protein , Tuberous Sclerosis , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , TOR Serine-Threonine Kinases/metabolism , Tuberous Sclerosis/metabolism , Tuberous Sclerosis/genetics , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/metabolism , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Kidney Diseases, Cystic/pathology , Humans , Mice, Knockout , Disease Models, Animal
4.
J Clin Invest ; 134(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949024

ABSTRACT

Mitochondria-related neurodegenerative diseases have been implicated in the disruption of primary cilia function. Mutation in an intrinsic mitochondrial complex I component NDUFAF2 has been identified in Leigh syndrome, a severe inherited mitochondriopathy. Mutations in ARMC9, which encodes a basal body protein, cause Joubert syndrome, a ciliopathy with defects in the brain, kidney, and eye. Here, we report a mechanistic link between mitochondria metabolism and primary cilia signaling. We discovered that loss of NDUFAF2 caused both mitochondrial and ciliary defects in vitro and in vivo and identified NDUFAF2 as a binding partner for ARMC9. We also found that NDUFAF2 was both necessary and sufficient for cilia formation and that exogenous expression of NDUFAF2 rescued the ciliary and mitochondrial defects observed in cells from patients with known ARMC9 deficiency. NAD+ supplementation restored mitochondrial and ciliary dysfunction in ARMC9-deficient cells and zebrafish and ameliorated the ocular motility and motor deficits of a patient with ARMC9 deficiency. The present results provide a compelling mechanistic link, supported by evidence from human studies, between primary cilia and mitochondrial signaling. Importantly, our findings have significant implications for the development of therapeutic approaches targeting ciliopathies.


Subject(s)
Cilia , Kidney Diseases, Cystic , Leigh Disease , Mitochondria , Zebrafish , Humans , Zebrafish/metabolism , Zebrafish/genetics , Leigh Disease/genetics , Leigh Disease/metabolism , Leigh Disease/pathology , Cilia/metabolism , Cilia/pathology , Cilia/genetics , Animals , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/genetics , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Kidney Diseases, Cystic/pathology , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Armadillo Domain Proteins/metabolism , Armadillo Domain Proteins/genetics , Retina/metabolism , Retina/pathology , Retina/abnormalities , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Eye Abnormalities/metabolism , Mice , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Cerebellum/metabolism , Cerebellum/pathology , Cerebellum/abnormalities , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Male
5.
J Cell Sci ; 137(13)2024 07 01.
Article in English | MEDLINE | ID: mdl-38841887

ABSTRACT

Centrosomal proteins play pivotal roles in orchestrating microtubule dynamics, and their dysregulation leads to disorders, including cancer and ciliopathies. Understanding the multifaceted roles of centrosomal proteins is vital to comprehend their involvement in disease development. Here, we report novel cellular functions of CEP41, a centrosomal and ciliary protein implicated in Joubert syndrome. We show that CEP41 is an essential microtubule-associated protein with microtubule-stabilizing activity. Purified CEP41 binds to preformed microtubules, promotes microtubule nucleation and suppresses microtubule disassembly. When overexpressed in cultured cells, CEP41 localizes to microtubules and promotes microtubule bundling. Conversely, shRNA-mediated knockdown of CEP41 disrupts the interphase microtubule network and delays microtubule reassembly, emphasizing its role in microtubule organization. Further, we demonstrate that the association of CEP41 with microtubules relies on its conserved rhodanese homology domain (RHOD) and the N-terminal region. Interestingly, a disease-causing mutation in the RHOD domain impairs CEP41-microtubule interaction. Moreover, depletion of CEP41 inhibits cell proliferation and disrupts cell cycle progression, suggesting its potential involvement in cell cycle regulation. These insights into the cellular functions of CEP41 hold promise for unraveling the impact of its mutations in ciliopathies.


