Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Drug Test Anal ; 9(2): 317-322, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27001214

ABSTRACT

Xenon can activate the hypoxia-inducible factors (HIFs). As such, it has been allegedly used in human sports for increasing erythropoiesis. Krypton, another noble gas with reported narcosis effect, can also be expected to be a potential and less expensive erythropoiesis stimulating agent. This has raised concern about the misuse of noble gases as doping agents in equine sports. The aim of the present study is to establish a method for the simultaneous detection of xenon and krypton in equine plasma for the purpose of doping control. Xenon- or krypton-fortified equine plasma samples were prepared according to reported protocols. The target noble gases were simultaneously detected by gas chromatography-triple quadrupole mass spectrometry using headspace injection. Three xenon isotopes at m/z 129, 131, and 132, and four krypton isotopes at m/z 82, 83, 84, and 86 were targeted in selected reaction monitoring mode (with the precursor ions and product ions at identical mass settings), allowing unambiguous identification of the target analytes. Limits of detection for xenon and krypton were about 19 pmol/mL and 98 pmol/mL, respectively. Precision for both analytes was less than 15%. The method has good specificity as background analyte signals were not observed in negative equine plasma samples (n = 73). Loss of analytes under different storage temperatures has also been evaluated. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Hematinics/blood , Horses/blood , Krypton/blood , Xenon/blood , Animals , Limit of Detection , Substance Abuse Detection/methods , Tandem Mass Spectrometry/methods
2.
Ann Biomed Eng ; 25(5): 858-69, 1997.
Article in English | MEDLINE | ID: mdl-9300110

ABSTRACT

Membrane introduction mass spectrometry has been applied to inert gas measurements in blood and tissue, but gases with low blood solubility are associated with reduced sensitivity. Countercurrent extraction of inert gases from a blood sample into a water carrier phase has the potential to extract most of the gas sample while avoiding dependence of signal on blood solubility. We present the design of a membrane countercurrent exchange (CCE) device coupled with a conventional direct insertion membrane probe to measure partial pressure of low solubility inert gases in aqueous samples. A mathematical model of steady-state membrane CCB predicts that countercurrent extraction with appropriate selection of carrier and sample flow rates can provide a mass spectrometer signal nearly independent of variations in solubility over a specified range, while retaining a linear response to changes in gas partial pressure over several orders of magnitude. Experimental data are presented for sulfur hexafluoride and krypton in water samples. Optimal performance is dependent on adequate equilibration between the sample and carrier streams, and the large resistance to diffusion in the aqueous phase for insoluble gases presents a substantial challenge to the application of this principle.


Subject(s)
Mass Spectrometry/methods , Noble Gases/analysis , Animals , Biomedical Engineering , Countercurrent Distribution , Diffusion , Humans , Krypton/analysis , Krypton/blood , Krypton/isolation & purification , Models, Theoretical , Noble Gases/blood , Noble Gases/isolation & purification , Solubility , Sulfur Hexafluoride/analysis , Sulfur Hexafluoride/blood , Sulfur Hexafluoride/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...