Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.066
Filter
1.
J Proteome Res ; 23(8): 3612-3625, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38949094

ABSTRACT

Diabetic nephropathy (DN) has become the main cause of end-stage renal disease worldwide, causing significant health problems. Early diagnosis of the disease is quite inadequate. To screen urine biomarkers of DN and explore its potential mechanism, this study collected urine from 87 patients with type 2 diabetes mellitus (which will be classified into normal albuminuria, microalbuminuria, and macroalbuminuria groups) and 38 healthy subjects. Twelve individuals from each group were then randomly selected as the screening cohort for proteomics analysis and the rest as the validation cohort. The results showed that humoral immune response, complement activation, complement and coagulation cascades, renin-angiotensin system, and cell adhesion molecules were closely related to the progression of DN. Five overlapping proteins (KLK1, CSPG4, PLAU, SERPINA3, and ALB) were identified as potential biomarkers by machine learning methods. Among them, KLK1 and CSPG4 were positively correlated with the urinary albumin to creatinine ratio (UACR), and SERPINA3 was negatively correlated with the UACR, which were validated by enzyme-linked immunosorbent assay (ELISA). This study provides new insights into disease mechanisms and biomarkers for early diagnosis of DN.


Subject(s)
Albuminuria , Biomarkers , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Machine Learning , Proteomics , Humans , Diabetic Nephropathies/urine , Diabetic Nephropathies/diagnosis , Biomarkers/urine , Proteomics/methods , Male , Female , Middle Aged , Albuminuria/urine , Albuminuria/diagnosis , Diabetes Mellitus, Type 2/urine , Diabetes Mellitus, Type 2/complications , Serpins/urine , Kallikreins/urine , Aged , Case-Control Studies , Creatinine/urine , Kininogens
2.
Anal Methods ; 16(28): 4724-4732, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38949046

ABSTRACT

It has been well-elaborated that KIN17 protein is closely related to the expression, development and prognosis of liver cancer; however, till date, there has been no study about detecting the KIN17 protein in serum, which is important to developing clinical applications. The objective of this work is to detect serum KIN17 protein by the ELISA method and to explore the diagnostic significance of the KIN17 protein in liver cancer. First, we verified the ELISA method for serum KIN17 measurement according to five aspects: accuracy, precision, specificity, stability and detection limit. Results illustrate that the recovery rate of the ELISA method can be controlled between 90% and 110%, the variation coefficient of intra-assay can be controlled within 16%, and the variation coefficient of inter-assay can be controlled within 10%. There is no non-specific reaction with common tumor markers, and the detection limit can reach 0.125 ng mL-1. The results show that the KIN17 protein can be detected by ELISA, and there is a significant rise in KIN17 concentration in a liver cancer group compared with a healthy group, whose average concentrations are 1.730 ng mL-1 and 0.3897 ng mL-1, respectively. On this basis, we hypothesize that the serum KIN17 protein can serve as a potential biomarker of liver cancer and be measurable with the verified ELISA system after specific ultrafiltration and centrifugation, which is of great significance for the diagnosis and treatment of liver cancer.


Subject(s)
Biomarkers, Tumor , Enzyme-Linked Immunosorbent Assay , Liver Neoplasms , Humans , Liver Neoplasms/blood , Liver Neoplasms/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Biomarkers, Tumor/blood , Male , Female , Limit of Detection , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Kininogens
3.
Cell Rep Methods ; 4(4): 100744, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38582075

ABSTRACT

A comprehensive analysis of site-specific protein O-glycosylation is hindered by the absence of a consensus O-glycosylation motif, the diversity of O-glycan structures, and the lack of a universal enzyme that cleaves attached O-glycans. Here, we report the development of a robust O-glycoproteomic workflow for analyzing complex biological samples by combining four different strategies: removal of N-glycans, complementary digestion using O-glycoprotease (IMPa) with/without another protease, glycopeptide enrichment, and mass spectrometry with fragmentation of glycopeptides using stepped collision energy. Using this workflow, we cataloged 474 O-glycopeptides on 189 O-glycosites derived from 79 O-glycoproteins from human plasma. These data revealed O-glycosylation of several abundant proteins that have not been previously reported. Because many of the proteins that contained unannotated O-glycosylation sites have been extensively studied, we wished to confirm glycosylation at these sites in a targeted fashion. Thus, we analyzed selected purified proteins (kininogen-1, fetuin-A, fibrinogen, apolipoprotein E, and plasminogen) in independent experiments and validated the previously unknown O-glycosites.


Subject(s)
Glycoproteins , Proteome , Proteomics , Workflow , Humans , Glycosylation , Glycoproteins/metabolism , Glycoproteins/chemistry , Proteomics/methods , Proteome/metabolism , Proteome/analysis , Glycopeptides/analysis , Glycopeptides/chemistry , Glycopeptides/metabolism , Kininogens/metabolism , Kininogens/chemistry , Polysaccharides/metabolism , Apolipoproteins E/metabolism , Apolipoproteins E/chemistry , Fibrinogen/metabolism , Fibrinogen/chemistry , alpha-2-HS-Glycoprotein/metabolism , alpha-2-HS-Glycoprotein/analysis
4.
Blood ; 143(7): 570-571, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358851
5.
Blood ; 143(18): 1845-1855, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38320121

ABSTRACT

ABSTRACT: Coagulation factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are critical to coagulation and platelet aggregation. We leveraged whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program along with TOPMed-based imputation of genotypes in additional samples to identify genetic associations with circulating FVIII and VWF levels in a single-variant meta-analysis, including up to 45 289 participants. Gene-based aggregate tests were implemented in TOPMed. We identified 3 candidate causal genes and tested their functional effect on FVIII release from human liver endothelial cells (HLECs) and VWF release from human umbilical vein endothelial cells. Mendelian randomization was also performed to provide evidence for causal associations of FVIII and VWF with thrombotic outcomes. We identified associations (P < 5 × 10-9) at 7 new loci for FVIII (ST3GAL4, CLEC4M, B3GNT2, ASGR1, F12, KNG1, and TREM1/NCR2) and 1 for VWF (B3GNT2). VWF, ABO, and STAB2 were associated with FVIII and VWF in gene-based analyses. Multiphenotype analysis of FVIII and VWF identified another 3 new loci, including PDIA3. Silencing of B3GNT2 and the previously reported CD36 gene decreased release of FVIII by HLECs, whereas silencing of B3GNT2, CD36, and PDIA3 decreased release of VWF by HVECs. Mendelian randomization supports causal association of higher FVIII and VWF with increased risk of thrombotic outcomes. Seven new loci were identified for FVIII and 1 for VWF, with evidence supporting causal associations of FVIII and VWF with thrombotic outcomes. B3GNT2, CD36, and PDIA3 modulate the release of FVIII and/or VWF in vitro.


Subject(s)
Cell Adhesion Molecules , Factor VIII , Kininogens , Lectins, C-Type , Receptors, Cell Surface , von Willebrand Factor , Humans , von Willebrand Factor/genetics , von Willebrand Factor/metabolism , Factor VIII/genetics , Factor VIII/metabolism , Polymorphism, Single Nucleotide , Human Umbilical Vein Endothelial Cells/metabolism , Mendelian Randomization Analysis , Genome-Wide Association Study , Thrombosis/genetics , Thrombosis/blood , Genetic Association Studies , Male , Endothelial Cells/metabolism , Female
6.
Blood ; 143(7): 641-650, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37992228

ABSTRACT

ABSTRACT: Hereditary angioedema (HAE) is associated with episodic kinin-induced swelling of the skin and mucosal membranes. Most patients with HAE have low plasma C1-inhibitor activity, leading to increased generation of the protease plasma kallikrein (PKa) and excessive release of the nanopeptide bradykinin from high-molecular-weight kininogen (HK). However, disease-causing mutations in at least 10% of patients with HAE appear to involve genes for proteins other than C1-inhibitor. A point mutation in the Kng1 gene encoding HK and low-molecular weight kininogen (LK) was identified recently in a family with HAE. The mutation changes a methionine (Met379) to lysine (Lys379) in both proteins. Met379 is adjacent to the Lys380-Arg381 cleavage site at the N-terminus of the bradykinin peptide. Recombinant wild-type (Met379) and variant (Lys379) versions of HK and LK were expressed in HEK293 cells. PKa-catalyzed kinin release from HK and LK was not affected by the Lys379 substitutions. However, kinin release from HK-Lys379 and LK-Lys379 catalyzed by the fibrinolytic protease plasmin was substantially greater than from wild-type HK-Met379 and LK-Met379. Increased kinin release was evident when fibrinolysis was induced in plasma containing HK-Lys379 or LK-Lys379 compared with plasma containing wild-type HK or LK. Mass spectrometry revealed that the kinin released from wild-type and variant kininogens by PKa is bradykinin. Plasmin also released bradykinin from wild-type kininogens but cleaved HK-Lys379 and LK-Lys379 after Lys379 rather than Lys380, releasing the decapeptide Lys-bradykinin (kallidin). The Met379Lys substitutions make HK and LK better plasmin substrates, reinforcing the relationship between fibrinolysis and kinin generation.


Subject(s)
Angioedemas, Hereditary , Bradykinin , Humans , Lysine , Angioedemas, Hereditary/genetics , Fibrinolysin , Methionine , HEK293 Cells , Kininogens , Kallikreins/genetics , Racemethionine
7.
J Thromb Haemost ; 21(9): 2370-2372, 2023 09.
Article in English | MEDLINE | ID: mdl-37597897

Subject(s)
Malus , Humans , Kininogens
8.
EBioMedicine ; 94: 104694, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37442062

ABSTRACT

BACKGROUND: Hepatitis B virus (HBV) infection is one of the main causes of hepatocellular carcinoma (HCC). The relationship between HBV infection and the host genome as well as their underlying mechanisms remain largely unknown. METHODS: In this study, we performed a whole-genome exon sequencing analysis of 300 sib-pairs of Chinese HBV-infected families with the goal of identifying variants and genes involved in HBV infection. A site-direct mutant plasmid was used to investigate the function of SNP rs76438938 in KNG1. The functional and mechanical studies of KNG1 were conducted with in vitro liver cell lines and a hydrodynamic injection model in vivo. The impact of KNG1 on HBV infection therapy was determined in hepatocytes treated with IFN-α/λ1. FINDINGS: Our whole-exon association study of 300 families with hepatitis B infection found that SNP rs76438938 in KNG1 significantly increased the risk for HBV infection, and the rs76438938-T allele was found to promote HBV replication by increasing the stability of KNG1 mRNA. By competitively binding HSP90A with MAVS, KNG1 can inhibit the expression of types I and III IFNs by promoting MAVS lysosomal degradation. Such suppression of IFN expression and promotion of HBV replication by Kng1 were further demonstrated with an animal model in vivo. Lastly, we showed that the rs76438938-C allele can improve the therapeutic effect of IFN-α and -λ1 in HBV infection. INTERPRETATION: This study identified a SNP, rs76438938, in a newly discovered host gene, KNG1, for its involvement in HBV infection and treatment effect through modulating the cellular antiviral process. FUNDING: This study was supported in part by the Independent Task of State Key Laboratory for Diagnosis and Treatment of Infectious Diseases of the First Affiliated Hospital of Zhejiang University, the China Precision Medicine Initiative (2016YFC0906300), and the Research Center for Air Pollution and Health of Zhejiang University.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B , Kininogens , Liver Neoplasms , Animals , Hepatitis B/drug therapy , Hepatitis B/genetics , Hepatitis B virus , Interferon-alpha/pharmacology , Interferons , Virus Replication , Humans , Cell Line , Kininogens/genetics
9.
J Thromb Haemost ; 21(9): 2378-2389, 2023 09.
Article in English | MEDLINE | ID: mdl-37068593

ABSTRACT

BACKGROUND: High-molecular weight kininogen (HK) circulates in plasma as a complex with zymogen prekallikrein (PK). HK is both a substrate and a cofactor for activated plasma kallikrein, and the principal exosite interactions occur between PK N-terminal apple domains and the C-terminal D6 domain of HK. OBJECTIVES: To determine the structure of the complex formed between PK apple domains and an HKD6 fragment and compare this with the coagulation factor XI (FXI)-HK complex. METHODS: We produced recombinant FXI and PK heavy chains (HCs) spanning all 4 apple domains. We cocrystallized PKHC (and subsequently FXIHC) with a 31-amino acid synthetic peptide spanning HK residues Ser565-Lys595 and determined the crystal structure. We also analyzed the full-length FXI-HK complex in solution using hydrogen deuterium exchange mass spectrometry. RESULTS: The 2.3Å PKHC-HK peptide crystal structure revealed that the HKD6 sequence WIPDIQ (Trp569-Gln574) binds to the apple 1 domain and HK FNPISDFPDT (Phe582-Thr591) binds to the apple 2 domain with a flexible intervening sequence resulting in a bent double conformation. A second 3.2Å FXIHC-HK peptide crystal structure revealed a similar interaction with the apple 2 domain but an alternate, straightened conformation of the HK peptide where residues LSFN (Leu579-Asn583) interacts with a unique pocket formed between the apple 2 and 3 domains. HDX-MS of full length FXI-HK complex in solution confirmed interactions with both apple 2 and apple 3. CONCLUSIONS: The alternate conformations and exosite binding of the HKD6 peptide likely reflects the diverging relationship of HK to the functions of PK and FXI.


Subject(s)
Factor XI , Kininogen, High-Molecular-Weight , Humans , Kininogen, High-Molecular-Weight/metabolism , Factor XI/metabolism , Prekallikrein/metabolism , Molecular Weight , Binding Sites , Kininogens/chemistry , Peptides/chemistry
10.
Am J Physiol Cell Physiol ; 323(4): C1070-C1087, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35993513

ABSTRACT

The epidermis is the outermost skin layer and is part of one of the largest organs in the body; it is supported by the dermis, a network of fibrils, blood vessels, pilosebaceous units, sweat glands, nerves, and cells. The skin as a whole is a protective shield against numerous noxious agents, including microorganisms and chemical and physical factors. These functions rely on the activity of multiple growth factors, peptide hormones, proteases, and specific signaling pathways that are triggered by the activation of distinct types of receptors sited in the cell membranes of the various cell types present in the skin. The human kallikrein family comprises a large group of 15 serine proteases synthesized and secreted by different types of epithelial cells throughout the body, including the skin. At this site, they initiate a proteolytic cascade that generates the active forms of the proteases, some of which regulate skin desquamation, activation of cytokines, and antimicrobial peptides. Kinin peptides are formed by the action of plasma and tissue kallikreins on kininogens, two plasma proteins produced in the liver and other organs. Although kinins are well known for their proinflammatory abilities, in the skin they are also considered important modulators of keratinocyte differentiation. In this review, we summarize the contributions of the kallikreins and kallikrein-related peptidases family and those of kinins and their receptors in skin homeostasis, with special emphasis on their pathophysiological role.


Subject(s)
Kinins , Peptide Hormones , Cytokines , Epidermis/metabolism , Homeostasis , Humans , Kallikreins/metabolism , Kininogens/chemistry , Kininogens/metabolism , Kinins/metabolism , Tissue Kallikreins
11.
Sci Rep ; 12(1): 14167, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986069

ABSTRACT

Heart transplantation remains the definitive treatment for end stage heart failure. Because availability is limited, risk stratification of candidates is crucial for optimizing both organ allocations and transplant outcomes. Here we utilize proteomics prior to transplant to identify new biomarkers that predict post-transplant survival in a multi-institutional cohort. Microvesicles were isolated from serum samples and underwent proteomic analysis using mass spectrometry. Monte Carlo cross-validation (MCCV) was used to predict survival after transplant incorporating select recipient pre-transplant clinical characteristics and serum microvesicle proteomic data. We identified six protein markers with prediction performance above AUROC of 0.6, including Prothrombin (F2), anti-plasmin (SERPINF2), Factor IX, carboxypeptidase 2 (CPB2), HGF activator (HGFAC) and low molecular weight kininogen (LK). No clinical characteristics demonstrated an AUROC > 0.6. Putative biological functions and pathways were assessed using gene set enrichment analysis (GSEA). Differential expression analysis identified enriched pathways prior to transplant that were associated with post-transplant survival including activation of platelets and the coagulation pathway prior to transplant. Specifically, upregulation of coagulation cascade components of the kallikrein-kinin system (KKS) and downregulation of kininogen prior to transplant were associated with survival after transplant. Further prospective studies are warranted to determine if alterations in the KKS contributes to overall post-transplant survival.


Subject(s)
Heart Transplantation , Kallikrein-Kinin System , Blood Coagulation , Heart Transplantation/adverse effects , Humans , Kallikrein-Kinin System/physiology , Kininogens/metabolism , Proteomics
12.
Acta Biochim Pol ; 69(3): 495-505, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35810482

ABSTRACT

The proper functioning of adipose tissue is one of the factors in maintaining energy homeostasis. Adipocytes not only store lipids but also produce active molecules such as adipokines and adipocytokines, which are involved in many functions of adipose tissue, including the secretion of hormones that regulate energy and lipid metabolism. Inflammation has been shown to underlie the deregulation of adipose tissue function. Bradykinin belongs to a family of pro-inflammatory kinin peptides that are abundant in most tissues and biological fluids. This study aimed to determine the ability to produce kinin peptides and characterize the effect of bradykinin on pro-inflammatory responses in adipocytes. The Chub-S7 human preadipocyte line was differentiated to show specific properties for adipose tissue cells. The differentiated cells expressed genes that encode proteins such as kininogen, kallikrein, and prolylcarboxypeptidase that are involved in the production of kinins and also showed the expression of kinin receptors. The response of adipocytes to bradykinin was examined in relation to kinin concentration and the presence of kininase inhibitors. The high concentration of bradykinin induced a moderate increase in lipid accumulation, increased release of pro-inflammatory cytokines, and altered gene expression of molecules involved in adipocyte function, such as adiponectin, lipoprotein lipase, and other transcription factors. This study suggests an important role for kinin peptides in inducing inflammatory responses in adipocytes, which can modify the function of adipose tissue and ultimately lead to diseases related to disturbance of energy homeostasis. The results obtained may enrich our understanding of the mechanisms underlying obesity-related disorders.


Subject(s)
Bradykinin , Lipoprotein Lipase , Adipocytes/metabolism , Adipokines/metabolism , Adiponectin/metabolism , Bradykinin/pharmacology , Cytokines/metabolism , Humans , Kallikreins/genetics , Kallikreins/metabolism , Kininogens/metabolism , Lipids , Lipoprotein Lipase/metabolism , Transcription Factors
13.
Sci Rep ; 12(1): 8696, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610262

ABSTRACT

Despite improvement in the care of diabetes over the years, pregnancy complicated by type 1 diabetes (T1DM) is still associated with adverse maternal and neonatal outcomes. To date, proteomics studies have been conducted to identify T1DM biomarkers in non-pregnant women, however, no studies included T1DM pregnant women. In this study serum proteomic profiling was conducted in pregnant women with T1DM in the late third trimester. Serum samples were collected from 40 women with T1DM and 38 healthy controls within 3 days before delivery at term pregnancy. Significant differences between serum proteomic patterns were revealed, showing discriminative peaks for complement C3 and C4-A, kininogen-1, and fibrinogen alpha chain. Quantification of selected discriminative proteins by ELISA kits was also performed. The serum concentration of kininogen-1 was significantly lower in women with T1DM than in controls. There were no significant differences in serum concentrations of complement C3 and complement C4-A between study groups. These data indicate that pregnant women with T1DM have a distinct proteomic profile involving proteins in the coagulation and inflammatory pathways. However, their utility as biomarkers of pregnancy complications in women with T1DM warrants further investigation.


Subject(s)
Diabetes Mellitus, Type 1 , Biomarkers , Complement C3 , Female , Humans , Infant, Newborn , Kininogens , Pregnancy , Pregnant Women , Proteomics
14.
J Thromb Thrombolysis ; 54(1): 11-14, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34993714

ABSTRACT

The contact system activation can play a role in microthrombus formation of disseminated intravascular coagulation (DIC). This study investigated whether the activity of prekallikrein and high-molecular-weight kininogen (HMWK) correlated DIC progression. Contact system factors (prekallikrein, HMWK, activated factor XII), coagulation factors (IX, XI, XII) and tissue factor were measured in 140 patients who clinically suspected of having DIC. Prekallikrein and HMWK activity levels showed significant linear relationships with DIC score and antithrombin level, whereas prekallikrein and HMWK antigen levels did not. The activated factor XII, factor XII, factor XI and tissue factor were significant risk factors of overt-DIC. This finding suggests that consumption of prekallikrein and HMWK contributes to microvascular thrombosis in DIC. Measurements of prekallikrein and HMWK activity could be used as potential diagnostic markers for overt-DIC.


Subject(s)
Disseminated Intravascular Coagulation , Thrombosis , Disseminated Intravascular Coagulation/diagnosis , Factor XIIa , Humans , Kininogen, High-Molecular-Weight , Kininogens/physiology , Prekallikrein , Risk Factors , Thromboplastin
15.
Blood ; 139(18): 2816-2829, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35100351

ABSTRACT

Patients with hereditary angioedema (HAE) experience episodes of bradykinin (BK)-induced swelling of skin and mucosal membranes. The most common cause is reduced plasma activity of C1 inhibitor, the main regulator of the proteases plasma kallikrein (PKa) and factor XIIa (FXIIa). Recently, patients with HAE were described with a Lys311 to glutamic acid substitution in plasminogen (Plg), the zymogen of the protease plasmin (Plm). Adding tissue plasminogen activator to plasma containing Plg-Glu311 vs plasma containing wild-type Plg (Plg-Lys311) results in greater BK generation. Similar results were obtained in plasma lacking prekallikrein or FXII (the zymogens of PKa and FXIIa) and in normal plasma treated with a PKa inhibitor, indicating Plg-Glu311 induces BK generation independently of PKa and FXIIa. Plm-Glu311 cleaves high and low molecular weight kininogens (HK and LK, respectively), releasing BK more efficiently than Plm-Lys311. Based on the plasma concentrations of HK and LK, the latter may be the source of most of the BK generated by Plm-Glu311. The lysine analog ε-aminocaproic acid blocks Plm-catalyzed BK generation. The Glu311 substitution introduces a lysine-binding site into the Plg kringle 3 domain, perhaps altering binding to kininogens. Plg residue 311 is glutamic acid in most mammals. Glu311 in patients with HAE, therefore, represents reversion to the ancestral condition. Substantial BK generation occurs during Plm-Glu311 cleavage of human HK, but not mouse HK. Furthermore, mouse Plm, which has Glu311, did not liberate BK from human kininogens more rapidly than human Plg-Lys311. This indicates Glu311 is pathogenic in the context of human Plm when human kininogens are the substrates.


Subject(s)
Angioedemas, Hereditary , Angioedemas, Hereditary/genetics , Angioedemas, Hereditary/pathology , Animals , Bradykinin/metabolism , Factor XIIa/metabolism , Fibrinolysin , Glutamic Acid , Humans , Kininogens/metabolism , Lysine , Mammals/metabolism , Mice , Plasma Kallikrein , Plasminogen/genetics , Plasminogen/metabolism , Tissue Plasminogen Activator
16.
Int J Mol Sci ; 22(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34948166

ABSTRACT

Kininogens are multidomain glycoproteins found in the blood of most vertebrates. High molecular weight kininogen demonstrate both carrier and co-factor activity as part of the intrinsic pathway of coagulation, leading to thrombin generation. Kininogens are the source of the vasoactive nonapeptide bradykinin. To date, attempts to crystallize kininogen have failed, and very little is known about the shape of kininogen at an atomic level. New advancements in the field of cryo-electron microscopy (cryoEM) have enabled researchers to crack the structure of proteins that has been refractory to traditional crystallography techniques. High molecular weight kininogen is a good candidate for structural investigation by cryoEM. The goal of this review is to summarize the findings of kininogen structural studies.


Subject(s)
Kininogen, High-Molecular-Weight/genetics , Kininogen, High-Molecular-Weight/metabolism , Kininogen, High-Molecular-Weight/physiology , Animals , Bradykinin/metabolism , Cryoelectron Microscopy/methods , Humans , Kallikreins/blood , Kininogens/genetics , Kininogens/metabolism , Kininogens/physiology , Structure-Activity Relationship
17.
Sci Rep ; 11(1): 19093, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34580391

ABSTRACT

Insulin has metabolic and vascular effects in the human body. What mechanisms that orchestrate the effects in the microcirculation, and how the responds differ in different tissues, is however not fully understood. It is therefore of interest to search for markers in microdialysate that may be related to the microcirculation. This study aims to identify proteins related to microvascular changes in different tissue compartments after glucose provocation using in vivo microdialysis. Microdialysis was conducted in three different tissue compartments (intracutaneous, subcutaneous and intravenous) from healthy subjects. Microdialysate was collected during three time periods; recovery after catheter insertion, baseline and glucose provocation, and analyzed using proteomics. Altogether, 126 proteins were detected. Multivariate data analysis showed that the differences in protein expression levels during the three time periods, including comparison before and after glucose provocation, were most pronounced in the intracutaneous and subcutaneous compartments. Four proteins with vascular effects were identified (angiotensinogen, kininogen-1, alpha-2-HS-glycoprotein and hemoglobin subunit beta), all upregulated after glucose provocation compared to baseline in all three compartments. Glucose provocation is known to cause insulin-induced vasodilation through the nitric oxide pathway, and this study indicates that this is facilitated through the interactions of the RAS (angiotensinogen) and kallikrein-kinin (kininogen-1) systems.


Subject(s)
Glucose/metabolism , Insulin/metabolism , Microcirculation/physiology , Adult , Angiotensinogen/metabolism , Female , Glucose/administration & dosage , Healthy Volunteers , Humans , Kininogens/metabolism , Male , Microdialysis , Proteomics/methods , Renin-Angiotensin System/physiology , Vasodilation/physiology , Young Adult
18.
Front Endocrinol (Lausanne) ; 12: 658304, 2021.
Article in English | MEDLINE | ID: mdl-34248840

ABSTRACT

Objective: Detailed proteomic analysis in a cohort of patients with differing severity of COVID-19 disease identified biomarkers within the complement and coagulation cascades as biomarkers for disease severity has been reported; however, it is unclear if these proteins differ sufficiently from other conditions to be considered as biomarkers. Methods: A prospective, parallel study in T2D (n = 23) and controls (n = 23). A hyperinsulinemic clamp was performed and normoglycemia induced in T2D [4.5 ± 0.07 mmol/L (81 ± 1.2 mg/dl)] for 1-h, following which blood glucose was decreased to ≤2.0 mmol/L (36 mg/dl). Proteomic analysis for the complement and coagulation cascades were measured using Slow Off-rate Modified Aptamer (SOMA)-scan. Results: Thirty-four proteins were measured. At baseline, 4 of 18 were found to differ in T2D versus controls for platelet degranulation [Neutrophil-activating peptide-2 (p = 0.014), Thrombospondin-1 (p = 0.012), Platelet factor-4 (p = 0.007), and Kininogen-1 (p = 0.05)], whilst 3 of 16 proteins differed for complement and coagulation cascades [Coagulation factor IX (p < 0.05), Kininogen-1 (p = 0.05), and Heparin cofactor-2 (p = 0.007)]; STRING analysis demonstrated the close relationship of these proteins to one another. Induced euglycemia in T2D showed no protein changes versus baseline. At hypoglycemia, however, four proteins changed in controls from baseline [Thrombospondin-1 (p < 0.014), platelet factor-4 (p < 0.01), Platelet basic protein (p < 0.008), and Vitamin K-dependent protein-C (p < 0.00003)], and one protein changed in T2D [Vitamin K-dependent protein-C, (p < 0.0002)]. Conclusion: Seven of 34 proteins suggested to be biomarkers of COVID-19 severity within the platelet degranulation and complement and coagulation cascades differed in T2D versus controls, with further changes occurring at hypoglycemia, suggesting that validation of these biomarkers is critical. It is unclear if these protein changes in T2D may predict worse COVID-19 disease for these patients. Clinical Trial Registration: https://clinicaltrials.gov/, identifier NCT03102801.


Subject(s)
Blood Coagulation Factors/metabolism , COVID-19/metabolism , Diabetes Mellitus, Type 2/metabolism , Hypoglycemia/metabolism , Aged , Biomarkers/metabolism , Blood Coagulation , Case-Control Studies , Complement Activation , Factor IX/metabolism , Female , Glucose Clamp Technique , Heparin Cofactor II/metabolism , Humans , Kininogens/metabolism , Male , Middle Aged , Peptides/metabolism , Platelet Activation , Platelet Factor 4/metabolism , Prospective Studies , Protein C/metabolism , Proteomics , SARS-CoV-2 , Severity of Illness Index , Thrombospondin 1/metabolism , beta-Thromboglobulin/metabolism
19.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L764-L774, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34318685

ABSTRACT

Sex-dependent differences in immunity and coagulation play an active role in the outcome of community-acquired pneumonia (CAP). Contact phase proteins act at the crossroads between inflammation and coagulation thus representing a point of convergence in host defense against infection. Here, we measured the levels of factor XII (FXII), FXIIa-C1 esterase inhibitor (C1INH) complexes, and high-molecular-weight kininogen (HK) in plasma of patients with CAP and correlated them to clinical disease severity. Levels of FXIIa-C1INH/albumin ratio were elevated, irrespective of sex, in plasma of patients with CAP (n = 139) as compared with age-matched donors (n = 58). No simultaneous decrease in FXII levels, indicating its consumption, was observed. Stratification by sex revealed augmented FXII levels in plasma of women with CAP as compared with sex-matched donors yet no apparent differences in men. This sex-specific effect was, however, attributable to lower FXII levels in female donors relative to men donors. Plasma estradiol levels mirrored those for FXII. Levels of HK/albumin ratio were decreased in CAP plasma as compared with donors, however, after stratification by sex, this difference was only observed in women and was related to higher HK/albumin values in female donors as opposed to male donors. Finally, strong negative correlation between plasma levels of HK/albumin ratio and CAP severity, as assessed by CRB65 score, in males and females was observed. Our study identifies sex-dependent differences in plasma levels of the contact phase proteins in elderly subjects that may contribute to specific clinical outcomes in CAP between men and women.


Subject(s)
Community-Acquired Infections/blood , Complement C1 Inhibitor Protein/analysis , Factor XII/analysis , Kininogens/blood , Pneumonia/blood , Aged , Community-Acquired Infections/pathology , Estradiol/blood , Female , Humans , Male , Pneumonia/pathology , Serum Albumin/analysis , Sex Factors
20.
Gene ; 801: 145856, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34293449

ABSTRACT

Epidemiological studies have established that untreated hypertension (HTN) is a major independent risk factor for developing cardiovascular diseases (CVD), stroke, renal failure, and other conditions. Several important studies have been published to prevent and manage HTN; however, antihypertensive agents' optimal choice remains controversial. Therefore, the present study is undertaken to update our knowledge in the primary treatment of HTN, specifically in the setting of other three important diseases. MicroRNAs (miRNAs) are remarkably stable short endogenous conserved non-coding RNAs that bind to the mRNA at its (3' UTR) to regulate its gene expression by causing translational repression or mRNA degradation. Through their coordinated activities on different pathways and networks, individual miRNAs control normal and pathological cellular processes. Therefore, to identify the critical miRNA-mRNA-TF interactions, we performed systematic bioinformatics analysis. We have also employed the molecular modelling and docking approach to identify the therapeutic target that delivers novel empathies into Food and Drug Administration approved and herbal drug response physiology. Gene Expression Omnibus (GEO) was employed to identify the differentially expressed genes (DEGs) and hub genes- KNG1, HLA-DPB1, CXCL8, IL1B, and BCL2. The HTN associated feed-forward loop (FFL) network included miR-9-5p, KNG1 and AR. We employed high throughput screening to get the best interacting compounds, telmisartan and limonin, that provided a significant docking score (-13.3 and -12.0 kcal/mol) and a potential protective effect that may help to combat the impact of HTN. The present study provides novel insight into HTN etiology through the identification of mRNAs and miRNAs and associated pathways.


Subject(s)
Antihypertensive Agents/pharmacology , Gene Regulatory Networks , Hypertension/genetics , Protein Interaction Maps/genetics , Drug Development/methods , Gene Expression Profiling , High-Throughput Screening Assays/methods , Humans , Hypertension/drug therapy , Kininogens/chemistry , Kininogens/genetics , Limonins/chemistry , Limonins/pharmacology , MicroRNAs/genetics , Models, Molecular , Molecular Docking Simulation , Telmisartan/chemistry , Telmisartan/pharmacology , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL