Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 566
Filter
1.
Nature ; 629(8013): 945-950, 2024 May.
Article in English | MEDLINE | ID: mdl-38720069

ABSTRACT

Lipoprotein(a) (Lp(a)), an independent, causal cardiovascular risk factor, is a lipoprotein particle that is formed by the interaction of a low-density lipoprotein (LDL) particle and apolipoprotein(a) (apo(a))1,2. Apo(a) first binds to lysine residues of apolipoprotein B-100 (apoB-100) on LDL through the Kringle IV (KIV) 7 and 8 domains, before a disulfide bond forms between apo(a) and apoB-100 to create Lp(a) (refs. 3-7). Here we show that the first step of Lp(a) formation can be inhibited through small-molecule interactions with apo(a) KIV7-8. We identify compounds that bind to apo(a) KIV7-8, and, through chemical optimization and further application of multivalency, we create compounds with subnanomolar potency that inhibit the formation of Lp(a). Oral doses of prototype compounds and a potent, multivalent disruptor, LY3473329 (muvalaplin), reduced the levels of Lp(a) in transgenic mice and in cynomolgus monkeys. Although multivalent molecules bind to the Kringle domains of rat plasminogen and reduce plasmin activity, species-selective differences in plasminogen sequences suggest that inhibitor molecules will reduce the levels of Lp(a), but not those of plasminogen, in humans. These data support the clinical development of LY3473329-which is already in phase 2 studies-as a potent and specific orally administered agent for reducing the levels of Lp(a).


Subject(s)
Lipoprotein(a) , Macaca fascicularis , Mice, Transgenic , Animals , Lipoprotein(a)/blood , Lipoprotein(a)/metabolism , Lipoprotein(a)/chemistry , Lipoprotein(a)/antagonists & inhibitors , Mice , Humans , Male , Kringles , Drug Discovery , Female , Administration, Oral , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Apolipoprotein B-100/metabolism , Apolipoprotein B-100/antagonists & inhibitors , Apolipoprotein B-100/chemistry
2.
Blood ; 143(19): 2005-2011, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38437497

ABSTRACT

ABSTRACT: Antiprothrombin antibodies are found in antiphospholipid patients, but how they interact with prothrombin remains elusive. Prothrombin adopts closed and open forms. We recently discovered type I and type II antibodies and proposed that type I recognizes the open form. In this study, we report the discovery and structural and functional characterization in human plasma of a type I antibody, POmAb (prothrombin open monoclonal antibody). Using surface plasmon resonance and single-molecule spectroscopy, we show that POmAb interacts with kringle-1 of prothrombin, shifting the equilibrium toward the open form. Using single-particle cryogenic electron microscopy (cryo-EM), we establish that the epitope targeted by POmAb is in kringle-1, comprising an extended binding interface centered at residues R90-Y93. The 3.2-Å cryo-EM structure of the complex reveals that the epitope overlaps with the position occupied by the protease domain of prothrombin in the closed state, explaining the exclusive binding of POmAb to the open form. In human plasma, POmAb prolongs phospholipid-initiated and diluted Russell's viper venom clotting time, which could be partly rescued by excess phospholipids, indicating POmAb is an anticoagulant but exerts a weak lupus anticoagulant effect. These studies reveal the structural basis of prothrombin recognition by a type I antiphospholipid antibody and uncover an exciting new strategy to achieve anticoagulation in human plasma.


Subject(s)
Antibodies, Antiphospholipid , Cryoelectron Microscopy , Prothrombin , Humans , Prothrombin/chemistry , Prothrombin/immunology , Prothrombin/metabolism , Antibodies, Antiphospholipid/immunology , Epitopes/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Blood Coagulation , Kringles , Protein Binding
3.
J Bioenerg Biomembr ; 56(3): 247-259, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38483739

ABSTRACT

Cardiovascular diseases (CVDs) are the leading cause of death globally, attributed to a complex etiology involving metabolic, genetic, and protein-related factors. Lipoprotein(a) (Lp(a)), identified as a genetic risk factor, exhibits elevated levels linked to an increased risk of cardiovascular diseases. The lipoprotein(a) kringle domains have recently been identified as a potential target for the treatment of CVDs, in this study we utilized a fragment-based drug design approach to design a novel, potent, and safe inhibitor for lipoprotein(a) kringle domain. With the use of fragment library (61,600 fragments) screening, combined with analyses such as MM/GBSA, molecular dynamics simulation (MD), and principal component analysis, we successfully identified molecules effective against the kringle domains of Lipoprotein(a). The hybridization process (Breed) of the best fragments generated a novel 249 hybrid molecules, among them 77 exhibiting superior binding affinity (≤ -7 kcal/mol) compared to control AZ-02 (-6.9 kcal/mol), Importantly, the top ten molecules displayed high similarity to the control AZ-02. Among the top ten molecules, BR1 exhibited the best docking energy (-11.85 kcal/mol ), and higher stability within the protein LBS site, demonstrating the capability to counteract the pathophysiological effects of lipoprotein(a) [Lp(a)]. Additionally, principal component analysis (PCA) highlighted a similar trend of motion during the binding of BR1 and the control compound (AZ-02), limiting protein mobility and reducing conformational space. Moreover, ADMET analysis indicated favorable drug-like properties, with BR1 showing minimal violations of Lipinski's rules. Overall, the identified compounds hold promise as potential therapeutics, addressing a critical need in cardiovascular medicine. Further preclinical and clinical evaluations are needed to validate their efficacy and safety, potentially ushering in a new era of targeted therapies for CVDs.


Subject(s)
Cardiovascular Diseases , Drug Design , Kringles , Lipoprotein(a) , Lipoprotein(a)/metabolism , Lipoprotein(a)/chemistry , Cardiovascular Diseases/drug therapy , Humans , Molecular Dynamics Simulation
4.
J Clin Lab Anal ; 38(5): e24998, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444303

ABSTRACT

BACKGROUND: Lipoprotein(a) [Lp(a)] level variability, related to atherothrombotic risk increase, is mainly attributed to LPA gene, encoding apolipoprotein(a), with kringle IV type 2 (KIV2) copy number variation (CNV) acting as the primary genetic determinant. Genetic characterization of Lp(a) is in continuous growth; nevertheless, the peculiar structural characteristics of this variant constitute a significant challenge to the development of effective detection methods. The aim of the study was to compare quantitative real-time PCR (qPCR) and digital droplet PCR (ddPCR) in the evaluation of KIV2 repeat polymorphism. METHODS: We analysed 100 subjects tested for cardiovascular risk in which Lp(a) plasma levels were assessed. RESULTS: Correlation analysis between CNV values obtained with the two methods was slightly significant (R = 0.413, p = 0.00002), because of the wider data dispersion in qPCR compared with ddPCR. Internal controls C1, C2 and C3 measurements throughout different experimental sessions revealed the superior stability of ddPCR, which was supported by a reduced intra/inter-assay coefficient of variation determined in this method compared to qPCR. A significant inverse correlation between Lp(a) levels and CNV values was confirmed for both techniques, but it was higher when evaluated by ddPCR than qPCR (R = -0.393, p = 0.000053 vs R = -0.220, p = 0.028, respectively). When dividing subjects into two groups according to 500 mg/L Lp(a) cut-off value, a significantly lower number of KIV2 repeats emerged among subjects with greater Lp(a) levels, with stronger evidence in ddPCR than in qPCR (p = 0.000013 and p = 0.001, respectively). CONCLUSIONS: Data obtained support a better performance of ddPCR in the evaluation of KIV2 repeat polymorphism.


Subject(s)
DNA Copy Number Variations , Kringles , Humans , Kringles/genetics , DNA Copy Number Variations/genetics , Lipoprotein(a)/genetics , Polymorphism, Genetic , Real-Time Polymerase Chain Reaction/methods
5.
BMC Mol Cell Biol ; 24(1): 25, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553635

ABSTRACT

BACKGROUND: Cells can die through a process called apoptosis in both pathological and healthy conditions. Cancer development and progression may result from abnormal apoptosis. The 78-kDa glucose-regulated protein (GRP78) is increased on the surface of cancer cells. Kringle 5, a cell apoptosis agent, is bound to GRP78 to induce cancer cell apoptosis. Kringle 5 was docked to GRP78 using ClusPro 2.0. The interaction between Kringle 5 and GRP78 was investigated. RESULTS: The interacting amino acids were found to be localized in three areas of Kringle 5. The proposed peptide is made up of secondary structure amino acids that contain Kringle 5 interaction residues. The 3D structure of the peptide model amino acids was created using the PEP-FOLD3 web tool. CONCLUSIONS: The proposed peptide completely binds to the GRP78 binding site on the Kringle 5, signaling that it might be effective in the apoptosis of cancer cells.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Neoplasms , Heat-Shock Proteins/metabolism , Kringles , Peptides/pharmacology , Apoptosis , Amino Acids
6.
J Lipid Res ; 63(12): 100306, 2022 12.
Article in English | MEDLINE | ID: mdl-36309064

ABSTRACT

Lipoprotein(a) [Lp(a)] concentrations are regulated by the LPA gene mainly via the large kringle IV-type 2 (KIV-2) copy number variation and multiple causal variants. Early studies suggested an effect of long pentanucleotide repeat (PNR) alleles (10 and 11 repeats, PNR10 and PNR11) in the LPA promoter on gene transcription and found an association with lower Lp(a). Subsequent in vitro studies showed no effects on mRNA transcription, but the association with strongly decreased Lp(a) remained consistent. We investigated the isolated and combined effect of PNR10, PNR11, and the frequent splice site variant KIV-2 4925G>A on Lp(a) concentrations in the Cooperative Health Research in the Region of Augsburg F4 study by multiple quantile regression in single-SNP and joint models. Data on Lp(a), apolipoprotein(a) Western blot isoforms, and variant genotypes were available for 2,858 individuals. We found a considerable linkage disequilibrium between KIV-2 4925G>A and the alleles PNR10 and PNR11. In single-variant analysis adjusted for age, sex, and the shorter apo(a) isoform, we determined that both PNR alleles were associated with a highly significant Lp(a) decrease (PNR10: ß = -14.43 mg/dl, 95% CI: -15.84, -13.02, P = 3.33e-84; PNR11: ß = -17.21 mg/dl, 95% CI: -20.19, -14.23, P = 4.01e-29). However, a joint model, adjusting the PNR alleles additionally for 4925G>A, abolished the effect on Lp(a) (PNR10: ß = +0.44 mg/dl, 95% CI: -1.73, 2.60, P = 0.69; PNR11: ß = -1.52 mg/dl, 95% CI: -6.05, 3.00, P = 0.51). Collectively, we conclude that the previously reported Lp(a) decrease observed in pentanucleotide alleles PNR10 or PNR11 carriers results from a linkage disequilibrium with the frequent splicing mutation KIV-2 4925G>A.


Subject(s)
DNA Copy Number Variations , Kringles , Humans , Apoprotein(a)/genetics , Kringles/genetics , Apolipoproteins A/genetics , Lipoprotein(a)/genetics , Microsatellite Repeats
7.
Life Sci Alliance ; 5(12)2022 07 29.
Article in English | MEDLINE | ID: mdl-35905995

ABSTRACT

Hepatocyte growth factor/scatter factor (HGF/SF) and its cognate receptor MET play several essential roles in embryogenesis and regeneration in postnatal life of epithelial organs such as the liver, kidney, lung, and pancreas, prompting a strong interest in harnessing HGF/SF-MET signalling for regeneration of epithelial organs after acute or chronic damage. The limited stability and tissue diffusion of native HGF/SF, however, which reflect the tightly controlled, local mechanism of action of the morphogen, have led to a major search of HGF/SF mimics for therapy. In this work, we describe the rational design, production, and characterization of K1K1, a novel minimal MET agonist consisting of two copies of the kringle 1 domain of HGF/SF in tandem orientation. K1K1 is highly stable and displays biological activities equivalent or superior to native HGF/SF in a variety of in vitro assay systems and in a mouse model of liver disease. These data suggest that this engineered ligand may find wide applications in acute and chronic diseases of the liver and other epithelial organs dependent of MET activation.


Subject(s)
Hepatocyte Growth Factor , Kringles , Animals , Dimerization , Hepatocyte Growth Factor/metabolism , Liver/metabolism , Mice , Proto-Oncogene Proteins c-met/agonists , Proto-Oncogene Proteins c-met/metabolism
8.
Atherosclerosis ; 349: 17-35, 2022 05.
Article in English | MEDLINE | ID: mdl-35606073

ABSTRACT

High lipoprotein(a) [Lp(a)] concentrations are one of the most important genetically determined risk factors for cardiovascular disease. Lp(a) concentrations are an enigmatic trait largely controlled by one single gene (LPA) that contains a complex interplay of several genetic elements with many surprising effects discussed in this review. A hypervariable coding copy number variation (the kringle IV type-2 repeat, KIV-2) generates >40 apolipoprotein(a) protein isoforms and determines the median Lp(a) concentrations. Carriers of small isoforms with up to 22 kringle IV domains have median Lp(a) concentrations up to 5 times higher than those with large isoforms (>22 kringle IV domains). The effect of the apo(a) isoforms are, however, modified by many functional single nucleotide polymorphisms (SNPs) distributed over the complete range of allele frequencies (<0.1% to >20%) with very pronounced effects on Lp(a) concentrations. A complex interaction is present between the apo(a) isoforms and LPA SNPs, with isoforms partially masking the effect of functional SNPs and, vice versa, SNPs lowering the Lp(a) concentrations of affected isoforms. This picture is further complicated by SNP-SNP interactions, a poorly understood role of other polymorphisms such as short tandem repeats and linkage structures that are poorly captured by common R2 values. A further layer of complexity derives from recent findings that several functional SNPs are located in the KIV-2 repeat and are thus not accessible to conventional sequencing and genotyping technologies. A critical impact of the ancestry on correlation structures and baseline Lp(a) values becomes increasingly evident. This review provides a comprehensive overview on the complex genetic architecture of the Lp(a) concentrations in plasma, a field that has made tremendous progress with the introduction of new technologies. Understanding the genetics of Lp(a) might be a key to many mysteries of Lp(a) and booster new ideas on the metabolism of Lp(a) and possible interventional targets.


Subject(s)
Kringles , Lipoprotein(a) , Apolipoproteins A/genetics , Apoprotein(a)/genetics , DNA Copy Number Variations , Kringles/genetics , Lipoprotein(a)/genetics , Polymorphism, Single Nucleotide , Protein Isoforms/genetics
9.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 5): 185-192, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35506763

ABSTRACT

Receptor tyrosine kinase-like orphan receptors (RORs) are monotopic membrane proteins belonging to the receptor tyrosine kinase (RTK) family. RTKs play a role in the control of most basic cellular processes, including cell proliferation, differentiation, migration and metabolism. New emerging roles for RORs in cancer progression have recently been proposed: RORs have been shown to be overexpressed in various malignancies but not in normal tissues, and moreover an abnormal expression level of RORs on the cellular surface is correlated with high levels of cytotoxicity in primary cancer cells. Monoclonal antibodies against the extracellular part of RTKs might be of importance to prevent tumor cell growth: targeting extracellular kringle domain molecules induces the internalization of RORs and decreases cell toxicity. Here, the recombinant production and crystallization of the isolated KRD of ROR1 and its high-resolution X-ray crystal structure in a P3121 crystal form at 1.4 Šresolution are reported. The crystal structure is compared with previously solved three-dimensional structures of kringle domains of human ROR1 and ROR2, their complexes with antibody fragments and structures of other kringle domains from homologous proteins.


Subject(s)
Kringles , Receptor Tyrosine Kinase-like Orphan Receptors , Antibodies, Monoclonal , Cell Proliferation , Crystallography, X-Ray , Humans , Receptor Tyrosine Kinase-like Orphan Receptors/chemistry , Receptor Tyrosine Kinase-like Orphan Receptors/genetics
10.
Arterioscler Thromb Vasc Biol ; 42(3): 289-304, 2022 03.
Article in English | MEDLINE | ID: mdl-35045727

ABSTRACT

BACKGROUND: Elevated plasma Lp(a) (lipoprotein(a)) levels are associated with increased risk for atherosclerotic cardiovascular disease and aortic valve stenosis. However, the cell biology of Lp(a) biosynthesis remains poorly understood, with the locations of the noncovalent and covalent steps of Lp(a) assembly unclear and the nature of the apoB-containing particle destined for Lp(a) unknown. We, therefore, asked if apo(a) and apoB interact noncovalently within hepatocytes and if this impacts Lp(a) biosynthesis. METHODS: Using human hepatocellular carcinoma cells expressing 17K (17 kringle) apo(a), or a 17KΔLBS7,8 variant with a reduced ability to bind noncovalently to apoB, we performed coimmunoprecipitation, coimmunofluorescence, and proximity ligation assays to document intracellular apo(a):apoB interactions. We used a pulse-chase metabolic labeling approach to measure apo(a) and apoB secretion rates. RESULTS: Noncovalent complexes containing apo(a)/apoB are present in lysates from cells expressing 17K but not 17KΔLBS7,8, whereas covalent apo(a)/apoB complexes are absent from lysates. 17K and apoB colocalized intracellularly, overlapping with staining for markers of endoplasmic reticulum trans-Golgi, and early endosomes, and less so with lysosomes. The 17KΔLBS7,8 had lower colocalization with apoB. Proximity ligation assays directly documented intracellular 17K/apoB interactions, which were dramatically reduced for 17KΔLBS7,8. Treatment of cells with PCSK9 (proprotein convertase subtilisin/kexin type 9) enhanced, and lomitapide reduced, apo(a) secretion in a manner dependent on the noncovalent interaction between apo(a) and apoB. Apo(a) secretion was also reduced by siRNA-mediated knockdown of APOB. CONCLUSIONS: Our findings explain the coupling of apo(a) and Lp(a)-apoB production observed in human metabolic studies using stable isotopes as well as the ability of agents that inhibit apoB biosynthesis to lower Lp(a) levels.


Subject(s)
Apolipoprotein B-100/metabolism , Apolipoproteins A/metabolism , Hepatocytes/metabolism , Lipoprotein(a)/metabolism , Apolipoprotein B-100/chemistry , Apolipoproteins A/chemistry , Apolipoproteins A/genetics , Binding Sites/genetics , Hep G2 Cells , Humans , Kringles/genetics , Lipoprotein(a)/chemistry , Lysine/chemistry , Metabolic Networks and Pathways , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
11.
Br J Pharmacol ; 179(5): 998-1016, 2022 03.
Article in English | MEDLINE | ID: mdl-34524687

ABSTRACT

BACKGROUND AND PURPOSE: There is a scarcity of information regarding the role of prothrombin kringle-2 (pKr-2), which can be generated by active thrombin, in hippocampal neurodegeneration and Alzheimer's disease (AD). EXPERIMENTAL APPROACH: To assess the role of pKr-2 in association with the neurotoxic symptoms of AD, we determined pKr-2 protein levels in post-mortem hippocampal tissues of patients with AD and the hippocampi of five familial AD (5XFAD) mice compared with those of age-matched controls and wild-type (WT) mice, respectively. In addition, we investigated whether the hippocampal neurodegeneration and object memory impairments shown in 5XFAD mice were mediated by changes to pKr-2 up-regulation. KEY RESULTS: Our results demonstrated that pKr-2 was up-regulated in the hippocampi of patients with AD and 5XFAD mice, but was not associated with amyloid-ß aggregation in 5XFAD mice. The up-regulation of pKr-2 expression was inhibited by preservation of the blood-brain barrier (BBB) via addition of caffeine to their water supply or by treatment with rivaroxaban, an inhibitor of factor Xa that is associated with thrombin production. Moreover, the prevention of up-regulation of pKr-2 expression reduced neurotoxic symptoms, such as hippocampal neurodegeneration and object recognition decline due to neurotoxic inflammatory responses in 5XFAD mice. CONCLUSION AND IMPLICATIONS: We identified a novel pathological mechanism of AD mediated by abnormal accumulation of pKr-2, which functions as an important pathogenic factor in the adult brain via blood brain barrier (BBB) breakdown. Thus, pKr-2 represents a novel target for AD therapeutic strategies and those for related conditions.


Subject(s)
Alzheimer Disease , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Hippocampus/metabolism , Humans , Kringles , Mice , Mice, Transgenic , Prothrombin/metabolism , Prothrombin/therapeutic use , Thrombin
12.
Ann Clin Lab Sci ; 51(6): 795-804, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34921033

ABSTRACT

OBJECTIVE: Lipoprotein (a) [Lp(a)] is an LDL-like particle constituted by lipids, apolipoprotein B100 and apolipoprotein (a) [apo(a)], a multidomain glycoprotein whose molecular mass is dependent on the genetically encoded number of Kringle IV type 2 (KIV-2) repeats. Because Lp(a) isoforms have been associated with cardiovascular risk (CVR), we have investigated if their interfacial properties can contribute to distinguish between low and high-risk groups and thus be used as a new CVR indicator. METHODS: Four Lp(a) variants, each carrying a different apo(a) isoform (K20, K24, K25, and K29), were purified from plasma of homozygous donors and their interfacial properties characterized using ellipsometry and surface pressure techniques. RESULTS: Ellipsometry measurements revealed that these isoforms had a similar propensity to form adsorbed layers at hydrophobic-hydrophilic interfaces, but surface pressure enabled to clearly separate them into two groups: K20 and K24 on one side, and K25 and K29 on the other side. CONCLUSION: Though K24 and K25 differ only by a single KIV-2 domain, their sharp difference in surface pressure suggests a critical threshold between the two Lp(a) forms, providing insights into the use of condensed matter approaches to monitor CVR. Our findings may represent a new laboratory window to assist medical decisions and to develop precision medicine treatments, practices, and products for CVR, which can be extended to other cardiovascular disease conditions.


Subject(s)
Cardiovascular Diseases , Lipoprotein(a) , Protein Isoforms , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/therapy , Chemistry Techniques, Analytical/methods , Heart Disease Risk Factors , Humans , Hydrophobic and Hydrophilic Interactions , Kringles/physiology , Lipid Metabolism , Lipoprotein(a)/chemistry , Lipoprotein(a)/metabolism , Precision Medicine/methods , Protein Isoforms/chemistry , Protein Isoforms/classification , Protein Isoforms/isolation & purification , Surface Properties
13.
Microbiologyopen ; 10(6): e1252, 2021 11.
Article in English | MEDLINE | ID: mdl-34964287

ABSTRACT

The direct binding of human plasminogen (hPg), via its kringle-2 domain (K2hPg ), to streptococcal M-protein (PAM), largely contributes to the pathogenesis of Pattern D Group A Streptococcus pyogenes (GAS). However, the mechanism of complex formation is unknown. In a system consisting of a Class II PAM from Pattern D GAS isolate NS88.2 (PAMNS88.2 ), with one K2hPg binding a-repeat in its A-domain, we employed biophysical techniques to analyze the mechanism of the K2hPg /PAMNS88.2 interaction. We show that apo-PAMNS88.2 is a coiled-coil homodimer (M.Wt. ~80 kDa) at 4°C-25°C, and is monomeric (M.Wt. ~40 kDa) at 37°C, demonstrating a temperature-dependent dissociation of PAMNS88.2 over a narrow temperature range. PAMNS88.2 displayed a single tight binding site for K2hPg at 4°C, which progressively increased at 25°C through 37°C. We isolated the K2hPg /PAMNS88.2 complexes at 4°C, 25°C, and 37°C and found molecular weights of ~50 kDa at each temperature, corresponding to a 1:1 (m:m) K2hPg /PAMNS88.2  monomer complex. hPg activation experiments by streptokinase demonstrated that the hPg/PAMNS88.2  monomer complexes are fully functional. The data show that PAM dimers dissociate into functional monomers at physiological temperatures or when presented with the active hPg module (K2hPg ) showing that PAM is a functional monomer at 37°C.


Subject(s)
Antigens, Bacterial/chemistry , Antigens, Bacterial/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Kringles , Plasminogen/chemistry , Plasminogen/metabolism , Streptococcus pyogenes/metabolism , Binding Sites , Humans , Molecular Weight , Protein Binding , Protein Conformation, alpha-Helical , Protein Multimerization , Streptokinase/metabolism , Temperature , Thermodynamics
14.
Am J Nephrol ; 52(7): 582-587, 2021.
Article in English | MEDLINE | ID: mdl-34375971

ABSTRACT

INTRODUCTION: Chronic kidney disease (CKD) is a prevalent complication of sickle cell anemia (SCA). Hyperfiltration that delayed detection of CKD is common in SCA patients. Identification of novel urinary biomarkers correlating with glomerular filtration rates may help to detect and predict progression of renal disease. METHODS: Reanalysis of mass spectra of urinary samples obtained from University of Illinois at Chicago identified kringle domain-containing protein HGFL. RESULTS: HGFL levels correlated with hyperfiltration, were significantly reduced at CKD stage 1 compared to stage 0, negatively correlated with progression of CKD and were suitable for differentiation of stage 1. Better prediction of CKD progression to stage 2 was observed for HGFL-based risk prediction compared to the estimated glomerular filtration rate (eGFR)-based prediction. Results from a Howard University patient cohort supported the utility of HGFL-based test for the differentiation of stage 1 of CKD. CONCLUSION: Urinary HGFL may contribute additional information beyond eGFR and improve diagnosis of early-stage CKD in SCA patients.


Subject(s)
Anemia, Sickle Cell/complications , Hepatocyte Growth Factor/urine , Proto-Oncogene Proteins/urine , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/urine , Adolescent , Adult , Aged , Biomarkers/urine , Disease Progression , Early Diagnosis , Female , Glomerular Filtration Rate , Hepatocyte Growth Factor/chemistry , Humans , Kringles , Male , Middle Aged , Prognosis , Proto-Oncogene Proteins/chemistry , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/physiopathology , Young Adult
15.
J Am Coll Cardiol ; 78(5): 437-449, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34325833

ABSTRACT

BACKGROUND: Lipoprotein(a) (Lp(a)) concentrations are a major independent risk factor for coronary artery disease (CAD) and are mainly determined by variation in LPA. Up to 70% of the LPA coding sequence is located in the hypervariable kringle IV type 2 (KIV-2) region. It is hardly accessible by conventional technologies, but may contain functional variants. OBJECTIVES: This study sought to investigate the new, very frequent splicing variant KIV-2 4733G>A on Lp(a) and CAD. METHODS: We genotyped 4733G>A in the GCKD (German Chronic Kidney Disease) study (n = 4,673) by allele-specific polymerase chain reaction, performed minigene assays, identified proxy single nucleotide polymorphisms and used them to characterize its effect on CAD by survival analysis in UK Biobank (n = 440,234). Frequencies in ethnic groups were assessed in the 1000 Genomes Project. RESULTS: The 4733G>A variant (38.2% carrier frequency) was found in most isoform sizes. It reduces allelic expression without abolishing protein production, lowers Lp(a) by 13.6 mg/dL (95% CI: 12.5-14.7; P < 0.0001) and is the strongest variance-explaining factor after the smaller isoform. Splicing of minigenes was modified. Compound heterozygosity (4.6% of the population) for 4733G>A and 4925G>A, another KIV-2 splicing mutation, reduces Lp(a) by 31.8 mg/dL and most importantly narrows the interquartile range by 9-fold (from 42.1 to 4.6 mg/dL) when compared to the wild type. In UK Biobank 4733G>A alone and compound heterozygosity with 4925G>A reduced HR for CAD by 9% (95% CI: 7%-11%) and 12% (95% CI: 7%-16%) (both P < 0.001). Frequencies in ethnicities differ notably. CONCLUSIONS: Functional variants in the previously inaccessible LPA KIV-2 region cooperate in determining Lp(a) variance and CAD risk. Even a moderate but lifelong genetic Lp(a) reduction translates to a noticeable CAD risk reduction.


Subject(s)
Coronary Artery Disease/blood , Coronary Artery Disease/genetics , Kringles/genetics , Lipoprotein(a)/blood , Lipoprotein(a)/genetics , Genetic Variation , Humans , Lipoprotein(a)/physiology , Prospective Studies
17.
Curr Eye Res ; 46(10): 1551-1558, 2021 10.
Article in English | MEDLINE | ID: mdl-33870816

ABSTRACT

Purpose: To assess the anti-neovascularization effect of a novel peptide NT/K-CFY derived from the kringle domain of neurotrypsin.Materials and Methods: Cell migration, lumen formation and cell proliferation assays were performed to determine the anti-neovascularization effect of NT/K-CFY in primary human umbilical vein endothelial cells (HUVECs). Chick chorioallantoic membrane (CAM) and oxygen-induced retinopathy (OIR) models were established to assess the anti-angiogenic role of NT/K-CFY in vivo. The retinal expression of vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF) was examined by western blot and real-time PCR in OIR model.Results: The in vitro results showed that NT/K-CFY effectively and safely decreased VEGF-induced cell migration, cell proliferation and tube formation in HUVECs. In addition, NT/K-CFY showed certain efficacy in angiogenesis inhibition in chicken embryos and oxygen-treated mouse pups. Moreover, the CFY peptide also improved retinal blood perfusion and reversed the abnormal expression of VEGF and PEDF in OIR mouse model.Conclusion: NT/K-CFY peptide strongly inhibits neovascularization in vitro and vivo. This novel peptide may become a promising therapeutic agent for ocular angiogenesis-related diseases.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Kringles , Peptides/pharmacology , Retinal Neovascularization/drug therapy , Serine Endopeptidases/chemistry , Angiogenesis Inhibitors/chemistry , Animals , Blotting, Western , Cell Movement/drug effects , Cell Proliferation/drug effects , Chick Embryo , Chickens , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/physiology , Disease Models, Animal , Eye Proteins/genetics , Eye Proteins/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/physiology , Humans , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Oxygen/toxicity , Peptides/chemistry , Real-Time Polymerase Chain Reaction , Retinal Neovascularization/pathology , Serpins/genetics , Serpins/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
19.
Int J Mol Sci ; 22(7)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801783

ABSTRACT

The present study investigated expression of endogenous interleukin-13 (IL-13) and its possible function in the hippocampus of prothrombin kringle-2 (pKr-2)-lesioned rats. Here we report that intrahippocampal injection of pKr-2 revealed a significant loss of NeuN-immunopositive (NeuN+) and Nissl+ cells in the hippocampus at 7 days after pKr-2. In parallel, pKr-2 increased IL-13 levels, which reached a peak at 3 days post pKr-2 and sustained up to 7 days post pKr-2. IL-13 immunoreactivity was seen exclusively in activated microglia/macrophages and neutrophils, but not in neurons or astrocytes. In experiments designed to explore the involvement of IL-13 in neurodegeneration, IL-13 neutralizing antibody (IL-13Nab) significantly increased survival of NeuN+ and Nissl+ cells. Accompanying neuroprotection, immunohistochemical analysis indicated that IL-13Nab inhibited pKr-2-induced expression of inducible nitric oxide synthase and myeloperoxidase within activated microglia/macrophages and neutrophils, possibly resulting in attenuation of reactive oxygen species (ROS) generation and oxidative damage of DNA and protein. The current findings suggest that the endogenous IL-13 expressed in pKr-2 activated microglia/macrophages and neutrophils might be harmful to hippocampal neurons via oxidative stress.


Subject(s)
Hippocampus/metabolism , Interleukin-13/physiology , Oxidative Stress , Prothrombin/chemistry , Animals , Astrocytes/metabolism , DNA Damage , Female , Hippocampus/drug effects , Kringles , Macrophages/metabolism , Microglia/metabolism , Neurons/metabolism , Neutrophils/metabolism , Oxygen/chemistry , Protein Domains , Rats , Rats, Sprague-Dawley
20.
Int J Mol Sci ; 21(22)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198383

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease with no effective treatment. The Hepatocyte Growth Factor/Scatter Factor (HGF/SF), through its receptor MET, is one of the most potent survival-promoting factors for motor neurons (MN) and is known as a modulator of immune cell function. We recently developed a novel recombinant MET agonist optimized for therapy, designated K1K1. K1K1 was ten times more potent than HGF/SF in preventing MN loss in an in vitro model of ALS. Treatments with K1K1 delayed the onset of muscular impairment and reduced MN loss and skeletal muscle denervation of superoxide dismutase 1 G93A (SOD1G93A) mice. This effect was associated with increased levels of phospho-extracellular signal-related kinase (pERK) in the spinal cord and sciatic nerves and the activation of non-myelinating Schwann cells. Moreover, reduced activated microglia and astroglia, lower T cells infiltration and increased interleukin 4 (IL4) levels were found in the lumbar spinal cord of K1K1 treated mice. K1K1 treatment also prevented the infiltration of T cells in skeletal muscle of SOD1G93A mice. All these protective effects were lost on long-term treatment suggesting a mechanism of drug tolerance. These data provide a rational justification for further exploring the long-term loss of K1K1 efficacy in the perspective of providing a potential treatment for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Hepatocyte Growth Factor/agonists , Immune System , Neurons/cytology , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/immunology , Animals , Astrocytes/cytology , Astrocytes/metabolism , Behavior, Animal , Cell Survival , Coculture Techniques , Disease Models, Animal , Disease Progression , Dogs , Extracellular Signal-Regulated MAP Kinases/metabolism , Gliosis/metabolism , Humans , Interleukin-4/metabolism , Kringles , Ligands , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Motor Neurons/metabolism , Neurons/metabolism , Schwann Cells/metabolism , Spinal Cord/metabolism , T-Lymphocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...