Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
1.
Cardiovasc Res ; 118(2): 475-488, 2022 01 29.
Article in English | MEDLINE | ID: mdl-33538785

ABSTRACT

AIMS: Atherosclerosis is the dominant pathologic basis of many cardiovascular diseases. Large genome-wide association studies have identified that single-nucleotide polymorphisms proximal to Krüppel-like factor 14 (KLF14), a member of the zinc finger family of transcription factors, are associated with higher cardiovascular risks. Macrophage dysfunction contributes to atherosclerosis development and has been recognized as a potential therapeutic target for treating many cardiovascular diseases. Herein, we address the biologic function of KLF14 in macrophages and its role during the development of atherosclerosis. METHODS AND RESULTS: KLF14 expression was markedly decreased in cholesterol loaded foam cells, and overexpression of KLF14 significantly increased cholesterol efflux and inhibited the inflammatory response in macrophages. We generated myeloid cell-selective Klf14 knockout (Klf14LysM) mice in the ApoE-/- background for the atherosclerosis study. Klf14LysMApoE-/- and litter-mate control mice (Klf14fl/flApoE-/-) were placed on the Western Diet for 12 weeks to induce atherosclerosis. Macrophage Klf14 deficiency resulted in increased atherosclerosis development without affecting the plasma lipid profiles. Klf14-deficient peritoneal macrophages showed significantly reduced cholesterol efflux resulting in increased lipid accumulation and exacerbated inflammatory response. Mechanistically, KLF14 upregulates the expression of a key cholesterol efflux transporter, ABCA1 (ATP-binding cassette transporter A1), while it suppresses the expression of several critical components of the inflammatory cascade. In macrophages, activation of KLF14 by its activator, perhexiline, a drug clinically used to treat angina, significantly inhibited the inflammatory response and increased cholesterol efflux in a KLF14-dependent manner in macrophages without triggering hepatic lipogenesis. CONCLUSIONS: This study provides insights into the anti-atherosclerotic effects of myeloid KLF14 through promoting cholesterol efflux and suppressing the inflammatory response. Activation of KLF14 may represent a potential new therapeutic approach to prevent or treat atherosclerosis.


Subject(s)
Aorta/metabolism , Aortic Diseases/metabolism , Atherosclerosis/metabolism , Kruppel-Like Transcription Factors/deficiency , Macrophages/metabolism , Plaque, Atherosclerotic , ATP Binding Cassette Transporter 1/metabolism , Animals , Aorta/immunology , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/immunology , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/pathology , Cholesterol/metabolism , Disease Models, Animal , Disease Progression , Female , Hep G2 Cells , Humans , Interleukin-1beta/metabolism , Kruppel-Like Transcription Factors/genetics , Macrophages/immunology , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Signal Transduction , THP-1 Cells , Transcription Factor RelA/metabolism
2.
Bioengineered ; 12(2): 10219-10231, 2021 12.
Article in English | MEDLINE | ID: mdl-34823421

ABSTRACT

This study is aimed at investigating mechanisms and effects of Krüppel-like factor 16 (KLF16) affects myocardial ischemia-reperfusion. Patients with myocardial ischemia-reperfusion and normal volunteer were collected. C57BL6J male mice were located left anterior descending coronary artery (LAD). H9c2 cell was induced with hydrogen peroxide (H2O2) and Lipopolysaccharide (LPS). Serum KLF16 mRNA expression was increased in myocardial ischemia-reperfusion. Serum mRNA of KLF16 was positive correlation with serum creatine kinase MB (CK-MB) or creatine kinase (CK) levels in patients with myocardial ischemia-reperfusion. The expression of KLF16 mRNA and protein in mice with myocardial ischemia-reperfusion were also increased. The inhibition of KLF16 reduced oxidative stress and inflammation, and presented myocardial ischemia (MI) in vivo model of myocardial ischemia-reperfusion. Mitochondrial transcription factor A (TFAM)/peroxisome proliferator-activated receptor-beta (PPARß) signal passage is target spot of KLF16 in Myocardial ischemia-reperfusion. TFAM interlink KLF16 in myocardial ischemia-reperfusion. TFAM participate in KLF16 affects myocardial ischemia-reperfusion. PPARß promoter region KLF16 affects myocardial ischemia-reperfusion. These results firstly demonstrated that knock-out KLF16 reduced oxidative stress and inflammation, and presented MI in vivo model of myocardial ischemia-reperfusion through the induction of PPARß by TFAM, may provide a novel therapeutic strategy for myocardial ischemia-reperfusion.


Subject(s)
Anti-Inflammatory Agents/metabolism , Antioxidants/metabolism , DNA-Binding Proteins/metabolism , Gene Knockout Techniques , High Mobility Group Proteins/metabolism , Kruppel-Like Transcription Factors/deficiency , Myocardial Reperfusion Injury/prevention & control , Myocardium/pathology , PPAR-beta/metabolism , Animals , Base Sequence , Disease Models, Animal , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Male , Mice, Inbred C57BL , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , Oxidative Stress/genetics , PPAR-beta/genetics , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction
3.
Biochem Biophys Res Commun ; 582: 35-42, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34688045

ABSTRACT

High protein diet (HPD) is an affordable and positive approach in prevention and treatment of many diseases. It is believed that transcriptional regulation is responsible for adaptation after HPD feeding and Kruppel-like factor 15 (KLF15), a zinc finger transcription factor that has been proved to perform transcriptional regulation over amino acid, lipid and glucose metabolism, is known to be involved at least in part in this HPD response. To gain more insight into molecular mechanisms by which HPD controls expressions of genes involved in amino acid metabolism in the liver, we performed RNA-seq analysis of mice fed HPD for a short period (3 days). Compared to a low protein diet, HPD feeding significantly increased hepatic expressions of enzymes involved in the breakdown of all the 20 amino acids. Moreover, using KLF15 knockout mice and in vivo Ad-luc analytical system, we were able to identify Cth (cystathionine gamma-lyase) as a new target gene of KLF15 transcription as well as Ast (aspartate aminotransferase) as an example of KLF15-independent gene despite its remarkable responsiveness to HPD. These findings provide us with a clue to elucidate the entire transcriptional regulatory mechanisms of amino acid metabolic pathways.


Subject(s)
Aspartate Aminotransferases/genetics , Cystathionine gamma-Lyase/genetics , Diet, High-Protein/methods , Kruppel-Like Transcription Factors/genetics , Transcription, Genetic , Adaptation, Physiological/genetics , Amino Acids/metabolism , Animals , Aspartate Aminotransferases/metabolism , Cystathionine gamma-Lyase/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Genes, Reporter , Glucose/metabolism , Kruppel-Like Transcription Factors/deficiency , Lipid Metabolism/genetics , Liver/metabolism , Luciferases , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Sequence Analysis, RNA , Signal Transduction
4.
Toxicol Appl Pharmacol ; 427: 115654, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34310909

ABSTRACT

Diabetic cardiomyopathy (DCM) is a serious diabetic complication that lacks effective preventive or therapeutic approaches. Wild-type and Klf15 knockout (Klf15-KO) mice were fed with either high fat diet (HFD, 60% kcal from fat) or normal diet (ND, 10% kcal from fat) for 3 months and then injected with streptozotocin or vehicle, to induce type 2 diabetes (T2D). All T2D and age-matched control mice were treated with or without SDF-1ß at 5 mg/kg body-weight twice a week and also continually received HFD or ND for 3 months. At the end of 6-month study, after cardiac functions were measured, mice were euthanized to collect heart tissue. For in vitro mechanistic study, H9c2 cells were exposed to palmitate to mimic in vivo condition of T2D. SDF-1ß prevented T2D-induced cardiac dysfunction and fibrosis and T2D-down-regulated KLF15 expression in wild-type diabetic heart tissue. However, the preventive effects of SDF-1ß on both KLF15 expression and fibrosis was abolished, with partial cardiac protection in Klf15-KO/T2D mice. These results demonstrate partial KLF15-dependence for SDF-1ß's cardiac fibrotic protection from T2D, but not on SDF-1ß's protective effects on T2D-induced cardiac dysfunction. Further study showed that SDF-1ß inhibited palmitate-induced cardiomyocyte fibrosis through its receptor CXCR7-mediated activation of p38ß MAPK signaling pathway.


Subject(s)
Chemokine CXCL12/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetic Cardiomyopathies/drug therapy , Kruppel-Like Transcription Factors/deficiency , Animals , Cell Line , Chemokine CXCL12/pharmacology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetic Cardiomyopathies/metabolism , Fibrosis/drug therapy , Fibrosis/metabolism , Kruppel-Like Transcription Factors/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Rats
5.
Genome Res ; 31(4): 551-563, 2021 04.
Article in English | MEDLINE | ID: mdl-33722937

ABSTRACT

Transposable element (TE) invasions have shaped vertebrate genomes over the course of evolution. They have contributed an extra layer of species-specific gene regulation by providing novel transcription factor binding sites. In humans, SINE-VNTR-Alu (SVA) elements are one of three still active TE families; approximately 2800 SVA insertions exist in the human genome, half of which are human-specific. TEs are often silenced by KRAB zinc finger (KZNF) proteins recruiting corepressor proteins that establish a repressive chromatin state. A number of KZNFs have been reported to bind SVAs, but their individual contribution to repressing SVAs and their roles in suppressing SVA-mediated gene-regulatory effects remains elusive. We analyzed the genome-wide binding profile for ZNF91 in human cells and found that ZNF91 interacts with the VNTR region of SVAs. Through CRISPR-Cas9-mediated deletion of ZNF91 in human embryonic stem cells, we established that loss of ZNF91 results in increased transcriptional activity of SVAs. In contrast, SVA activation was not observed upon genetic deletion of the ZNF611 gene encoding another strong SVA interactor. Epigenetic profiling confirmed the loss of SVA repression in the absence of ZNF91 and revealed that mainly evolutionary young SVAs gain gene activation-associated epigenetic modifications. Genes close to activated SVAs showed a mild up-regulation, indicating SVAs adopt properties of cis-regulatory elements in the absence of repression. Notably, genome-wide derepression of SVAs elicited the communal up-regulation of KZNFs that reside in KZNF clusters. This phenomenon may provide new insights into the potential mechanisms used by the host genome to sense and counteract TE invasions.


Subject(s)
Human Embryonic Stem Cells , Kruppel-Like Transcription Factors/deficiency , Multigene Family/genetics , Repressor Proteins/genetics , Retroelements/genetics , Transcriptional Activation , Up-Regulation , Genome, Human , Humans , Zinc Fingers/genetics
6.
Arterioscler Thromb Vasc Biol ; 41(3): 1105-1123, 2021 03.
Article in English | MEDLINE | ID: mdl-33406884

ABSTRACT

OBJECTIVE: Atherosclerosis predominantly forms in regions of oscillatory shear stress while regions of laminar shear stress are protected. This protection is partly through the endothelium in laminar flow regions expressing an anti-inflammatory and antithrombotic gene expression program. Several molecular pathways transmitting these distinct flow patterns to the endothelium have been defined. Our objective is to define the role of the MEF2 (myocyte enhancer factor 2) family of transcription factors in promoting an atheroprotective endothelium. Approach and Results: Here, we show through endothelial-specific deletion of the 3 MEF2 factors in the endothelium, Mef2a, -c, and -d, that MEF2 is a critical regulator of vascular homeostasis. MEF2 deficiency results in systemic inflammation, hemorrhage, thrombocytopenia, leukocytosis, and rapid lethality. Transcriptome analysis reveals that MEF2 is required for normal regulation of 3 pathways implicated in determining the flow responsiveness of the endothelium. Specifically, MEF2 is required for expression of Klf2 and Klf4, 2 partially redundant factors essential for promoting an anti-inflammatory and antithrombotic endothelium. This critical requirement results in phenotypic similarities between endothelial-specific deletions of Mef2a/c/d and Klf2/4. In addition, MEF2 regulates the expression of Notch family genes, Notch1, Dll1, and Jag1, which also promote an atheroprotective endothelium. In contrast to these atheroprotective pathways, MEF2 deficiency upregulates an atherosclerosis promoting pathway through increasing the amount of TAZ (transcriptional coactivator with PDZ-binding motif). CONCLUSIONS: Our results implicate MEF2 as a critical upstream regulator of several transcription factors responsible for gene expression programs that affect development of atherosclerosis and promote an anti-inflammatory and antithrombotic endothelium. Graphic Abstract: A graphic abstract is available for this article.


Subject(s)
Atherosclerosis/metabolism , Endothelium, Vascular/metabolism , MEF2 Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Endothelium, Vascular/pathology , Female , Gene Expression Regulation , Homeostasis , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/deficiency , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , MEF2 Transcription Factors/deficiency , MEF2 Transcription Factors/genetics , Male , Mice , Mice, Knockout , Receptors, Notch/genetics , Signal Transduction , Trans-Activators/metabolism
7.
Arterioscler Thromb Vasc Biol ; 41(1): 284-301, 2021 01.
Article in English | MEDLINE | ID: mdl-33054397

ABSTRACT

OBJECTIVE: Smooth muscle cells and pericytes display remarkable plasticity during injury and disease progression. Here, we tested the hypothesis that perivascular cells give rise to Klf4-dependent macrophage-like cells that augment adipose tissue (AT) inflammation and metabolic dysfunction associated with diet-induced obesity (DIO). Approach and Results: Using Myh11-CreERT2 eYFP (enhanced yellow fluorescent protein) mice and flow cytometry of the stromovascular fraction of epididymal AT, we observed a large fraction of smooth muscle cells and pericytes lineage traced eYFP+ cells expressing macrophage markers. Subsequent single-cell RNA sequencing, however, showed that the majority of these cells had no detectable eYFP transcript. Further exploration revealed that intraperitoneal injection of tamoxifen in peanut oil, used for generating conditional knockout or reporter mice in thousands of previous studies, resulted in large increase in the autofluorescence and false identification of macrophages within epididymal AT as being eYFP+; and unintended proinflammatory consequences. Using newly generated Myh11-DreERT2tdTomato mice given oral tamoxifen, we virtually eliminated the problem with autofluorescence and identified 8 perivascular cell dominated clusters, half of which were altered upon DIO. Given that perivascular cell KLF4 (kruppel-like factor 4) can have beneficial or detrimental effects, we tested its role in obesity-associated AT inflammation. While smooth muscle cells and pericytes-specific Klf4 knockout (smooth muscle cells and pericytes Klf4Δ/Δ) mice were not protected from DIO, they displayed improved glucose tolerance upon DIO, and showed marked decreases in proinflammatory macrophages and increases in LYVE1+ lymphatic endothelial cells in the epididymal AT. CONCLUSIONS: Perivascular cells within the AT microvasculature dynamically respond to DIO and modulate tissue inflammation and metabolism in a KLF4-dependent manner.


Subject(s)
Adipose Tissue/metabolism , Cell Plasticity , Kruppel-Like Transcription Factors/metabolism , Myocytes, Smooth Muscle/metabolism , Obesity/metabolism , Panniculitis/metabolism , Pericytes/metabolism , Adipose Tissue/pathology , Animals , Blood Glucose/metabolism , Cell Lineage , Diet, High-Fat , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Inflammation Mediators/metabolism , Insulin Resistance , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/deficiency , Kruppel-Like Transcription Factors/genetics , Macrophages/metabolism , Macrophages/pathology , Male , Mice, Knockout , Myocytes, Smooth Muscle/pathology , Obesity/etiology , Obesity/genetics , Obesity/pathology , Panniculitis/etiology , Panniculitis/genetics , Panniculitis/pathology , Pericytes/pathology
8.
Int J Mol Sci ; 21(22)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182781

ABSTRACT

Erythroid Krüppel-like factor (EKLF/KLF1) was identified initially as a critical erythroid-specific transcription factor and was later found to be also expressed in other types of hematopoietic cells, including megakaryocytes and several progenitors. In this study, we have examined the regulatory effects of EKLF on hematopoiesis by comparative analysis of E14.5 fetal livers from wild-type and Eklf gene knockout (KO) mouse embryos. Depletion of EKLF expression greatly changes the populations of different types of hematopoietic cells, including, unexpectedly, the long-term hematopoietic stem cells Flk2- CD34- Lin- Sca1+ c-Kit+ (LSK)-HSC. In an interesting correlation, Eklf is expressed at a relatively high level in multipotent progenitor (MPP). Furthermore, EKLF appears to repress the expression of the colony-stimulating factor 2 receptor ß subunit (CSF2RB). As a result, Flk2- CD34- LSK-HSC gains increased differentiation capability upon depletion of EKLF, as demonstrated by the methylcellulose colony formation assay and by serial transplantation experiments in vivo. Together, these data demonstrate the regulation of hematopoiesis in vertebrates by EKLF through its negative regulatory effects on the differentiation of the hematopoietic stem and progenitor cells, including Flk2- CD34- LSK-HSCs.


Subject(s)
Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Kruppel-Like Transcription Factors/metabolism , Animals , Antigens, CD34/genetics , Antigens, CD34/metabolism , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Lineage/genetics , Cell Lineage/physiology , Cells, Cultured , Cytokine Receptor Common beta Subunit/genetics , Cytokine Receptor Common beta Subunit/metabolism , Hematopoiesis/genetics , Hematopoiesis/physiology , Hematopoietic Stem Cell Transplantation , Homeostasis , Kruppel-Like Transcription Factors/deficiency , Kruppel-Like Transcription Factors/genetics , Liver/cytology , Liver/embryology , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/metabolism , fms-Like Tyrosine Kinase 3/deficiency , fms-Like Tyrosine Kinase 3/genetics
9.
PLoS Biol ; 18(8): e3000808, 2020 08.
Article in English | MEDLINE | ID: mdl-32817651

ABSTRACT

Although dysregulation of mitochondrial dynamics has been linked to cellular senescence, which contributes to advanced age-related disorders, it is unclear how Krüppel-like factor 5 (Klf5), an essential transcriptional factor of cardiovascular remodeling, mediates the link between mitochondrial dynamics and vascular smooth muscle cell (VSMC) senescence. Here, we show that Klf5 down-regulation in VSMCs is correlated with rupture of abdominal aortic aneurysm (AAA), an age-related vascular disease. Mice lacking Klf5 in VSMCs exacerbate vascular senescence and progression of angiotensin II (Ang II)-induced AAA by facilitating reactive oxygen species (ROS) formation. Klf5 knockdown enhances, while Klf5 overexpression suppresses mitochondrial fission. Mechanistically, Klf5 activates eukaryotic translation initiation factor 5a (eIF5a) transcription through binding to the promoter of eIF5a, which in turn preserves mitochondrial integrity by interacting with mitofusin 1 (Mfn1). Accordingly, decreased expression of eIF5a elicited by Klf5 down-regulation leads to mitochondrial fission and excessive ROS production. Inhibition of mitochondrial fission decreases ROS production and VSMC senescence. Our studies provide a potential therapeutic target for age-related vascular disorders.


Subject(s)
Aortic Aneurysm, Abdominal/genetics , Endothelial Cells/metabolism , Kruppel-Like Transcription Factors/genetics , Mitochondria/metabolism , Peptide Initiation Factors/genetics , RNA-Binding Proteins/genetics , Aged , Angiotensin II/genetics , Angiotensin II/metabolism , Angiotensin II/pharmacology , Animals , Aorta/diagnostic imaging , Aorta/metabolism , Aorta/pathology , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Cellular Senescence/drug effects , Echocardiography , Endothelial Cells/pathology , Female , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , Kruppel-Like Transcription Factors/deficiency , Male , Mice , Mice, Knockout , Mitochondria/pathology , Mitochondrial Dynamics/drug effects , Peptide Initiation Factors/deficiency , Primary Cell Culture , Promoter Regions, Genetic , Protein Binding , Reactive Oxygen Species/metabolism , Eukaryotic Translation Initiation Factor 5A
10.
Sci Rep ; 10(1): 12139, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32699233

ABSTRACT

A large number of hepatic functions are regulated by the circadian clock and recent evidence suggests that clock disruption could be a risk factor for liver complications. The circadian transcription factor Krüppel like factor 10 (KLF10) has been involved in liver metabolism as well as cellular inflammatory and death pathways. Here, we show that hepatic steatosis and inflammation display diurnal rhythmicity in mice developing steatohepatitis upon feeding with a methionine and choline deficient diet (MCDD). Core clock gene mRNA oscillations remained mostly unaffected but rhythmic Klf10 expression was abolished in this model. We further show that Klf10 deficient mice display enhanced liver injury and fibrosis priming upon MCDD challenge. Silencing Klf10 also sensitized primary hepatocytes to apoptosis along with increased caspase 3 activation in response to TNFα. This data suggests that MCDD induced steatohepatitis barely affects the core clock mechanism but leads to a reprogramming of circadian gene expression in the liver in analogy to what is observed in other experimental disease paradigms. We further identify KLF10 as a component of this transcriptional reprogramming and a novel hepato-protective factor.


Subject(s)
Biomarkers/metabolism , Circadian Rhythm/genetics , Diet , Early Growth Response Transcription Factors/genetics , Kruppel-Like Transcription Factors/genetics , Non-alcoholic Fatty Liver Disease/etiology , Animals , Apoptosis , Caspase 3/metabolism , Cells, Cultured , Choline/chemistry , Diet/veterinary , Disease Models, Animal , Early Growth Response Transcription Factors/deficiency , Fibrosis , Hepatocytes/cytology , Hepatocytes/metabolism , Kruppel-Like Transcription Factors/deficiency , Liver/injuries , Liver/metabolism , Liver/pathology , Male , Methionine/chemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/pathology , Tumor Necrosis Factor-alpha/metabolism
11.
Protein Cell ; 11(6): 433-445, 2020 06.
Article in English | MEDLINE | ID: mdl-32249387

ABSTRACT

Unlike adult mammalian heart, zebrafish heart has a remarkable capacity to regenerate after injury. Previous study has shown Notch signaling activation in the endocardium is essential for regeneration of the myocardium and this activation is mediated by hemodynamic alteration after injury, however, the molecular mechanism has not been fully explored. In this study we demonstrated that blood flow change could be perceived and transmitted in a primary cilia dependent manner to control the hemodynamic responsive klf2 gene expression and subsequent activation of Notch signaling in the endocardium. First we showed that both homologues of human gene KLF2 in zebrafish, klf2a and klf2b, could respond to hemodynamic alteration and both were required for Notch signaling activation and heart regeneration. Further experiments indicated that the upregulation of klf2 gene expression was mediated by endocardial primary cilia. Overall, our findings reveal a novel aspect of mechanical shear stress signal in activating Notch pathway and regulating cardiac regeneration.


Subject(s)
Cilia/metabolism , Kruppel-Like Transcription Factors/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Receptors, Notch/metabolism , Regeneration , Zebrafish Proteins/metabolism , Animals , Kruppel-Like Transcription Factors/deficiency , Kruppel-Like Transcription Factors/genetics , Myocardium/cytology , Signal Transduction , Zebrafish , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics
12.
J Biol Chem ; 295(18): 6080-6091, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32213596

ABSTRACT

Bacterial products such as lipopolysaccharides (or endotoxin) cause systemic inflammation, resulting in a substantial global health burden. The onset, progression, and resolution of the inflammatory response to endotoxin are usually tightly controlled to avoid chronic inflammation. Members of the NF-κB family of transcription factors are key drivers of inflammation that activate sets of genes in response to inflammatory signals. Such responses are typically short-lived and can be suppressed by proteins that act post-translationally, such as the SOCS (suppressor of cytokine signaling) family. Less is known about direct transcriptional regulation of these responses, however. Here, using a combination of in vitro approaches and in vivo animal models, we show that endotoxin treatment induced expression of the well-characterized transcriptional repressor Krüppel-like factor 3 (KLF3), which, in turn, directly repressed the expression of the NF-κB family member RELA/p65. We also observed that KLF3-deficient mice were hypersensitive to endotoxin and exhibited elevated levels of circulating Ly6C+ monocytes and macrophage-derived inflammatory cytokines. These findings reveal that KLF3 is a fundamental suppressor that operates as a feedback inhibitor of RELA/p65 and may be important in facilitating the resolution of inflammation.


Subject(s)
Kruppel-Like Transcription Factors/metabolism , Transcription Factor RelA/metabolism , Animals , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Kruppel-Like Transcription Factors/deficiency , Macrophages/metabolism , Mice , Transcription Factor RelA/genetics , Transcriptional Activation
13.
Nat Commun ; 11(1): 997, 2020 02 21.
Article in English | MEDLINE | ID: mdl-32081850

ABSTRACT

Prostate development depends on balanced cell proliferation and differentiation, and acetylated KLF5 is known to alter epithelial proliferation. It remains elusive whether post-translational modifications of transcription factors can differentially determine adult stem/progenitor cell fate. Here we report that, in human and mouse prostates, Klf5 is expressed in both basal and luminal cells, with basal cells preferentially expressing acetylated Klf5. Functionally, Klf5 is indispensable for maintaining basal progenitors, their luminal differentiation, and the proliferation of their basal and luminal progenies. Acetylated Klf5 is also essential for basal progenitors' maintenance and proper luminal differentiation, as deacetylation of Klf5 causes excess basal-to-luminal differentiation; attenuates androgen-mediated organoid organization; and retards postnatal prostate development. In basal progenitor-derived luminal cells, Klf5 deacetylation increases their proliferation and attenuates their survival and regeneration following castration and subsequent androgen restoration. Mechanistically, Klf5 deacetylation activates Notch signaling. Klf5 and its acetylation thus contribute to postnatal prostate development and regeneration by controlling basal progenitor cell fate.


Subject(s)
Kruppel-Like Transcription Factors/metabolism , Prostate/growth & development , Prostate/metabolism , Acetylation , Androgens/metabolism , Animals , Cell Differentiation , Cell Proliferation , Humans , Kruppel-Like Transcription Factors/deficiency , Kruppel-Like Transcription Factors/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Orchiectomy , Organoids/cytology , Organoids/metabolism , Prostate/cytology , Regeneration , Signal Transduction , Stem Cells/cytology , Stem Cells/metabolism
14.
J Mol Cell Cardiol ; 139: 47-61, 2020 02.
Article in English | MEDLINE | ID: mdl-31982428

ABSTRACT

Cardiac hypertrophy is an early milestone of many heart diseases. LncRNAs often play a leading role in this process. However, its mechanism of action in cardiac hypertrophy has not been fully explained. In a previous study, we showed a new mode by which lncRNA-Mhrt inhibited cardiac hypertrophy by inhibiting myocardin. However, the underlying molecular mechanism remains unclear. This study aims to explore potential action modes of Mhrt in regulating the expression of myocardin in the process of cardiac hypertrophy. Here, we find that Mhrt reduces myocardin expression through KLF4 in vivo and in vitro. Meanwhile, Mhrt promotes the expression of KLF4 through direct binding to miR-145a-5p or inhibiting phosphorylation of KLF4 by forming a complex with KLF4 to prevent the binding of ERK and KLF4, thereby inhibiting myocardin expression and the development of myocardial hypertrophy. Taken together, our findings reveal a new pathway, Mhrt-KLF4-myocardin, that regulates cardiac hypertrophy and revealed additional possible action modes of Mhrt in the occurrence and development of cardiac hypertrophy. The new regulatory pathway serves as a potential therapeutic avenue for cardiac hypertrophy.


Subject(s)
Cardiomegaly/genetics , Kruppel-Like Transcription Factors/metabolism , MicroRNAs/metabolism , Nuclear Proteins/metabolism , RNA, Long Noncoding/metabolism , Signal Transduction , Trans-Activators/metabolism , Animals , Base Sequence , COS Cells , Cardiomegaly/pathology , Cells, Cultured , Chlorocebus aethiops , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation , Gene Silencing , HEK293 Cells , Humans , Isoproterenol , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/deficiency , Kruppel-Like Transcription Factors/genetics , Mice, Inbred C57BL , MicroRNAs/genetics , Models, Biological , Myocytes, Cardiac/metabolism , Phosphorylation , Phosphoserine/metabolism , Protein Binding , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
15.
Eur J Cell Biol ; 99(1): 151061, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31839365

ABSTRACT

Krüppel-like factor 4 (Human Protein: KLF4; Human Gene: Klf4; Murine Protein: KLF4; Murine Gene: Klf4) is a zinc finger-containing transcription factor with diverse regulatory functions. Mouse embryonic fibroblasts (MEFs) lacking Klf4 exhibit genomic instability, increased reactive oxygen species (ROS), and decreased autophagy. Elevated ROS is linked to impairments in mitochondrial damage recovery responses and is often tied to disruption in mitochondrial-targeted autophagy known as mitophagy. In this study, we sought to identify a mechanistic connection between KLF4 and mitophagy. Using flow cytometry, we found that Klf4-null MEFs have diminished ability to recover mitochondrial health and regulate ROS levels after mitochondrial damage. Confocal microscopy indicated decreased localization of autophagy protein LC3 to mitochondria following mitochondrial damage in Klf4-null cells, suggesting decreased mitophagy. Western blotting and RT-PCR revealed decreased mRNA and protein expression of the mitophagy-associated protein Bnip3 and antioxidant protein GSTα4 in Klf4-null cells, providing a rationale for their impaired mitophagy and ROS accumulation. Inducing Bnip3 expression in these cells recovered mitophagy but did not decrease ROS accumulation. Our findings suggest that in Klf4-null cells, decreased Bnip3 expression impairs mitophagy and is associated with increased mitochondrial ROS production after mitochondrial damage, providing a rationale for their genomic instability and supports a tumor suppressive role for KLF4 in certain tumors as previously observed.


Subject(s)
Kruppel-Like Transcription Factors/metabolism , Mitochondria/metabolism , Mitophagy , 3T3 Cells , Animals , Cells, Cultured , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Reactive Oxygen Species/metabolism
16.
Hepatology ; 72(1): 183-197, 2020 07.
Article in English | MEDLINE | ID: mdl-31680287

ABSTRACT

BACKGROUND AND AIMS: Embryonic stem-cell-related transcription factors are central to the establishment and maintenance of stemness and pluripotency, and their altered expression plays key roles in tumors, including hepatocellular carcinoma (HCC), a malignancy with no effective treatment. Here, we report on the embryonic stem cell marker, reduced expression 1 (REX1; also known as zinc finger protein 42), to be selectively down-regulated in HCC tumors. APPROACH AND RESULTS: Deficiency of REX1 in HCC was attributed to a combination of hypermethylation at its promoter as well as histone modification by methylation and acetylation. Clinically, hypermethylation of REX1 was closely associated with neoplastic transition and advanced tumor stage in humans. Functionally, silencing of REX1 potentiated the tumor-initiating and metastasis potential of HCC cell lines and xenografted tumors. Lentivirus-mediated Rex1 ablation in liver of male immunocompetent mice with HCC, induced by hydrodynamic tail vein injection of proto-oncogenes, enhanced HCC development. Transcriptome profiling studies revealed REX1 deficiency in HCC cells to be enriched with genes implicated in focal adhesion and mitogen-activated protein kinase (MAPK) signaling. From this lead, we subsequently found REX1 to bind to the promoter region of mitogen-activated protein kinase kinase 6 (MKK6), thereby obstructing its transcription, resulting in altered p38 MAPK signaling. CONCLUSIONS: Our work describes a critical repressive function of REX1 in maintenance of HCC cells by regulating MKK6 binding and p38 MAPK signaling. REX1 deficiency induced enhancement of p38 MAPK signaling, leading to F-actin reorganization and activation of nuclear factor erythroid 2-related factor 2-mediated oxidative stress response, which collectively contributed to enhanced stemness and metastatic capabilities of HCC cells.


Subject(s)
Carcinogenesis , Carcinoma, Hepatocellular/etiology , Embryonic Stem Cells/physiology , Kruppel-Like Transcription Factors/deficiency , Liver Neoplasms/etiology , MAP Kinase Kinase 6/physiology , Signal Transduction , p38 Mitogen-Activated Protein Kinases/physiology , Cell Line, Tumor , Humans
17.
J Am Coll Cardiol ; 74(14): 1804-1819, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31582141

ABSTRACT

BACKGROUND: The combination of cardiomyocyte (CM) and vascular cell (VC) fetal reprogramming upon stress culminates in end-stage heart failure (HF) by mechanisms that are not fully understood. Previous studies suggest KLF15 as a key regulator of CM hypertrophy. OBJECTIVES: This study aimed to characterize the impact of KLF15-dependent cardiac transcriptional networks leading to HF progression, amenable to therapeutic intervention in the adult heart. METHODS: Transcriptomic bioinformatics, phenotyping of Klf15 knockout mice, Wnt-signaling-modulated hearts, and pressure overload and myocardial ischemia models were applied. Human KLF15 knockout embryonic stem cells and engineered human myocardium, and human samples were used to validate the relevance of the identified mechanisms. RESULTS: The authors identified a sequential, postnatal transcriptional repression mediated by KLF15 of pathways implicated in pathological tissue remodeling, including distinct Wnt-pathways that control CM fetal reprogramming and VC remodeling. The authors further uncovered a vascular program induced by a cellular crosstalk initiated by CM, characterized by a reduction of KLF15 and a concomitant activation of Wnt-dependent transcriptional signaling. Within this program, a so-far uncharacterized cardiac player, SHISA3, primarily expressed in VCs in fetal hearts and pathological remodeling was identified. Importantly, the KLF15 and Wnt codependent SHISA3 regulation was demonstrated to be conserved in mouse and human models. CONCLUSIONS: The authors unraveled a network interplay defined by KLF15-Wnt dynamics controlling CM and VC homeostasis in the postnatal heart and demonstrated its potential as a cardiac-specific therapeutic target in HF. Within this network, they identified SHISA3 as a novel, evolutionarily conserved VC marker involved in pathological remodeling in HF.


Subject(s)
Heart Failure/metabolism , Kruppel-Like Transcription Factors/deficiency , Membrane Proteins/biosynthesis , Up-Regulation/physiology , Ventricular Remodeling/physiology , Wnt Signaling Pathway/physiology , Animals , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/pathology , Heart Failure/genetics , Heart Failure/pathology , Humans , Kruppel-Like Transcription Factors/genetics , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout
18.
Sci Rep ; 9(1): 13680, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31558744

ABSTRACT

Krüpple-like factors (Klfs) are highly conserved zinc-finger transcription factors that regulate various developmental processes, such as haematopoiesis and cardiovascular development. In zebrafish, transient knockdown analysis of biklf/klf17 using antisense morpholino suggests the involvement of biklf/klf17 in primitive erythropoiesis and hatching gland development; however, the continuous physiological importance of klf17 remains uncharacterized under the genetic ablation of the klf17 gene among vertebrates. We established the klf17-disrupted zebrafish lines using the CRISPR/Cas9 technology and performed phenotypic analysis throughout early embryogenesis. We found that the klf17-deficient embryos exhibited abnormal lateral line neuromast deposition, whereas the production of primitive erythrocytes and haemoglobin production were observed in the klf17-deficient embryos. The expression of lateral line neuromast genes, klf17 and s100t, in the klf17-deficient embryos was detected in posterior lateral line neuromasts abnormally positioned at short intervals. Furthermore, the klf17-deficient embryos failed to hatch and died without hatching around 15 days post-fertilization (dpf), whereas the dechorionated klf17-deficient embryos and wild-type embryos were alive at 15 dpf. The klf17-deficient embryos abolished hatching gland cells and Ctsl1b protein expression, and eliminated the expression of polster and hatching gland marker genes, he1.1, ctsl1b and cd63. Thus, the klf17 gene plays important roles in posterior lateral line neuromast and hatching gland development.


Subject(s)
Kruppel-Like Transcription Factors/deficiency , Kruppel-Like Transcription Factors/genetics , Lateral Line System/embryology , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics , Zebrafish/embryology , Zebrafish/genetics , Animals , Animals, Genetically Modified , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Hematopoiesis/genetics , Lateral Line System/metabolism , Zebrafish/metabolism
19.
Artif Cells Nanomed Biotechnol ; 47(1): 2293-2297, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31172816

ABSTRACT

Objective: To study the effect of formaldehyde on the proliferation of human bronchial epithelial cells 16HBE and to explore its mechanism. Methods: MTT assay was used to detect the inhibition rate of formaldehyde-treated 16HBE cells; FCOH + miR-375 group (transfected miR-375 mimics), FCOH + miR-con group (transfected miR-con), FCOH + si-KLF4 group (transfected si-KLF4) and FCOH + si-con group (transfected si-con), were transfected into 16HBE cells by liposome method, then treated with formaldehyde 200 µmol/L for 24 h; qRT-PCR was used to detect the expression of miR-375 in each group; the protein expression of KLF4 in each group was detected by Western blot. The fluorescence activity of each group was detected by dual-fluorescein gene detection assay. Results: Compared with 16HBE cells in Control group, the expression of miR-375 was significantly decreased in FCOH group, cell proliferation was significantly decreased, and KLF4 expression was significantly increased (p < .05). Overexpression of miR-375 and KLF4 knockdown could reverse the inhibition effect of formaldehyde on proliferation of 16HBE cells; KLF4 is a target of miR-375. KLF4 could reverse the promotion of miR-375 on the proliferation of formaldehyde-treated 16HBE cells. Conclusion: Formaldehyde can inhibit the proliferation of human bronchial epithelial cells. The mechanism may be related to the down-regulation of miR-375 targeting KLF4, which will provide support for the treatment of chronic respiratory diseases.


Subject(s)
Bronchi/cytology , Down-Regulation/drug effects , Epithelial Cells/cytology , Epithelial Cells/drug effects , Formaldehyde/pharmacology , MicroRNAs/genetics , Cell Line , Cell Proliferation/drug effects , Epithelial Cells/metabolism , Gene Knockdown Techniques , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/deficiency , Kruppel-Like Transcription Factors/genetics
20.
Stem Cell Reports ; 12(6): 1366-1379, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31155506

ABSTRACT

Zygotic genome activation (ZGA) begins after fertilization and is essential for establishing pluripotency and genome stability. However, it is unclear how ZGA genes prevent mitotic errors. Here we show that knockout of the ZGA gene Zscan5b, which encodes a SCAN domain with C2H2 zinc fingers, causes a high incidence of chromosomal abnormalities in embryonic stem cells (ESCs), and leads to the development of early-stage cancers. After irradiation, Zscan5b-deficient ESCs displayed significantly increased levels of γ-H2AX despite increased expression of the DNA repair genes Rad51l3 and Bard. Re-expression of Zscan5b reduced γ-H2AX content, implying a role for Zscan5b in DNA damage repair processes. A co-immunoprecipitation analysis showed that Zscan5b bound to the linker histone H1, suggesting that Zscan5b may protect chromosomal architecture. Our report demonstrates that the ZGA gene Zscan5b is involved in genomic integrity and acts to promote DNA damage repair and regulate chromatin dynamics during mitosis.


Subject(s)
Chromosome Aberrations , Chromosomes, Mammalian , DNA Damage , Kruppel-Like Transcription Factors/deficiency , Mitosis , Mouse Embryonic Stem Cells/metabolism , Animals , Chromosomes, Mammalian/genetics , Chromosomes, Mammalian/metabolism , Female , Histones/genetics , Histones/metabolism , Kruppel-Like Transcription Factors/metabolism , Mice , Mice, Mutant Strains , Mouse Embryonic Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL