Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.892
Filter
1.
Ren Fail ; 46(2): 2359642, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38860328

ABSTRACT

OBJECTIVES: Most functional magnetic resonance research has primarily examined alterations in the affected kidney, often neglecting the contralateral kidney. Our study aims to investigate whether imaging parameters accurately depict changes in both the renal cortex and medulla in a unilateral ureteral obstruction rat model, thereby showcasing the utility of intravoxel incoherent motion (IVIM) in evaluating contralateral renal changes. METHODS: Six rats underwent MR scans and were subsequently sacrificed for baseline histological examination. Following the induction of left ureteral obstruction, 48 rats were scanned, and the histopathological examinations were conducted on days 3, 7, 10, 14, 21, 28, 35, and 42. The apparent diffusion coefficient (ADC), pure molecular diffusion (D), pseudodiffusion (D*), and perfusion fraction (f) values were measured using IVIM. RESULTS: On the 10th day of obstruction, both cortical and medullary ADC values differed significantly between the UUO10 group and the sham group (p < 0.01). The cortical D values showed statistically significant differences between UUO3 group and sham group (p < 0.01) but not among UUO groups at other time point. Additionally, the cortical and medullary f values were statistically significant between the UUO21 group and the sham group (p < 0.01). Especially, the cortical f values exhibited significant differences between the UUO21 group and the UUO groups with shorter obstruction time (at time point of 3, 7, 10, 14 day) (p < 0.01). CONCLUSIONS: Significant hemodynamic alterations were observed in the contralateral kidney following renal obstruction. IVIM accurately captures changes in the unobstructed kidney. Particularly, the cortical f value exhibits the highest potential for assessing contralateral renal modifications.


Subject(s)
Diffusion Magnetic Resonance Imaging , Disease Models, Animal , Rats, Sprague-Dawley , Ureteral Obstruction , Animals , Ureteral Obstruction/diagnostic imaging , Ureteral Obstruction/physiopathology , Rats , Diffusion Magnetic Resonance Imaging/methods , Male , Kidney Cortex/diagnostic imaging , Kidney Cortex/pathology , Kidney/diagnostic imaging , Kidney/pathology , Kidney Medulla/diagnostic imaging , Kidney Medulla/pathology
2.
Urolithiasis ; 52(1): 93, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888601

ABSTRACT

Alexander Randall first published renal papillary tip findings from stone formers in 1937, paving the way for endoscopic assessment to study stone pathogenesis. We performed a literature search to evaluate the safety of papillary tip biopsy and clinical insights gained from modern renal papillary investigations. A search on the topic of renal papillary biopsy provided an overview of Randall's plaques (RP), classification systems for renal papillary grading, and a summary of procedure type, complications, and outcomes. Within 26 identified manuscripts, 660 individuals underwent papillary tip biopsy percutaneously (n = 562), endoscopically (n = 37), or unspecified (n = 23). Post-operative hemoglobin changes were similar to controls. One individual (0.2%) reported fever > 38°, and long-term mean serum creatinine post-biopsy (n = 32) was unchanged. Biopsies during ureteroscopy or PCNL added ~20-30 min of procedure time. Compared to controls, papillary plaque-containing tissue had upregulation in pro-inflammatory genes, immune cells, and cellular apoptosis. Urinary calcium and papillary plaque coverage were found to differ between RP and non-RP stone formers, suggesting differing underlying pathophysiology for these groups. Two renal papillary scoring systems have been externally validated and are used to classify stone formers. Overall, this review shows that renal papillary biopsies have a low complication profile with high potential for further research. Systematic adaption of a papillary grading scale, newer tissue analysis techniques, and the development of animal models of Randall's plaque may allow further exploration of plaque pathogenesis and identify targets for prevention therapies in patients with nephrolithiasis.


Subject(s)
Kidney Calculi , Humans , Kidney Calculi/pathology , Kidney Calculi/surgery , Kidney Calculi/chemistry , Biopsy/adverse effects , Ureteroscopy/adverse effects , Kidney Medulla/pathology , Nephrolithotomy, Percutaneous/adverse effects , Nephrolithotomy, Percutaneous/methods
3.
J Cell Mol Med ; 28(10): e18409, 2024 May.
Article in English | MEDLINE | ID: mdl-38769917

ABSTRACT

Farnesoid X receptor (FXR), a ligand-activated transcription factor, plays an important role in maintaining water homeostasis by up-regulating aquaporin 2 (AQP2) expression in renal medullary collecting ducts; however, its role in the survival of renal medullary interstitial cells (RMICs) under hypertonic conditions remains unclear. We cultured primary mouse RMICs and found that the FXR was expressed constitutively in RMICs, and that its expression was significantly up-regulated at both mRNA and protein levels by hypertonic stress. Using luciferase and ChIP assays, we found a potential binding site of nuclear factor kappa-B (NF-κB) located in the FXR gene promoter which can be bound and activated by NF-κB. Moreover, hypertonic stress-induced cell death in RMICs was significantly attenuated by FXR activation but worsened by FXR inhibition. Furthermore, FXR increased the expression and nuclear translocation of hypertonicity-induced tonicity-responsive enhance-binding protein (TonEBP), the expressions of its downstream target gene sodium myo-inositol transporter (SMIT), and heat shock protein 70 (HSP70). The present study demonstrates that the NF-κB/FXR/TonEBP pathway protects RMICs against hypertonic stress.


Subject(s)
Kidney Medulla , NF-kappa B , Signal Transduction , Animals , NF-kappa B/metabolism , Mice , Kidney Medulla/metabolism , Kidney Medulla/cytology , Osmotic Pressure , Aquaporin 2/metabolism , Aquaporin 2/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Male , Mice, Inbred C57BL , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Promoter Regions, Genetic , Cells, Cultured , Gene Expression Regulation , Symporters/metabolism , Symporters/genetics , Receptors, Cytoplasmic and Nuclear
4.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474319

ABSTRACT

Kidney stone disease (KSD) is one of the most common urological diseases. The incidence of kidney stones has increased dramatically in the last few decades. Kidney stones are mineral deposits in the calyces or the pelvis, free or attached to the renal papillae. They contain crystals and organic components, and they are made when urine is supersaturated with minerals. Calcium-containing stones are the most common, with calcium oxalate as the main component of most stones. However, many of these form on a calcium phosphate matrix called Randall's plaque, which is found on the surface of the kidney papilla. The etiology is multifactorial, and the recurrence rate is as high as 50% within 5 years after the first stone onset. There is a great need for recurrence prevention that requires a better understanding of the mechanisms involved in stone formation to facilitate the development of more effective drugs. This review aims to understand the pathophysiology and the main molecular mechanisms known to date to prevent recurrences, which requires behavioral and nutritional interventions, as well as pharmacological treatments that are specific to the type of stone.


Subject(s)
Body Fluids , Kidney Calculi , Humans , Kidney Calculi/etiology , Kidney Medulla , Calcium Oxalate , Minerals
5.
J Cell Mol Med ; 28(7): e18235, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509735

ABSTRACT

Kidney stone, one of the oldest known diseases, has plagued humans for centuries, consistently imposing a heavy burden on patients and healthcare systems worldwide due to their high incidence and recurrence rates. Advancements in endoscopy, imaging, genetics, molecular biology and bioinformatics have led to a deeper and more comprehensive understanding of the mechanism behind nephrolithiasis. Kidney stone formation is a complex, multi-step and long-term process involving the transformation of stone-forming salts from free ions into asymptomatic or symptomatic stones influenced by physical, chemical and biological factors. Among the various types of kidney stones observed in clinical practice, calcareous nephrolithiasis is currently the most common and exhibits the most intricate formation mechanism. Extensive research suggests that calcareous nephrolithiasis primarily originates from interstitial subepithelial calcified plaques and/or calcified blockages in the openings of collecting ducts. These calcified plaques and blockages eventually come into contact with urine in the renal pelvis, serving as a nidus for crystal formation and subsequent stone growth. Both pathways of stone formation share similar mechanisms, such as the drive of abnormal urine composition, involvement of oxidative stress and inflammation, and an imbalance of stone inhibitors and promoters. However, they also possess unique characteristics. Hence, this review aims to provide detailed description and present recent discoveries regarding the formation processes of calcareous nephrolithiasis from two distinct birthplaces: renal interstitium and tubule lumen.


Subject(s)
Calcinosis , Kidney Calculi , Humans , Kidney Medulla/metabolism , Kidney Calculi/complications , Kidney Calculi/metabolism , Calcinosis/metabolism , Endoscopy , Inflammation/metabolism
6.
Exp Physiol ; 109(5): 766-778, 2024 May.
Article in English | MEDLINE | ID: mdl-38551893

ABSTRACT

It has been proposed that diuretics can improve renal tissue oxygenation through inhibition of tubular sodium reabsorption and reduced metabolic demand. However, the impact of clinically used diuretic drugs on the renal cortical and medullary microcirculation is unclear. Therefore, we examined the effects of three commonly used diuretics, at clinically relevant doses, on renal cortical and medullary perfusion and oxygenation in non-anaesthetised healthy sheep. Merino ewes received acetazolamide (250 mg; n = 9), furosemide (20 mg; n = 10) or amiloride (10 mg; n = 7) intravenously. Systemic and renal haemodynamics, renal cortical and medullary tissue perfusion and P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ , and renal function were then monitored for up to 8 h post-treatment. The peak diuretic response occurred 2 h (99.4 ± 14.8 mL/h) after acetazolamide, at which stage cortical and medullary tissue perfusion and P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ were not significantly different from their baseline levels. The peak diuretic response to furosemide occurred at 1 h (196.5 ± 12.3 mL/h) post-treatment but there were no significant changes in cortical and medullary tissue oxygenation during this period. However, cortical tissue P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ fell from 40.1 ± 3.8 mmHg at baseline to 17.2 ± 4.4 mmHg at 3 h and to 20.5 ± 5.3 mmHg at 6 h after furosemide administration. Amiloride did not produce a diuretic response and was not associated with significant changes in cortical or medullary tissue oxygenation. In conclusion, clinically relevant doses of diuretic agents did not improve regional renal tissue oxygenation in healthy animals during the 8 h experimentation period. On the contrary, rebound renal cortical hypoxia may develop after dissipation of furosemide-induced diuresis.


Subject(s)
Acetazolamide , Amiloride , Diuretics , Furosemide , Kidney Cortex , Kidney Medulla , Animals , Furosemide/pharmacology , Acetazolamide/pharmacology , Amiloride/pharmacology , Diuretics/pharmacology , Sheep , Female , Kidney Cortex/drug effects , Kidney Cortex/metabolism , Kidney Medulla/drug effects , Kidney Medulla/metabolism , Oxygen/metabolism , Hemodynamics/drug effects , Oxygen Consumption/drug effects
7.
Lab Chip ; 24(7): 2017-2024, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38407354

ABSTRACT

Effective prevention of recurrent kidney stone disease requires the understanding of the mechanisms of its formation. Numerous in vivo observations have demonstrated that a large number of pathological calcium oxalate kidney stones develop on an apatitic calcium phosphate deposit, known as Randall's plaque. In an attempt to understand the role of the inorganic hydroxyapatite phase in the formation and habits of calcium oxalates, we confined their growth under dynamic physicochemical and flow conditions in a reversible microfluidic channel coated with hydroxyapatite. Using multi-scale characterization techniques including scanning electron and Raman microscopy, we showed the successful formation of carbonated hydroxyapatite as found in Randall's plaque. This was possible due to a new two-step flow seed-mediated growth strategy which allowed us to coat the channel with carbonated hydroxyapatite. Precipitation of calcium oxalates under laminar flow from supersaturated solutions of oxalate and calcium ions showed that the formation of crystals is a substrate and time dependent complex process where diffusion of oxalate ions to the surface of carbonated hydroxyapatite and the solubility of the latter are among the most important steps for the formation of calcium oxalate crystals. Indeed when an oxalate solution was flushed for 24 h, dissolution of the apatite layer and formation of calcium carbonate calcite crystals occurred which seems to promote calcium oxalate crystal formation. Such a growth route has never been observed in vivo in the context of kidney stones. Under our experimental conditions, our results do not show any direct promoting role of carbonated hydroxyapatite in the formation of calcium oxalate crystals, consolidating therefore the important role that macromolecules can play in the process of nucleation and growth of calcium oxalate crystals on Randall's plaque.


Subject(s)
Calcium Oxalate , Kidney Calculi , Humans , Kidney Medulla/pathology , Crystallization , Calcium , Microfluidics , Kidney Calculi/chemistry , Kidney Calculi/pathology , Apatites , Oxalates , Ions , Hydroxyapatites
8.
Kidney Int ; 105(2): 242-244, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38245213

ABSTRACT

The renal medulla maintains salt and water balance and is prone to dysregulation because of high oxygen demand. Challenges in obtaining high-quality tissue have limited characterization of molecular programs regulating the medulla. Haug et al. leveraged gene expression, chromatin accessibility, long-range chromosomal interactions, and spatial transcriptomics to build a reference set of medullary tissue marker genes to define the medullary role in kidney function, exemplifying the strength and utility of multi-omic data integration.


Subject(s)
Kidney Medulla , Multiomics , Kidney Medulla/metabolism , Sodium Chloride, Dietary/metabolism , Sodium Chloride/metabolism , Water-Electrolyte Balance
9.
J Clin Anesth ; 93: 111359, 2024 05.
Article in English | MEDLINE | ID: mdl-38061226

ABSTRACT

Acute kidney injury occurs frequently in the perioperative setting. The renal medulla often endures hypoxia or hypoperfusion and is susceptible to the imbalance between oxygen supply and demand due to the nature of renal blood flow distribution and metabolic rate in the kidney. The current available evidence demonstrated that the urine oxygen pressure is proportional to the variations of renal medullary tissue oxygen pressure. Thus, urine oxygenation can be a candidate for reflecting the change of oxygen in the renal medulla. In this review, we discuss the basic physiology of acute kidney injury, as well as techniques for monitoring urine oxygen tension, confounding factors affecting the reliable measurement of urine oxygen tension, and its clinical use, highlighting its potential role in early detection and prevention of acute kidney injury.


Subject(s)
Acute Kidney Injury , Kidney , Humans , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Kidney Medulla/blood supply , Kidney Medulla/metabolism , Hypoxia/diagnosis , Hypoxia/etiology , Oxygen/metabolism , Renal Circulation/physiology , Oxygen Consumption
10.
Am J Physiol Renal Physiol ; 326(2): F189-F201, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37994410

ABSTRACT

To reabsorb >99% of the glomerular filtrate, the metabolic demand of the kidney is high. Interestingly, renal blood flow distribution exhibits marked inhomogeneity, with typical tissue oxygen tension (Po2) of 50-60 mmHg in the well-perfused cortex and 10-20 mmHg in the inner medulla. Cellular fluid composition and acidity also varies substantially. To understand how different renal epithelial cells adapt to their local environment, we have developed and applied computational models of mitochondrial function of proximal convoluted tubule cell (baseline Po2 = 50 mmHg, cytoplasmic pH = 7.20) and medullary thick ascending limb (mTAL) cell (baseline Po2 = 10 mmHg, cytoplasmic pH = 6.85). The models predict key cellular quantities, including ATP generation, P/O (phosphate/oxygen) ratio, proton motive force, electrical potential gradient, oxygen consumption, the redox state of key electron carriers, and ATP consumption. Model simulations predict that close to their respective baseline conditions, the proximal tubule and mTAL mitochondria exhibit qualitatively similar behaviors. Nonetheless, because the mTAL mitochondrion has adapted to a much lower Po2, it can sustain a sufficiently high ATP production at Po2 as low as 4-5 mmHg, whereas the proximal tubule mitochondria would not. Also, because the mTAL cytosol is already acidic under baseline conditions, the proton motive force (pmf) exhibits higher sensitivity to further acidification. Among the different pathways that lead to oxidative phosphorylation impairment, the models predict that both the proximal tubule and mTAL mitochondria are most sensitive to reductions in Complex III activity.NEW & NOTEWORTHY Tissue fluid composition varies substantially within the mammalian kidney. The renal cortex is well perfused and pH neutral, whereas some medullary regions are hypoxic and acidic. How do these environments affect the mitochondrial function of proximal convoluted tubule and medullary thick ascending limb cells, which reside in the cortex and medulla, respectively? This computational modeling study demonstrates that these mitochondria can adapt to their contrasting environments and exhibit different sensitivities to perturbations to local environments.


Subject(s)
Kidney Tubules, Proximal , Kidney , Rats , Animals , Kidney/metabolism , Kidney Tubules, Proximal/metabolism , Oxygen/metabolism , Mitochondria/metabolism , Adenosine Triphosphate/metabolism , Kidney Medulla/metabolism , Mammals/metabolism
11.
Nat Commun ; 14(1): 4140, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468493

ABSTRACT

Kidney stone disease causes significant morbidity and increases health care utilization. In this work, we decipher the cellular and molecular niche of the human renal papilla in patients with calcium oxalate (CaOx) stone disease and healthy subjects. In addition to identifying cell types important in papillary physiology, we characterize collecting duct cell subtypes and an undifferentiated epithelial cell type that was more prevalent in stone patients. Despite the focal nature of mineral deposition in nephrolithiasis, we uncover a global injury signature characterized by immune activation, oxidative stress and extracellular matrix remodeling. We also identify the association of MMP7 and MMP9 expression with stone disease and mineral deposition, respectively. MMP7 and MMP9 are significantly increased in the urine of patients with CaOx stone disease, and their levels correlate with disease activity. Our results define the spatial molecular landscape and specific pathways contributing to stone-mediated injury in the human papilla and identify associated urinary biomarkers.


Subject(s)
Kidney Calculi , Kidney Medulla , Humans , Kidney Medulla/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 7 , Calcium Oxalate/metabolism , Transcriptome , Kidney Calculi/genetics , Kidney Calculi/metabolism
12.
Adv Physiol Educ ; 47(3): 665-671, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37439318

ABSTRACT

Countercurrent multiplication (CCM) is widely accepted as the mechanism for the generation of the corticopapillary osmotic gradient in the outer medulla of mammalian kidneys. However, several issues in the literature cause the current explanations of CCM to be inefficient and incomplete. As a result, it is challenging to clearly explain CCM in physiology education. The goal of this article is to share a modified version of CCM with more understandable explanation in the hopes of motivating peer discussion, further improvement, and future research. To reach this goal, the logical processes leading to CCM are first analyzed, which results in a set of formulas that serve as the principles governing CCM. Next, the cessation of CCM is addressed to provide a complete picture of the modified version of CCM. Throughout these two steps, the issues mentioned above are identified and addressed so that how the modified version of CCM eliminates these issues becomes clear. The formulas mentioned above are provided in the Tables S1, S2, and S3 (all Supplemental material is available in the Supplemental Excel File at https://doi.org/10.6084/m9.figshare.23515614) to explain how the interstitial and intrathick ascending limb osmotic concentration (OC) values used in the figures in this article are simulated and how alternative OC values can be generated from Tables S1 and S2 to illustrate CCM.NEW & NOTEWORTHY Countercurrent multiplication is widely accepted as the mechanism for the generation of the corticopapillary osmotic gradient in the outer medulla of mammalian kidneys, but the current explanations of it in textbooks and the literature are inefficient and incomplete, leading to confusion for students. This article shares a modified version of countercurrent multiplication with more understandable explanation as a way of motivating peer discussion, further improvement, and future research.


Subject(s)
Kidney Medulla , Kidney , Animals , Humans , Kidney Medulla/physiology , Osmosis , Mammals
13.
Arch Ital Urol Androl ; 95(1): 10748, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36924385

ABSTRACT

OBJECTIVES: The aim of this study is to investi-gate the association between the urinary metabolic milieu and kidney stone recurrence with a validated papillary evaluation score (PPLA). MATERIALS AND METHODS: We prospectively enrolled 30 stone for-mers who underwent retrograde intrarenal surgery procedures. Visual inspection of the accessible renal papillae was performed to calculate PPLA score, based on the characterization of ductal plugging, surface pitting, loss of papillary contour and Randall's plaque extension. Stone compositions, 24h urine collections and kidney stone events during follow-up were collected. Relative supersaturation ratios (RSS) for calcium oxalate (CaOx), brushite and uric acid were calculated using EQUIL-2. PPLA score > 3 was defined as high. RESULTS: Median follow-up period was 11 months (5, 34). PPLA score was inversely correlated with BMI (OR 0.59, 95% CI 0.38, 0.91, p = 0.018), type 2 diabetes (OR 0.04, 95% CI 0.003, 0.58, p = 0.018) and history of recurrent kidney stones (OR 0.17, 95%CI 0.04, 0.75, p = 0.019). The associations between PPLA score, diabetes and BMI were not confirmed after excluding patients with uric acid stones. Higher PPLA score was associated with lower odds of new kidney stone events during follow-up (OR 0.15, 95% CI 0.02, 1.00, p = 0.05). No other significant correla-tions were found. CONCLUSIONS: Our results confirm the lack of efficacy of PPLA score in phenotyping patients affected by kidney stone disease or in predicting the risk of stone recurrence. Larger, long-term studies need to be performed to clarify the role of PPLA on the risk of stone recurrence.


Subject(s)
Diabetes Mellitus, Type 2 , Kidney Calculi , Humans , Uric Acid , Kidney Calculi/surgery , Kidney , Kidney Medulla
14.
J Am Heart Assoc ; 12(3): e027712, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36734354

ABSTRACT

Background GLP-1 (glucagon-like peptide-1) receptor agonists exert beneficial long-term effects on cardiovascular and renal outcomes. In humans, the natriuretic effect of GLP-1 depends on GLP-1 receptor interaction, is accompanied by suppression of angiotensin II, and is independent of changes in renal plasma flow. In rodents, angiotensin II constricts vasa recta and lowers medullary perfusion. The current randomized, controlled, crossover study was designed to test the hypothesis that GLP-1 increases renal medullary perfusion in healthy humans. Methods and Results Healthy male participants (n=10, aged 27±4 years) ingested a fixed sodium intake for 4 days and were examined twice during a 1-hour infusion of either GLP-1 (1.5 pmol/kg per minute) or placebo together with infusion of 0.9% NaCl (750 mL/h). Interleaved measurements of renal arterial blood flow, oxygenation (R2*), and perfusion were acquired in the renal cortex and medulla during infusions, using magnetic resonance imaging. GLP-1 infusion increased medullary perfusion (32±7%, P<0.001) and cortical perfusion (13±4%, P<0.001) compared with placebo. Here, NaCl infusion decreased medullary perfusion (-5±2%, P=0.007), whereas cortical perfusion remained unchanged. R2* values increased by 3±2% (P=0.025) in the medulla and 4±1% (P=0.008) in the cortex during placebo, indicative of decreased oxygenation, but remained unchanged during GLP-1. Blood flow in the renal artery was not altered significantly by either intervention. Conclusions GLP-1 increases predominantly medullary but also cortical perfusion in the healthy human kidney and maintains renal oxygenation during NaCl loading. In perspective, suppression of angiotensin II by GLP-1 may account for the increase in regional perfusion. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04337268.


Subject(s)
Angiotensin II , Glucagon-Like Peptide 1 , Kidney , Sodium Chloride , Humans , Male , Cross-Over Studies , Glucagon-Like Peptide 1/pharmacology , Kidney Medulla , Perfusion , Renal Circulation , Young Adult , Adult
15.
Elife ; 122023 02 01.
Article in English | MEDLINE | ID: mdl-36722887

ABSTRACT

Hyperosmolarity of the renal medulla is essential for urine concentration and water homeostasis. However, how renal medullary collecting duct (MCD) cells survive and function under harsh hyperosmotic stress remains unclear. Using RNA-Seq, we identified SLC38A2 as a novel osmoresponsive neutral amino acid transporter in MCD cells. Hyperosmotic stress-induced cell death in MCD cells occurred mainly via ferroptosis, and it was significantly attenuated by SLC38A2 overexpression but worsened by Slc38a2-gene deletion or silencing. Mechanistic studies revealed that the osmoprotective effect of SLC38A2 is dependent on the activation of mTORC1. Moreover, an in vivo study demonstrated that Slc38a2-knockout mice exhibited significantly increased medullary ferroptosis following water restriction. Collectively, these findings reveal that Slc38a2 is an important osmoresponsive gene in the renal medulla and provide novel insights into the critical role of SLC38A2 in protecting MCD cells from hyperosmolarity-induced ferroptosis via the mTORC1 signalling pathway.


Subject(s)
Amino Acid Transport Systems, Neutral , Ferroptosis , Animals , Mice , Amino Acid Transport Systems, Neutral/metabolism , Kidney/metabolism , Kidney Medulla/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism
16.
Biomed J ; 46(2): 100577, 2023 04.
Article in English | MEDLINE | ID: mdl-36642221

ABSTRACT

Mass spectrometry-based proteomics has been extensively applied to current biomedical research. From such large-scale identification of proteins, several computational tools have been developed for determining protein-protein interactions (PPI) network and functional significance of the identified proteins and their complex. Analyses of PPI network and functional enrichment have been widely applied to various fields of biomedical research. Herein, we summarize commonly used tools for PPI network analysis and functional enrichment in kidney stone research and discuss their applications to kidney stone disease (KSD). Such computational approach has been used mainly to investigate PPI networks and functional significance of the proteins derived from urine of patients with kidney stone (stone formers), stone matrix, Randall's plaque, renal papilla, renal tubular cells, mitochondria and immune cells. The data obtained from computational biotechnology leads to experimental validation and investigations that offer new knowledge on kidney stone formation processes. Moreover, the computational approach may also lead to defining new therapeutic targets and preventive strategies for better outcome in KSD management.


Subject(s)
Calcium Oxalate , Kidney Calculi , Humans , Calcium Oxalate/analysis , Calcium Oxalate/metabolism , Kidney Calculi/metabolism , Kidney Calculi/pathology , Kidney/chemistry , Kidney/metabolism , Kidney/pathology , Kidney Medulla/chemistry , Kidney Medulla/metabolism , Kidney Medulla/pathology , Biotechnology
17.
Physiol Rep ; 11(1): e15554, 2023 01.
Article in English | MEDLINE | ID: mdl-36636010

ABSTRACT

The epithelial Na+ channel (ENaC) is traditionally composed of three subunits, although non-canonical expression has been found in various tissues including the vasculature, brain, lung, and dendritic cells of the immune system. Studies of ENaC structure and function have largely relied on heterologous expression systems, often with epitope-tagged channel subunits. Relevant in vivo physiological studies have used ENaC inhibitors, mice with global or tissue specific knockout of subunits, and anti-ENaC subunit antibodies generated by investigators or by commercial sources. Availability of well-characterized, specific antibodies is imperative as we move forward in understanding the role of ENaC in non-epithelial tissues where expression, subunit organization, and electrophysiological characteristics may differ from epithelial tissues. We report that a commonly used commercial anti-α subunit antibody recognizes an intense non-specific band on mouse whole kidney and lung immunoblots, which migrates adjacent to a less intense, aldosterone-induced full length α-subunit. This antibody localizes to the basolateral membrane of aquaporin 2 negative cells in kidney medulla. We validated antibodies against the ß- and γ-subunits from the same commercial source. Our work illustrates the importance of validation studies when using popular, commercially available anti-ENaC antibodies.


Subject(s)
Epithelial Sodium Channels , Kidney , Mice , Animals , Epithelial Sodium Channels/metabolism , Kidney/metabolism , Sodium/metabolism , Epithelium/metabolism , Kidney Medulla/metabolism
18.
Nephrol Dial Transplant ; 38(3): 562-574, 2023 02 28.
Article in English | MEDLINE | ID: mdl-34586414

ABSTRACT

The adverse effects of vasopressin (AVP) in diverse forms of chronic kidney disease have been well described. They depend on the antidiuretic action of AVP mediated by V2 receptors (V2R). Tolvaptan, a selective V2R antagonist, is now largely used for the treatment of patients with autosomal dominant polycystic kidney disease. Another way to reduce the adverse effects of AVP is to reduce endogenous AVP secretion by a voluntary increase in fluid intake. These two approaches differ in several ways, including the level of thirst and AVP. With voluntary increased drinking, plasma osmolality will decline and so will AVP secretion. Thus, not only will V2R-mediated effects be reduced, but also those mediated by V1a and V1b receptors (V1aR and V1bR). In contrast, selective V2R antagonism will induce a loss of fluid that will stimulate AVP secretion and thus increase AVP's influence on V1a and V1b receptors. V1aR is expressed in the luminal side of the collecting duct (CD) and in inner medullary interstitial cells, and their activation induces the production of prostaglandins, mostly prostaglandin E2 (PGE2). Intrarenal PGE2 has been shown to reduce sodium and water reabsorption in the CD and increase blood flow in the renal medulla, both effects contributing to increase sodium and water excretion and reduce urine-concentrating activity. Conversely, non-steroidal anti-inflammatory drugs have been shown to induce significant water and sodium retention and potentiate the antidiuretic effects of AVP. Thus, during V2R antagonism, V1aR-mediated actions may be responsible for part of the diuresis observed with this drug. These V1aR-dependent effects do not take place with a voluntary increase in fluid intake. In summary, while both strategies may have beneficial effects, the information reviewed here leads us to assume that pharmacological V2R antagonism, with resulting stimulation of V1aR and increased PGE2 production, may provide greater benefit than voluntary high water intake. The influence of tolvaptan on the PGE2 excretion rate and the possibility to use somewhat lower tolvaptan doses than presently prescribed remain to be evaluated.


Subject(s)
Dinoprostone , Kidney , Humans , Tolvaptan/therapeutic use , Receptors, Vasopressin/physiology , Kidney Medulla , Antidiuretic Hormone Receptor Antagonists/pharmacology , Antidiuretic Hormone Receptor Antagonists/therapeutic use , Sodium , Arginine Vasopressin
19.
Nephrol Dial Transplant ; 38(3): 586-598, 2023 02 28.
Article in English | MEDLINE | ID: mdl-35921220

ABSTRACT

BACKGROUND: The kidney is the main organ in the pathophysiology of essential hypertension. Although most bicarbonate reabsorption occurs in the proximal tubule, the medullary thick ascending limb (mTAL) of the nephron also maintains acid-base balance by contributing to 25% of bicarbonate reabsorption. A crucial element in this regulation is the sodium-hydrogen exchanger 1 (NHE1), a ubiquitous membrane protein controlling intracellular pH, where proton extrusion is driven by the inward sodium flux. MicroRNA (miRNA) expression of hypertensive patients significantly differs from that of normotensive subjects. The aim of this study was to determine the functional role of miRNA alterations at the mTAL level. METHODS: By miRNA microarray analysis, we identified miRNA expression profiles in isolated mTALs from high sodium intake-induced hypertensive rats (HSD) versus their normotensive counterparts (NSD). In vitro validation was carried out in rat mTAL cells. RESULTS: Five miRNAs involved in the onset of salt-sensitive hypertension were identified, including miR-23a, which was bioinformatically predicted to target NHE1 mRNA. Data demonstrated that miRNA-23a is downregulated in the mTAL of HSD rats while NHE1 is upregulated. Consistently, transfection of an miRNA-23a mimic in an mTAL cell line, using a viral vector, resulted in NHE1 downregulation. CONCLUSION: NHE1, a protein involved in sodium reabsorption at the mTAL level and blood pressure regulation, is upregulated in our model. This was due to a downregulation of miRNA-23a. Expression levels of this miRNA are influenced by high sodium intake in the mTALs of rats. The downregulation of miRNA-23a in humans affected by essential hypertension corroborate our data and point to the potential role of miRNA-23a in the regulation of mTAL function following high salt intake.


Subject(s)
Hypertension , MicroRNAs , Animals , Humans , Rats , Bicarbonates , Essential Hypertension/metabolism , Hypertension/metabolism , Kidney Medulla , MicroRNAs/metabolism , Sodium/metabolism , Sodium Chloride, Dietary , Sodium-Hydrogen Exchanger 1/metabolism , Sodium-Hydrogen Exchanger 3/metabolism
20.
Physiol Rep ; 10(23): e15535, 2022 12.
Article in English | MEDLINE | ID: mdl-36511486

ABSTRACT

This study examined the influence of PPARG activation by pioglitazone (PG) on the mRNA of core clock, inflammation- and metabolism-related genes in the mouse kidney medulla as well as urinary sodium/potassium excretion rhythms disrupted by reverse feeding. Mice were assigned to daytime feeding and nighttime feeding groups. PG 20 mg/kg was administered at 7 am or 7 pm. On day 8 of the feeding intervention, mice were killed at noon and midnight. Kidney medulla expression of Arntl, Clock, Nr1d1, Cry1, Cry2, Per1, Per2, Nfe2l2, Pparg, and Scnn1g was determined by qRT PCR. We measured urinary K+ , Na+ , urine volume, food, and H2 O intake. The reverse feeding uncoupled the peripheral clock gene rhythm in mouse kidney tissues. It was accompanied by a decreased expression of Nfe2l2 and Pparg as well as an increased expression of Rela and Scnn1g. These changes in gene expressions concurred with an increase in urinary Na+ , K+ , water excretion, microcirculation disorders, and cell loss, especially in distal tubules. PG induced the restoration of diurnal core clock gene expression as well as Nfe2l2, Pparg, Scnn1g mRNA, and decreased Rela expressions, stimulating Na+ reabsorption and inhibiting K+ excretion. PG intake at 7 pm was more effective than at 7 am.


Subject(s)
Circadian Rhythm , Kidney Medulla , Animals , Mice , Circadian Rhythm/physiology , Kidney Medulla/metabolism , Pioglitazone/pharmacology , PPAR gamma/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...