Subject(s)
Cell Proliferation , Microtubules , Humans , Microtubules/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Centrosome/metabolism , Retina/metabolism , Retina/pathology , Retina/abnormalities , Ciliopathies/metabolism , Ciliopathies/genetics , Ciliopathies/pathology , Cerebellum/metabolism , Cerebellum/abnormalities , Cerebellum/pathology , Kidney Diseases, Cystic/metabolism , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Cilia/metabolism , Cilia/pathology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Animals , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Eye Abnormalities/metabolism , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Protein Binding , Cell Cycle/genetics , HEK293 Cells
6.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731991

ABSTRACT

Tuberous sclerosis complex (TSC) presents with renal cysts and benign tumors, which eventually lead to kidney failure. The factors promoting kidney cyst formation in TSC are poorly understood. Inactivation of carbonic anhydrase 2 (Car2) significantly reduced, whereas, deletion of Foxi1 completely abrogated the cyst burden in Tsc1 KO mice. In these studies, we contrasted the ontogeny of cyst burden in Tsc1/Car2 dKO mice vs. Tsc1/Foxi1 dKO mice. Compared to Tsc1 KO, the Tsc1/Car2 dKO mice showed few small cysts at 47 days of age. However, by 110 days, the kidneys showed frequent and large cysts with overwhelming numbers of A-intercalated cells in their linings. The magnitude of cyst burden in Tsc1/Car2 dKO mice correlated with the expression levels of Foxi1 and was proportional to mTORC1 activation. This is in stark contrast to Tsc1/Foxi1 dKO mice, which showed a remarkable absence of kidney cysts at both 47 and 110 days of age. RNA-seq data pointed to profound upregulation of Foxi1 and kidney-collecting duct-specific H+-ATPase subunits in 110-day-old Tsc1/Car2 dKO mice. We conclude that Car2 inactivation temporarily decreases the kidney cyst burden in Tsc1 KO mice but the cysts increase with advancing age, along with enhanced Foxi1 expression.


Subject(s)
Carbonic Anhydrase II , Forkhead Transcription Factors , Kidney Diseases, Cystic , Tuberous Sclerosis , Animals , Mice , Carbonic Anhydrase II/genetics , Carbonic Anhydrase II/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Deletion , Kidney/pathology , Kidney/metabolism , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Kidney Diseases, Cystic/metabolism , Mice, Knockout , Tuberous Sclerosis/genetics , Tuberous Sclerosis/pathology , Tuberous Sclerosis/metabolism , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/metabolism
7.
Hum Mol Genet ; 33(16): 1442-1453, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38751342

ABSTRACT

Primary cilia are antenna-like structures protruding from the surface of various eukaryotic cells, and have distinct protein compositions in their membranes. This distinct protein composition is maintained by the presence of the transition zone (TZ) at the ciliary base, which acts as a diffusion barrier between the ciliary and plasma membranes. Defects in cilia and the TZ are known to cause a group of disorders collectively called the ciliopathies, which demonstrate a broad spectrum of clinical features, such as perinatally lethal Meckel syndrome (MKS), relatively mild Joubert syndrome (JBTS), and nonsyndromic nephronophthisis (NPHP). Proteins constituting the TZ can be grouped into the MKS and NPHP modules. The MKS module is composed of several transmembrane proteins and three soluble proteins. TMEM218 was recently reported to be mutated in individuals diagnosed as MKS and JBTS. However, little is known about how TMEM218 mutations found in MKS and JBTS affect the functions of cilia. In this study, we found that ciliary membrane proteins were not localized to cilia in TMEM218-knockout cells, indicating impaired barrier function of the TZ. Furthermore, the exogenous expression of JBTS-associated TMEM218 variants but not MKS-associated variants in TMEM218-knockout cells restored the localization of ciliary membrane proteins. In particular, when expressed in TMEM218-knockout cells, the TMEM218(R115H) variant found in JBTS was able to restore the barrier function of cells, whereas the MKS variant TMEM218(R115C) could not. Thus, the severity of symptoms of MKS and JBTS individuals appears to correlate with the degree of their ciliary defects at the cellular level.


Subject(s)
Abnormalities, Multiple , Cilia , Ciliopathies , Encephalocele , Eye Abnormalities , Kidney Diseases, Cystic , Membrane Proteins , Mutation , Retina , Cilia/metabolism , Cilia/genetics , Cilia/pathology , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Ciliopathies/genetics , Ciliopathies/metabolism , Ciliopathies/pathology , Encephalocele/genetics , Encephalocele/metabolism , Encephalocele/pathology , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Kidney Diseases, Cystic/pathology , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Eye Abnormalities/metabolism , Retina/metabolism , Retina/abnormalities , Retina/pathology , Cerebellum/abnormalities , Cerebellum/metabolism , Cerebellum/pathology , Cerebellar Diseases/genetics , Cerebellar Diseases/metabolism , Cerebellar Diseases/pathology , Animals , Cell Membrane/metabolism , Mice , Ciliary Motility Disorders , Polycystic Kidney Diseases , Retinitis Pigmentosa
8.
Cell Tissue Res ; 396(2): 255-267, 2024 May.
Article in English | MEDLINE | ID: mdl-38502237

ABSTRACT

Joubert syndrome (JS) is a recessively inherited congenital ataxia characterized by hypotonia, psychomotor delay, abnormal ocular movements, intellectual disability, and a peculiar cerebellar and brainstem malformation, the "molar tooth sign." Over 40 causative genes have been reported, all encoding for proteins implicated in the structure or functioning of the primary cilium, a subcellular organelle widely present in embryonic and adult tissues. In this paper, we developed an in vitro neuronal differentiation model using patient-derived induced pluripotent stem cells (iPSCs), to evaluate possible neurodevelopmental defects in JS. To this end, iPSCs from four JS patients harboring mutations in distinct JS genes (AHI1, CPLANE1, TMEM67, and CC2D2A) were differentiated alongside healthy control cells to obtain mid-hindbrain precursors and cerebellar granule cells. Differentiation was monitored over 31 days through the detection of lineage-specific marker expression by qRT-PCR, immunofluorescence, and transcriptomics analysis. All JS patient-derived iPSCs, regardless of the mutant gene, showed a similar impairment to differentiate into mid-hindbrain and cerebellar granule cells when compared to healthy controls. In addition, analysis of primary cilium count and morphology showed notable ciliary defects in all differentiating JS patient-derived iPSCs compared to controls. These results confirm that patient-derived iPSCs are an accessible and relevant in vitro model to analyze cellular phenotypes connected to the presence of JS gene mutations in a neuronal context.


Subject(s)
Abnormalities, Multiple , Cell Differentiation , Cerebellum , Cerebellum/abnormalities , Eye Abnormalities , Induced Pluripotent Stem Cells , Kidney Diseases, Cystic , Neurons , Retina , Retina/abnormalities , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Cerebellum/pathology , Cerebellum/metabolism , Neurons/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Retina/metabolism , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Kidney Diseases, Cystic/metabolism , Male , Female , Mutation/genetics , Cilia/metabolism
9.
J Cell Physiol ; 239(4): e31189, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219074

ABSTRACT

Joubert syndrome (JBTS) is a systematic developmental disorder mainly characterized by a pathognomonic mid-hindbrain malformation. All known JBTS-associated genes encode proteins involved in the function of antenna-like cellular organelle, primary cilium, which plays essential roles in cellular signal transduction and development. Here, we identified four unreported variants in ARL13B in two patients with the classical features of JBTS. ARL13B is a member of the Ras GTPase family and functions in ciliogenesis and cilia-related signaling. The two missense variants in ARL13B harbored the substitutions of amino acids at evolutionarily conserved positions. Using model cell lines, we found that the accumulations of the missense variants in cilia were impaired and the variants showed attenuated functions in ciliogenesis or the trafficking of INPP5E. Overall, these findings expanded the ARL13B pathogenetic variant spectrum of JBTS.


Subject(s)
ADP-Ribosylation Factors , Abnormalities, Multiple , Cerebellum , Eye Abnormalities , Kidney Diseases, Cystic , Retina , Humans , Abnormalities, Multiple/genetics , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Cerebellum/abnormalities , Cilia/genetics , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Eye Abnormalities/pathology , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Kidney Diseases, Cystic/pathology , Phosphoric Monoester Hydrolases/metabolism , Retina/metabolism , Retina/abnormalities , Male , Female , Infant
10.
Methods Cell Biol ; 176: 59-83, 2023.
Article in English | MEDLINE | ID: mdl-37164543

ABSTRACT

The primary cilium is an important signaling organelle critical for normal development and tissue homeostasis. Its small dimensions and complexity necessitate advanced imaging approaches to uncover the molecular mechanisms behind its function. Here, we outline how single-molecule fluorescence microscopy can be used for tracking molecular dynamics and interactions and for super-resolution imaging of nanoscale structures in the primary cilium. Specifically, we describe in detail how to capture and quantify the 2D dynamics of individual transmembrane proteins PTCH1 and SMO and how to map the 3D nanoscale distributions of the inversin compartment proteins INVS, ANKS6, and NPHP3. This protocol can, with minor modifications, be adapted for studies of other proteins and cell lines to further elucidate the structure and function of the primary cilium at the molecular level.


Subject(s)
Cilia , Kidney Diseases, Cystic , Humans , Cilia/metabolism , Single Molecule Imaging , Kidney Diseases, Cystic/metabolism , Signal Transduction , Cell Line
11.
Methods Cell Biol ; 175: 235-249, 2023.
Article in English | MEDLINE | ID: mdl-36967143

ABSTRACT

Joubert syndrome (JS) is an autosomal recessive ciliopathy that mainly affects the morphogenesis of the cerebellum and brain stem. To date, mutations in at least 39 genes have been identified in JS; all these gene-encoding proteins are involved in the biogenesis of the primary cilium and centrioles. Recent studies using the mouse model carrying deleted or mutated JS-related genes exhibited cerebellar hypoplasia with a reduction in neurogenesis; however, investigating specific neuronal behaviors during their development in vivo remains challenging. Here, we describe an in vivo cerebellar electroporation technique that can be used to deliver plasmids carrying GFP and/or shRNAs into the major cerebellar cell type, granule neurons, from their progenitor state to their maturation in a spatiotemporal-specific manner. By combining this method with cerebellar immunostaining and EdU incorporation, these approaches enable the investigation of the cell-autonomous effect of JS-related genes in granule neuron progenitors, including the pathogenesis of ectopic neurons and the defects in neuronal differentiation. This approach provides information toward understanding the multifaceted roles of JS-related genes during cerebellar development in vivo.


Subject(s)
Abnormalities, Multiple , Eye Abnormalities , Kidney Diseases, Cystic , Mice , Animals , Cerebellum/metabolism , Cerebellum/pathology , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Kidney Diseases, Cystic/pathology , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Eye Abnormalities/pathology , Retina , Neurons/metabolism , Cell Differentiation/genetics , Proteins , Cell Proliferation/genetics , Electroporation
12.
Elife ; 122023 03 15.
Article in English | MEDLINE | ID: mdl-36920028

ABSTRACT

Nephronophthisis (NPHP) is a ciliopathy characterized by renal fibrosis and cyst formation, and accounts for a significant portion of end stage renal disease in children and young adults. Currently, no targeted therapy is available for this disease. INVS/NPHP2 is one of the over 25 NPHP genes identified to date. In mouse, global knockout of Invs leads to renal fibrosis and cysts. However, the precise contribution of different cell types and the relationship between epithelial cysts and interstitial fibrosis remains undefined. Here, we generated and characterized cell-type-specific knockout mouse models of Invs, investigated the impact of removing cilia genetically on phenotype severity in Invs mutants and evaluated the impact of the histone deacetylase inhibitor valproic acid (VPA) on Invs mutants. Epithelial-specific knockout of Invs in Invsflox/flox;Cdh16-Cre mutant mice resulted in renal cyst formation and severe stromal fibrosis, while Invsflox/flox;Foxd1-Cre mice, where Invs is deleted in stromal cells, displayed no observable phenotypes up to the young adult stage, highlighting a significant role of epithelial-stromal crosstalk. Further, increased cell proliferation and myofibroblast activation occurred early during disease progression and preceded detectable cyst formation in the Invsflox/flox;Cdh16-Cre kidney. Moreover, concomitant removal of cilia partially suppressed the phenotypes of the Invsflox/flox;Cdh16-Cre mutant kidney, supporting a significant interaction of cilia and Invs function in vivo. Finally, VPA reduced cyst burden, decreased cell proliferation and ameliorated kidney function decline in Invs mutant mice. Our results reveal the critical role of renal epithelial cilia in NPHP and suggest the possibility of repurposing VPA for NPHP treatment.


One of the most common causes of kidney failure in children and young adults is nephronophthisis. This genetic disease causes cysts and tissue scarring in the kidneys, leading to excessive urine production and extreme tiredness. Unfortunately, there is no targeted therapy available for this condition. Scientists do not fully understand how genetic mutations lead to these symptoms. Previous research in mice showed that blocking the gene for a protein called INVS recreated signs similar to nephronophthisis. However, it is not clear how the different cell types in the kidneys are involved. Previous results suggest that cilia, the hair-like projections on the surface of cells, could be involved in developing cysts in nephronophthisis. To understand how the disease is driven, Li, Xu et al. created a range of genetically modified mice with INVS missing in different cell types. When INVS was removed from cells that line the kidney tubules, the mice developed scarring and cysts. By contrast, there were no symptoms when connective tissue cells were lacking INVS. When Li, Xu et al. removed the cilia from the cells, it helped to reduce the negative impact of the loss of INVS. In addition, a drug called valproic acid reduced the cysts and tissue scarring, and slowed kidney decline in the mutant mice, suggesting the possibility of repurposing this drug for nephronophthisis treatment. These results could help researchers to study other conditions that are influenced by the health of cilia. Future work on nephronophthisis will be needed to understand how INVS causes the disease and the mechanism for the benefits of valproic acid.


Subject(s)
Cysts , Kidney Diseases, Cystic , Polycystic Kidney Diseases , Mice , Animals , Transcription Factors/metabolism , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Kidney Diseases, Cystic/pathology , Polycystic Kidney Diseases/metabolism , Phenotype , Mice, Knockout , Epithelial Cells/metabolism , Fibrosis , Cilia/metabolism , Cadherins/metabolism
13.
Int J Mol Sci ; 24(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36834937

ABSTRACT

Nephronophthisis (NPHP) is the most prevalent monogenic disease leading to end-stage renal failure in childhood. RhoA activation is involved in NPHP pathogenesis. This study explored the role of the RhoA activator guanine nucleotide exchange factor (GEF)-H1 in NPHP pathogenesis. We analyzed the expression and distribution of GEF-H1 in NPHP1 knockout (NPHP1KO) mice using Western blotting and immunofluorescence, followed by GEF-H1 knockdown. Immunofluorescence and renal histology were used to examine the cysts, inflammation, and fibrosis. A RhoA GTPase activation assay and Western blotting were used to detect the expression of downstream GTP-RhoA and p-MLC2, respectively. In NPHP1 knockdown (NPHP1KD) human kidney proximal tubular cells (HK2 cells), we detected the expressions of E-cadherin and α-smooth muscle actin (α-SMA). In vivo, increased expression and redistribution of GEF-H1, and higher levels of GTP-RhoA and p-MLC2 in renal tissue of NPHP1KO mice were observed, together with renal cysts, fibrosis, and inflammation. These changes were alleviated by GEF-H1 knockdown. In vitro, the expression of GEF-H1 and activation of RhoA were also increased, with increased expression of α-SMA and decreased E-cadherin. GEF-H1 knockdown reversed these changes in NPHP1KD HK2 cells. Thus, the GEF-H1/RhoA/MLC2 axis is activated in NPHP1 defects and may play a pivotal role in NPHP pathogenesis.


Subject(s)
Cysts , Fibrosis , Kidney Diseases, Cystic , Rho Guanine Nucleotide Exchange Factors , Animals , Humans , Mice , Cadherins/metabolism , Cysts/genetics , Cysts/metabolism , Fibrosis/etiology , Fibrosis/metabolism , Guanosine Triphosphate , Inflammation , Kidney/metabolism , Kidney/pathology , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , rhoA GTP-Binding Protein/metabolism
14.
FASEB J ; 37(1): e22696, 2023 01.
Article in English | MEDLINE | ID: mdl-36520027

ABSTRACT

Mutations or deletions in transcription factor hepatocyte nuclear factor 1 homeobox ß (HNF1ß) cause renal cysts and/or malformation, maturity-onset diabetes of the young and electrolyte disturbances. Here, we applied a comprehensive bioinformatic approach on ChIP-seq, RNA-seq, and gene expression array studies to identify novel transcriptional targets of HNF1ß explaining the kidney phenotype of HNF1ß patients. We identified BAR/IMD Domain Containing Adaptor Protein 2 Like 2 (BAIAP2L2), as a novel transcriptional target of HNF1ß and validated direct transcriptional activation of the BAIAP2L2 promoter by a reporter luciferase assay. Using mass spectrometry analysis, we show that BAIAP2L2 binds to other members of the I-BAR domain-containing family: BAIAP2 and BAIAP2L1. Subsequently, the role of BAIAP2L2 in maintaining epithelial cell integrity in the kidney was assessed using Baiap2l2 knockout cell and mouse models. Kidney epithelial cells lacking functional BAIAP2L2 displayed normal F-actin distribution at cell-cell contacts and formed polarized three-dimensional spheroids with a lumen. In vivo, Baiap2l2 knockout mice displayed normal kidney and colon tissue morphology and serum and urine electrolyte concentrations were not affected. Altogether, our study is the first to characterize the function of BAIAP2L2 in the kidney in vivo and we report that mice lacking BAIAP2L2 exhibit normal electrolyte homeostasis and tissue morphology under physiological conditions.


Subject(s)
Cysts , Kidney Diseases, Cystic , Animals , Humans , Mice , Cysts/genetics , Cysts/metabolism , Electrolytes/metabolism , Kidney/metabolism , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Mice, Knockout , Transcription Factors/metabolism , Transcriptional Activation
15.
Stem Cell Res ; 66: 103002, 2023 02.
Article in English | MEDLINE | ID: mdl-36521382

ABSTRACT

We produced an iPSC line from a patient with Joubert syndrome carrying the homozygous c.787dupC variant in the AHI1 gene. The iPSC line was obtained by reprogramming skin fibroblasts, mycoplasma-free, using Sendai-virus-based technique. Characterization of iPSCs showed the same Short Tandem Repeats profile than fibroblasts, normal karyotype, expression of staminal markers (OCT4, SOX2, SSEA4 and NANOG) and ability to differentiate into three germ layers in vitro.


Subject(s)
Abnormalities, Multiple , Eye Abnormalities , Induced Pluripotent Stem Cells , Kidney Diseases, Cystic , Humans , Induced Pluripotent Stem Cells/metabolism , Abnormalities, Multiple/metabolism , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Kidney Diseases, Cystic/metabolism , Retina , Cerebellum , Fibroblasts/metabolism , Cell Differentiation
16.
Elife ; 112022 09 05.
Article in English | MEDLINE | ID: mdl-36063381

ABSTRACT

Primary cilia are sensory membrane protrusions whose dysfunction causes ciliopathies. INPP5E is a ciliary phosphoinositide phosphatase mutated in ciliopathies like Joubert syndrome. INPP5E regulates numerous ciliary functions, but how it accumulates in cilia remains poorly understood. Herein, we show INPP5E ciliary targeting requires its folded catalytic domain and is controlled by four conserved ciliary localization signals (CLSs): LLxPIR motif (CLS1), W383 (CLS2), FDRxLYL motif (CLS3) and CaaX box (CLS4). We answer two long-standing questions in the field. First, partial CLS1-CLS4 redundancy explains why CLS4 is dispensable for ciliary targeting. Second, the essential need for CLS2 clarifies why CLS3-CLS4 are together insufficient for ciliary accumulation. Furthermore, we reveal that some Joubert syndrome mutations perturb INPP5E ciliary targeting, and clarify how each CLS works: (i) CLS4 recruits PDE6D, RPGR and ARL13B, (ii) CLS2-CLS3 regulate association to TULP3, ARL13B, and CEP164, and (iii) CLS1 and CLS4 cooperate in ATG16L1 binding. Altogether, we shed light on the mechanisms of INPP5E ciliary targeting, revealing a complexity without known parallels among ciliary cargoes.


Subject(s)
Ciliopathies , Kidney Diseases, Cystic , Abnormalities, Multiple , Cerebellum/abnormalities , Cilia/metabolism , Eye Abnormalities , Eye Proteins/metabolism , Humans , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Retina/abnormalities
17.
Nat Commun ; 13(1): 3997, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810181

ABSTRACT

The transition zone (TZ) of the cilium/flagellum serves as a diffusion barrier that controls the entry/exit of ciliary proteins. Mutations of the TZ proteins disrupt barrier function and lead to multiple human diseases. However, the systematic regulation of ciliary composition and signaling-related processes by different TZ proteins is not completely understood. Here, we reveal that loss of TCTN1 in Chlamydomonas reinhardtii disrupts the assembly of wedge-shaped structures in the TZ. Proteomic analysis of cilia from WT and three TZ mutants, tctn1, cep290, and nphp4, shows a unique role of each TZ subunit in the regulation of ciliary composition, explaining the phenotypic diversity of different TZ mutants. Interestingly, we find that defects in the TZ impair the formation and biological activity of ciliary ectosomes. Collectively, our findings provide systematic insights into the regulation of ciliary composition by TZ proteins and reveal a link between the TZ and ciliary ectosomes.


Subject(s)
Cell-Derived Microparticles , Chlamydomonas reinhardtii , Kidney Diseases, Cystic , Antigens, Neoplasm/metabolism , Cell Cycle Proteins/metabolism , Cell-Derived Microparticles/metabolism , Chlamydomonas reinhardtii/metabolism , Cilia/metabolism , Cytoskeletal Proteins/metabolism , Humans , Kidney Diseases, Cystic/metabolism , Membrane Proteins/metabolism , Proteomics
18.
Mol Biol Cell ; 33(9): ar79, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35609210

ABSTRACT

Primary cilia are antenna-like organelles that contain specific proteins, and are crucial for tissue morphogenesis. Anterograde and retrograde trafficking of ciliary proteins are mediated by the intraflagellar transport (IFT) machinery. BROMI/TBC1D32 interacts with CCRK/CDK20, which phosphorylates and activates the intestinal cell kinase (ICK)/CILK1 kinase, to regulate the change in direction of the IFT machinery at the ciliary tip. Mutations in BROMI, CCRK, and ICK in humans cause ciliopathies, and mice defective in these genes are also known to demonstrate ciliopathy phenotypes. We show here that BROMI interacts not only with CCRK but also with CFAP20, an evolutionarily conserved ciliary protein, and with FAM149B1/ Joubert syndrome (JBTS)36, a protein in which mutations cause JBTS. In addition, we show that FAM149B1 interacts directly with CCRK as well as with BROMI. Ciliary defects observed in CCRK-knockout (KO), BROMI-KO, and FAM149B1-KO cells, including abnormally long cilia and accumulation of the IFT machinery and ICK at the ciliary tip, resembled one another, and BROMI mutants that are defective in binding to CCRK and CFAP20 were unable to rescue the ciliary defects of BROMI-KO cells. These data indicate that CCRK, BROMI, FAM149B1, and probably CFAP20 altogether regulate the IFT turnaround process under the control of ICK.


Subject(s)
Ciliopathies , Eye Abnormalities , Kidney Diseases, Cystic , Adaptor Proteins, Signal Transducing/metabolism , Animals , Biological Transport , Cilia/metabolism , Ciliopathies/metabolism , Cyclin-Dependent Kinases , Cytoskeletal Proteins , Eye Abnormalities/metabolism , Humans , Kidney Diseases, Cystic/metabolism , Mice , Protein Serine-Threonine Kinases , Protein Transport , Proteins/metabolism , Cyclin-Dependent Kinase-Activating Kinase
19.
J Biol Chem ; 298(3): 101686, 2022 03.
Article in English | MEDLINE | ID: mdl-35131266

ABSTRACT

In humans, ciliary dysfunction causes ciliopathies, which present as multiple organ defects, including developmental and sensory abnormalities. Sdccag8 is a centrosomal/basal body protein essential for proper cilia formation. Gene mutations in SDCCAG8 have been found in patients with ciliopathies manifesting a broad spectrum of symptoms, including hypogonadism. Among these mutations, several that are predicted to truncate the SDCCAG8 carboxyl (C) terminus are also associated with such symptoms; however, the underlying mechanisms are poorly understood. In the present study, we identified the Sdccag8 C-terminal region (Sdccag8-C) as a module that interacts with the ciliopathy proteins, Ick/Cilk1 and Mak, which were shown to be essential for the regulation of ciliary protein trafficking and cilia length in mammals in our previous studies. We found that Sdccag8-C is essential for Sdccag8 localization to centrosomes and cilia formation in cultured cells. We then generated a mouse mutant in which Sdccag8-C was truncated (Sdccag8ΔC/ΔC mice) using a CRISPR-mediated stop codon knock-in strategy. In Sdccag8ΔC/ΔC mice, we observed abnormalities in cilia formation and ciliopathy-like organ phenotypes, including cleft palate, polydactyly, retinal degeneration, and cystic kidney, which partially overlapped with those previously observed in Ick- and Mak-deficient mice. Furthermore, Sdccag8ΔC/ΔC mice exhibited a defect in spermatogenesis, which was a previously uncharacterized phenotype of Sdccag8 dysfunction. Together, these results shed light on the molecular and pathological mechanisms underlying ciliopathies observed in patients with SDCCAG8 mutations and may advance our understanding of protein-protein interaction networks involved in cilia development.


Subject(s)
Autoantigens , Ciliopathies , Kidney Diseases, Cystic , Neoplasm Proteins , Animals , Autoantigens/metabolism , Basal Bodies , Cilia/metabolism , Ciliopathies/genetics , Ciliopathies/metabolism , Female , Homeostasis , Humans , Kidney Diseases, Cystic/metabolism , Male , Mammals , Mice , Mutation , Neoplasm Proteins/metabolism , Proteins/metabolism
20.
Hum Mol Genet ; 31(9): 1357-1369, 2022 05 04.
Article in English | MEDLINE | ID: mdl-34740236

ABSTRACT

Nephronophthisis-related ciliopathies (NPHP-RC) comprises a group of inherited kidney diseases, caused by mutations in genes encoding proteins localizing to primary cilia. NPHP-RC represents one of the most frequent monogenic causes of renal failure within the first three decades of life, but its molecular disease mechanisms remain unclear. Here, we identified biallelic ANKS6 mutations in two affected siblings with late-onset chronic kidney disease by whole-exome sequencing. We employed patient-derived fibroblasts generating an in vitro model to study the precise biological impact of distinct human ANKS6 mutations, completed by immunohistochemistry studies on renal biopsy samples. Functional studies using patient-derived cells showed an impaired integrity of the ciliary inversin compartment with reduced cilia length. Further analyses demonstrated that ANKS6 deficiency leads to a dysregulation of Hippo-signaling through nuclear yes-associated protein (YAP) imbalance and disrupted ciliary localization of YAP. In addition, an altered transcriptional activity of canonical Wnt target genes and altered expression of non-phosphorylated (active) ß-catenin and phosphorylated glycogen synthase kinase 3ß were observed. Upon ciliation, ANKS6 deficiency revealed a deranged subcellular localization and expression of components of the endocytic recycling compartment. Our results demonstrate that ANKS6 plays a key role in regulating the Hippo pathway, and ANKS6 deficiency is linked to dysregulation of signaling pathways. Our study provides molecular clues in understanding pathophysiological mechanisms of NPHP-RC and may offer new therapeutic targets.


Subject(s)
Ciliopathies , Kidney Diseases, Cystic , Polycystic Kidney Diseases , Renal Insufficiency, Chronic , Cilia/pathology , Ciliopathies/metabolism , Female , Humans , Kidney Diseases, Cystic/metabolism , Male , Mutation , Nuclear Proteins , Polycystic Kidney Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL