Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters











Publication year range
1.
Alzheimers Res Ther ; 16(1): 167, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068471

ABSTRACT

BACKGROUND: Sex differences in neuroinflammation could contribute to women's increased risk of Alzheimer's disease (AD), providing rationale for exploring sex-specific AD biomarkers. In AD, dysregulation of the kynurenine pathway (KP) contributes to neuroinflammation and there is some evidence of sex differences in KP metabolism. However, the sex-specific associations between KP metabolism and biomarkers of AD and neuroinflammation need to be explored further. METHODS: Here we investigate sex differences in cerebrospinal fluid concentrations of seven KP metabolites and sex-specific associations with established AD biomarkers and neopterin, an indicator of neuroinflammation. This study included 311 patients with symptomatic AD and 105 age-matched cognitively unimpaired (CU) controls, followed for up to 5 years. RESULTS: We found sex differences in KP metabolites in the AD group, with higher levels of most metabolites in men, while there were no sex differences in the CU group. In line with this, more KP metabolites were significantly altered in AD men compared to CU men, and there was a trend in the same direction in AD women. Furthermore, we found sex-specific associations between kynurenic acid and the kynurenic acid/quinolinic acid ratio with neopterin, but no sex differences in the associations between KP metabolites and clinical progression. DISCUSSION: In our cohort, sex differences in KP metabolites were restricted to AD patients. Our results suggest that dysregulation of the KP due to increased inflammation could contribute to higher AD risk in women.


Subject(s)
Alzheimer Disease , Biomarkers , Kynurenic Acid , Neopterin , Sex Characteristics , Humans , Neopterin/cerebrospinal fluid , Female , Male , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/metabolism , Kynurenic Acid/cerebrospinal fluid , Kynurenic Acid/metabolism , Aged , Biomarkers/cerebrospinal fluid , Middle Aged , Kynurenine/metabolism , Kynurenine/cerebrospinal fluid , Aged, 80 and over , Sex Factors
2.
Braz J Psychiatry ; 45(3): 286-297, 2023.
Article in English | MEDLINE | ID: mdl-36754068

ABSTRACT

OBJECTIVE: Changes in the kynurenine pathway are recognized in psychiatric disorders, but their role in Alzheimer's disease (AD) is less clear. We aimed to conduct a systematic review and meta-analysis to determine whether tryptophan and kynurenine pathway metabolites are altered in AD. METHODS: We performed a systematic review and random-effects meta-analyses. Inclusion criteria were studies that compared AD and cognitively normal (CN) groups and assessed tryptophan or kynurenine pathway metabolites in cerebrospinal fluid or peripheral blood. RESULTS: Twenty-two studies with a total of 1,356 participants (664 with AD and 692 CN individuals) were included. Tryptophan was decreased only in peripheral blood. The kynurenine-to-tryptophan ratio was only increased in peripheral blood of the AD group. 3-Hydroxykynurenine was decreased only in cerebrospinal fluid and showed higher variability in the CN group than the AD group. Kynurenic acid was increased in cerebrospinal fluid and decreased in peripheral blood. Finally, there were no changes in kynurenine and quinolinic acid between the groups. CONCLUSIONS: Our results suggested a shift toward the kynurenine pathway in both the brain and in the periphery, as well as a shift towards increased kynurenic acid production in the brain but decreased production in peripheral blood. In addition, our analysis indicated dissociation between the central and peripheral levels, as well as between plasma and serum for some of these metabolites. Finally, changes in the kynurenine pathway are suggested to be a core component of AD. More studies are warranted to verify and consolidate our results.


Subject(s)
Alzheimer Disease , Kynurenine , Humans , Kynurenine/cerebrospinal fluid , Tryptophan/metabolism , Kynurenic Acid/cerebrospinal fluid , Brain
3.
EBioMedicine ; 84: 104280, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36174397

ABSTRACT

BACKGROUND: Epileptic (previously infantile) spasms is the most common epileptic encephalopathy occurring during infancy and is frequently associated with abnormal neurodevelopmental outcomes. Epileptic spasms have a diverse range of known (genetic, structural) and unknown aetiologies. High dose corticosteroid treatment for 4 weeks often induces remission of spasms, although the mechanism of action of corticosteroid is unclear. Animal models of epileptic spasms have shown decreased brain kynurenic acid, which is increased after treatment with the ketogenic diet. We quantified kynurenine pathway metabolites in the cerebrospinal fluid (CSF) of infants with epileptic spasms and explored clinical correlations. METHODS: A panel of nine metabolites in the kynurenine pathway (tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, xanthurenic acid, anthranilic acid, 3-hydroxyanthranilic acid, quinolinic acid, and picolinic acid) were measured using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). CSF collected from paediatric patients less than 3 years of age with epileptic spasms (n=34, 19 males, mean age 0.85, median 0.6, range 0.3-3 yrs) were compared with other epilepsy syndromes (n=26, 9 males, mean age 1.44, median 1.45, range 0.3-3 yrs), other non-inflammatory neurological diseases (OND) (n=29, 18 males, mean age 1.47, median 1.6, range 0.1-2.9 yrs) and inflammatory neurological controls (n=12, 4 males, mean age 1.80, median 1.80, range 0.8-2.5 yrs). FINDINGS: There was a statistically significant decrease of CSF kynurenic acid in patients with epileptic spasms compared to OND (p<0.0001). In addition, the kynurenic acid/kynurenine (KYNA/KYN) ratio was lower in the epileptic spasms subgroup compared to OND (p<0.0001). Epileptic spasms patients who were steroid responders or partial steroid responders had lower KYNA/KYN ratio compared to patients who were refractory to steroids (p<0.005, p<0.05 respectively). INTERPRETATION: This study demonstrates decreased CSF kynurenic acid and KYNA/KYN in epileptic spasms, which may also represent a biomarker for steroid responsiveness. Given the anti-inflammatory and neuroprotective properties of kynurenic acid, further therapeutics able to increase kynurenic acid should be explored. FUNDING: Financial support for the study was granted by Dale NHMRC Investigator grant APP1193648, Petre Foundation, Cerebral Palsy Alliance and Department of Biochemistry at the Children's Hospital at Westmead. Prof Guillemin is funded by NHMRC Investigator grant APP1176660 and Macquarie University.


Subject(s)
Epilepsy , Kynurenic Acid , 3-Hydroxyanthranilic Acid , Adrenal Cortex Hormones , Animals , Biomarkers , Chromatography, Liquid , Epilepsy/drug therapy , Kynurenic Acid/cerebrospinal fluid , Kynurenine/cerebrospinal fluid , Male , Quinolinic Acid/cerebrospinal fluid , Spasm , Tandem Mass Spectrometry , Tryptophan/metabolism
4.
Biomolecules ; 10(4)2020 04 08.
Article in English | MEDLINE | ID: mdl-32276479

ABSTRACT

Kynurenic acid (KYNA) is a product of the tryptophan (TRP) metabolism via the kynurenine pathway (KP). This pathway is activated in neurodegenerative disorders, such as Alzheimer´s disease (AD). KYNA is primarily produced by astrocytes and is considered neuroprotective. Thus, altered KYNA levels may suggest an inflammatory response. Very recently, significant increases in KYNA levels were reported in cerebrospinal fluid (CSF) from AD patients compared with normal controls. In this study, we assessed the accuracy of KYNA in CSF for the classification of patients with AD, cognitively healthy controls, and patients with a variety of other neurodegenerative diseases, including frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), and progressive supranuclear palsy (PSP). Averaged KYNA concentration in CSF was higher in patients with AD when compared with healthy subjects and with all the other differentially diagnosed groups. There were no significant differences in KYNA levels in CSF between any other neurodegenerative groups and controls. These results suggest a specific increase in KYNA concentration in CSF from AD patients not seen in other neurodegenerative diseases.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Kynurenic Acid/cerebrospinal fluid , Aged , Alzheimer Disease/metabolism , Case-Control Studies , Female , Humans , Kynurenic Acid/metabolism , Male , Middle Aged , Tryptophan/cerebrospinal fluid , Tryptophan/metabolism
5.
Eur Arch Psychiatry Clin Neurosci ; 270(7): 933-938, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31302732

ABSTRACT

Preclinical studies indicate a link between the kynurenine pathway and monocyte chemoattractant protein-1 (MCP-1), but there is a lack of clinical studies examining this further. We here perform a secondary analysis of kynurenine metabolites and MCP-1 in cerebrospinal fluid of 23 twins affected from schizophrenia, bipolar disorder or unaffected. We show an association between MCP-1 and kynurenic acid (KYNA), driven by unique environmental influences and a less pronounced association between MCP-1 and tryptophan. No association was detected between MCP-1 and quinolinic acid. Further studies on the mechanism behind the putative relationship between KYNA and MCP-1 are needed.


Subject(s)
Bipolar Disorder/cerebrospinal fluid , Chemokine CCL2/cerebrospinal fluid , Kynurenic Acid/cerebrospinal fluid , Schizophrenia/cerebrospinal fluid , Adult , Aged , Cohort Studies , Female , Humans , Male , Middle Aged , Quinolinic Acid/cerebrospinal fluid , Sweden , Tryptophan/cerebrospinal fluid
6.
Transl Psychiatry ; 9(1): 37, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30696814

ABSTRACT

Metabolites of the kynurenine pathway of tryptophan degradation, in particular, the N-Methyl-D-aspartic acid receptor antagonist kynurenic acid (KYNA), are increasingly recognized as primary pathophysiological promoters in several psychiatric diseases. Studies analyzing central KYNA levels from subjects with psychotic disorders have reported increased levels. However, sample sizes are limited and in contrast many larger studies examining this compound in blood from psychotic patients commonly report a decrease. A major question is to what extent peripheral KYNA levels reflect brain KYNA levels under physiological as well as pathophysiological conditions. Here we measured KYNA in plasma from a total of 277 subjects with detailed phenotypic data, including 163 BD subjects and 114 matched healthy controls (HCs), using an HPLC system. Among them, 94 BD subjects and 113 HCs also had CSF KYNA concentrations analyzed. We observe a selective increase of CSF KYNA in BD subjects with previous psychotic episodes although this group did not display altered plasma KYNA levels. In contrast, BD subjects with ongoing depressive symptoms displayed a tendency to decreased plasma KYNA concentrations but unchanged CSF KYNA levels. Sex and age displayed specific effects on KYNA concentrations depending on if measured centrally or in the periphery. These findings implicate brain-specific regulation of KYNA under physiological as well as under pathophysiological conditions and strengthen our previous observation of CSF KYNA as a biomarker in BD. In summary, biomarker and drug discovery studies should include central KYNA measurements for a more reliable estimation of brain KYNA levels.


Subject(s)
Bipolar Disorder/blood , Bipolar Disorder/cerebrospinal fluid , Kynurenic Acid/blood , Kynurenic Acid/cerebrospinal fluid , Adult , Bipolar Disorder/complications , Chromatography, High Pressure Liquid , Depression/complications , Female , Humans , Male , Psychotic Disorders/complications , Self-Injurious Behavior/complications , Suicide, Attempted/statistics & numerical data
7.
Malar J ; 16(1): 303, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28754152

ABSTRACT

BACKGROUND: One-fourth of children with cerebral malaria (CM) retain cognitive sequelae up to 2 years after acute disease. The kynurenine pathway of the brain, forming neuroactive metabolites, e.g. the NMDA-receptor antagonist kynurenic acid (KYNA), has been implicated in long-term cognitive dysfunction in other CNS infections. In the present study, the association between the kynurenine pathway and neurologic/cognitive complications in children with CM was investigated. METHODS: Cerebrospinal fluid (CSF) concentrations of KYNA and its precursor kynurenine in 69 Ugandan children admitted for CM to Mulago Hospital, Kampala, Uganda, between 2008 and 2013 were assessed. CSF kynurenine and KYNA were compared to CSF cytokine levels, acute and long-term neurologic complications, and long-term cognitive impairments. CSF kynurenine and KYNA from eight Swedish children without neurological or infectious disease admitted to Astrid Lindgren's Children's Hospital were quantified and used for comparison. RESULTS: Children with CM had significantly higher CSF concentration of kynurenine and KYNA than Swedish children (P < 0.0001 for both), and CSF kynurenine and KYNA were positively correlated. In children with CM, CSF kynurenine and KYNA concentrations were associated with coma duration in children of all ages (P = 0.003 and 0.04, respectively), and CSF kynurenine concentrations were associated with worse overall cognition (P = 0.056) and attention (P = 0.003) at 12-month follow-up in children ≥5 years old. CONCLUSIONS: CSF KYNA and kynurenine are elevated in children with CM, indicating an inhibition of glutamatergic and cholinergic signaling. This inhibition may lead acutely to prolonged coma and long-term to impairment of attention and cognition.


Subject(s)
Coma , Kynurenic Acid/cerebrospinal fluid , Kynurenine/cerebrospinal fluid , Malaria, Cerebral , Neurocognitive Disorders/cerebrospinal fluid , Neurocognitive Disorders/etiology , Seizures , Child , Child, Preschool , Cognition , Coma/cerebrospinal fluid , Coma/etiology , Coma/parasitology , Female , Humans , Infant , Malaria, Cerebral/cerebrospinal fluid , Malaria, Cerebral/complications , Malaria, Falciparum/cerebrospinal fluid , Malaria, Falciparum/complications , Male , Neurocognitive Disorders/parasitology , Plasmodium falciparum/physiology , Seizures/cerebrospinal fluid , Seizures/etiology , Seizures/parasitology , Uganda
8.
Schizophr Bull ; 43(4): 764-777, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28187219

ABSTRACT

Kynurenic acid (KYNA) is an endogenous antagonist of N-methyl-D-aspartate and α7 nicotinic acetylcholine receptors that is derived from astrocytes as part of the kynurenine pathway of tryptophan degradation. Evidence suggests that abnormal KYNA levels are involved in the pathophysiology of schizophrenia. However, this has never been assessed through a meta-analysis. A literature search was conducted through Ovid using Embase, Medline, and PsycINFO databases (last search: December 2016) with the search terms: (kynuren* or KYNA) and (schizophreni* or psychosis). English language studies measuring KYNA levels using any method in patients with schizophrenia and healthy controls (HCs) were identified. Standardized mean differences (SMDs) were calculated to determine differences in KYNA levels between groups. Subgroup analyses were separately performed for nonoverlapping participant samples, KYNA measurement techniques, and KYNA sample source. The influences of patients' age, antipsychotic status (%medicated), and sex (%male) on study SMDs were assessed through a meta-regression. Thirteen studies were deemed eligible for inclusion in the meta-analysis. In the main analysis, KYNA levels were elevated in the patient group. Subgroup analyses demonstrated that KYNA levels were increased in nonoverlapping participant samples, and centrally (cerebrospinal fluid and brain tissue) but not peripherally. Patients' age, %medicated, and %male were each positively associated with study SMDs. Overall, KYNA levels are increased in patients with schizophrenia, specifically within the central nervous system. An improved understanding of KYNA in patients with schizophrenia may contribute to the development of novel diagnostic approaches and therapeutic strategies.


Subject(s)
Kynurenic Acid/metabolism , Schizophrenia/metabolism , Adult , Female , Humans , Kynurenic Acid/blood , Kynurenic Acid/cerebrospinal fluid , Male , Schizophrenia/blood , Schizophrenia/cerebrospinal fluid
9.
Psychiatry Res ; 247: 105-112, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27886578

ABSTRACT

Increased cytokines and kynurenic acid (KYNA) levels in cerebrospinal fluid (CSF) have been reported in patients with schizophrenia and bipolar disorder. The aim of the present study was to investigate cytokines and kynurenines in the CSF of twin pairs discordant for schizophrenia or bipolar disorder and to study these CSF markers in relation to psychotic symptoms and personality traits. CSF levels of tryptophan (TRP), KYNA, quinolinic acid (QUIN), interleukin (IL)-6, IL-8 and tumor necrosis factor-alpha (TNF-α) were analyzed in 23 twins with schizophrenia or bipolar disorder, and in their not affected co-twins. Ratings of psychotic symptoms and personality traits were made using the Scales for Assessment of Negative and Positive symptoms, the Structured Clinical Interview for DSM-IV - Axis II Disorders, and the Schizotypal Personality Questionnaire - Brief. A total score for psychotic symptoms and personality traits was constructed for analysis. CSF KYNA was associated with the score for psychotic symptom and personality traits. TNF-α and IL-8 were associated, and the intra-pair differences scores of TNF-α and IL-8 were highly correlated. Intraclass correlations indicated genetic influences on CSF KYNA, TRP, IL-8 and TNF-α. The association between KYNA and psychotic symptoms further supports a role of KYNA in psychotic disorders.


Subject(s)
Bipolar Disorder/cerebrospinal fluid , Kynurenic Acid/cerebrospinal fluid , Personality , Schizophrenia/cerebrospinal fluid , Schizophrenic Psychology , Twins/psychology , Bipolar Disorder/psychology , Female , Humans , Interleukin-6/cerebrospinal fluid , Interleukin-8/cerebrospinal fluid , Male , Middle Aged , Psychotic Disorders/complications , Quinolinic Acid/cerebrospinal fluid , Tryptophan/cerebrospinal fluid , Tumor Necrosis Factor-alpha/cerebrospinal fluid
10.
J Neuroimmune Pharmacol ; 11(3): 549-61, 2016 09.
Article in English | MEDLINE | ID: mdl-27072370

ABSTRACT

HIV-infection is associated with neuroinflammation and greater psychopathological symptoms, which may be mediated by imbalances in the kynurenic pathway (KP). Two key KP enzymes that catabolize kynurenine include kynurenine-aminotransferase II (KATII), which yields antioxidative kynurenine acid [KYNA] in astrocytes, and kynurenine-3-monooxygenase (KMO), which produces neurotoxic metabolites in microglia. The relationships between polymorphisms in KMO and KATII, psychopathological symptoms, and cerebrospinal fluid (CSF) [KYNA] were evaluated in subjects with and without HIV-infection. Seventy-two HIV-positive and 72-seronegative (SN) participants were genotyped for KATII-rs1480544 and KMO-rs1053230. Although our participants were not currently diagnosed with depression or anxiety, they were assessed for psychopathological distress with Center for Epidemiologic Studies-Depression scale and Symptom Checklist-90-Revised. CSF-[KYNA] was also measured in 100 subjects (49 HIV/51 SN). HIV-participants had more psychopathological distress than SN, especially for anxiety. KATII-by-HIV interactions were found on anxiety, interpersonal sensitivity and obsessive compulsivity; KATII-C-carriers had lower scores than TT-carriers in SN but not in HIV. In contrast, the KMO-polymorphism had no influence on psychopathological symptoms in both groups. Overall, CSF-[KYNA] increased with age independently of HIV-serostatus, except KATII-TT-carriers tended to show no age-dependent variations. Therefore, the C-allele in KATII-rs1480544 appears to be protective against psychopathological distress in SN but not in HIV individuals, who had more psychopathological symptoms and likely greater neuroinflammation. The age-dependent increase in CSF-[KYNA] may reflect a compensatory response to age-related inflammation, which may be deficient in KATII-TT-carriers. Targeted treatments that decrease neuroinflammation and increase KYNA in at risk KATII-TT-carriers may reduce psychopathological symptoms in HIV.


Subject(s)
HIV Infections/genetics , Kynurenic Acid , Kynurenine/genetics , Mental Disorders/genetics , Polymorphism, Genetic/genetics , Adult , Female , HIV Infections/cerebrospinal fluid , HIV Infections/psychology , Humans , Kynurenic Acid/cerebrospinal fluid , Kynurenine/cerebrospinal fluid , Male , Mental Disorders/cerebrospinal fluid , Mental Disorders/psychology , Middle Aged , Psychiatric Status Rating Scales
11.
Biomed Chromatogr ; 30(1): 62-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25963282

ABSTRACT

A sensitive HPLC method using fluorescence detection was developed to determine kynurenic acid (KYNA) level in rat cerebrospinal fluid (CSF). The method development was accomplished by screening different columns, optimizing zinc acetate concentration and determining the optimal HPLC flow rate. This method allowed direct injection of the CSF samples onto an Xselect C18 column and KYNA levels were measured fluorometrically by forming a fluorescent complex with zinc acetate that was delivered post-column. The limit of quantitation was 0.2 n m with 30 µL injection, corresponding to 6 fmol (signal-to-noise ratio = 10). The improved sensitivity enabled the measurement of KYNA in naive and drug-treated rat CSF.


Subject(s)
Chromatography, High Pressure Liquid/methods , Fluorometry/methods , Kynurenic Acid/cerebrospinal fluid , Animals , Chromatography, High Pressure Liquid/instrumentation , Male , Rats , Rats, Sprague-Dawley
12.
Mol Psychiatry ; 21(10): 1342-50, 2016 10.
Article in English | MEDLINE | ID: mdl-26666201

ABSTRACT

Elevated cerebrospinal fluid (CSF) levels of the glia-derived N-methyl-D-aspartic acid receptor antagonist kynurenic acid (KYNA) have consistently been implicated in schizophrenia and bipolar disorder. Here, we conducted a genome-wide association study based on CSF KYNA in bipolar disorder and found support for an association with a common variant within 1p21.3. After replication in an independent cohort, we linked this genetic variant-associated with reduced SNX7 expression-to positive psychotic symptoms and executive function deficits in bipolar disorder. A series of post-mortem brain tissue and in vitro experiments suggested SNX7 downregulation to result in a caspase-8-driven activation of interleukin-1ß and a subsequent induction of the brain kynurenine pathway. The current study demonstrates the potential of using biomarkers in genetic studies of psychiatric disorders, and may help to identify novel drug targets in bipolar disorder.


Subject(s)
Bipolar Disorder/genetics , Kynurenic Acid/metabolism , Psychotic Disorders/genetics , Adult , Aged , Bipolar Disorder/cerebrospinal fluid , Bipolar Disorder/metabolism , Brain/metabolism , Chromosomes, Human, Pair 1/genetics , Cognition Disorders/complications , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Female , Genome-Wide Association Study , Humans , Kynurenic Acid/cerebrospinal fluid , Male , Middle Aged , Psychotic Disorders/complications , Psychotic Disorders/metabolism , Sorting Nexins/genetics
13.
J Psychiatry Neurosci ; 40(2): 126-33, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25455350

ABSTRACT

BACKGROUND: Accumulating evidence indicates that schizophrenia is associated with brain immune activation. While a number of reports suggest increased cytokine levels in patients with schizophrenia, many of these studies have been limited by their focus on peripheral cytokines or confounded by various antipsychotic treatments. Here, well-characterized patients with schizophrenia, all receiving olanzapine treatment, and healthy volunteers were analyzed with regard to cerebrospinal fluid (CSF) levels of cytokines. We correlated the CSF cytokine levels to previously analyzed metabolites of the kynurenine (KYN) pathway. METHODS: We analyzed the CSF from patients and controls using electrochemiluminescence detection with regard to cytokines. Cell culture media from human cortical astrocytes were analyzed for KYN and kynurenic acid (KYNA) using high-pressure liquid chromatography or liquid chromatography/mass spectrometry. RESULTS: We included 23 patients and 37 controls in our study. Patients with schizophrenia had increased CSF levels of interleukin (IL)-6 compared with healthy volunteers. In patients, we also observed a positive correlation between IL-6 and the tryptophan:KYNA ratio, indicating that IL-6 activates the KYN pathway. In line with this, application of IL-6 to cultured human astrocytes increased cell medium concentration of KYNA. LIMITATIONS: The CSF samples had been frozen and thawed twice before analysis of cytokines. Median age differed between patients and controls. When appropriate, all present analyses were adjusted for age. CONCLUSION: We have shown that IL-6, KYN and KYNA are elevated in patients with chronic schizophrenia, strengthening the idea of brain immune activation in patients with this disease. Our concurrent cell culture and clinical findings suggest that IL-6 induces the KYN pathway, leading to increased production of the N-methyl-D-aspartate receptor antagonist KYNA in patients with schizophrenia.


Subject(s)
Interleukin-6/cerebrospinal fluid , Schizophrenia/cerebrospinal fluid , Adult , Astrocytes/metabolism , Cells, Cultured , Cerebral Cortex/metabolism , Chronic Disease , Female , Humans , Interleukin-8/cerebrospinal fluid , Kynurenic Acid/cerebrospinal fluid , Kynurenine/metabolism , Male , Middle Aged , Tryptophan/cerebrospinal fluid , Young Adult
14.
Brain Behav Immun ; 43: 110-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25124710

ABSTRACT

BACKGROUND: Patients with depression and suicidality suffer from low-grade neuroinflammation. Pro-inflammatory cytokines activate indoleamine 2,3-dioxygenase, an initial enzyme of the kynurenine pathway. This pathway produces neuroactive metabolites, including quinolinic- and kynurenic acid, binding to the glutamate N-methyl-d-aspartate-receptor, which is hypothesized to be part of the neural mechanisms underlying symptoms of depression. We therefore hypothesized that symptoms of depression and suicidality would fluctuate over time in patients prone to suicidal behavior, depending on the degree of inflammation and kynurenine metabolite levels in the cerebrospinal fluid (CSF). METHODS: We measured cytokines and kynurenine metabolites in CSF, collected from suicide attempters at repeated occasions over 2 years (total patient samples n=143, individuals n=30) and healthy controls (n=36). The association between the markers and psychiatric symptoms was assessed using the Montgomery Asberg Depression Rating Scale and the Suicide Assessment Scale. RESULTS: Quinolinic acid was increased and kynurenic acid decreased over time in suicidal patients versus healthy controls. Furthermore, we found a significant association between low kynurenic acid and severe depressive symptoms, as well as between high interleukin-6 levels and more severe suicidal symptoms. CONCLUSIONS: We demonstrate a long-term dysregulation of the kynurenine pathway in the central nervous system of suicide attempters. An increased load of inflammatory cytokines was coupled to more severe symptoms. We therefore suggest that patients with a dysregulated kynurenine pathway are vulnerable to develop depressive symptoms upon inflammatory conditions, as a result the excess production of the NMDA-receptor agonist quinolinic acid. This study provides a neurobiological framework supporting the use of NMDA-receptor antagonists in the treatment of suicidality and depression.


Subject(s)
Cytokines/cerebrospinal fluid , Depressive Disorder/metabolism , Inflammation/cerebrospinal fluid , Receptors, N-Methyl-D-Aspartate/metabolism , Suicidal Ideation , Suicide, Attempted , Adult , Female , Humans , Kynurenic Acid/cerebrospinal fluid , Kynurenine/cerebrospinal fluid , Male , Middle Aged , Quinolinic Acid/cerebrospinal fluid , Young Adult
15.
Mol Psychiatry ; 19(3): 334-41, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23459468

ABSTRACT

The kynurenine pathway metabolite kynurenic acid (KYNA), modulating glutamatergic and cholinergic neurotransmission, is increased in cerebrospinal fluid (CSF) of patients with schizophrenia or bipolar disorder type 1 with psychotic features. KYNA production is critically dependent on kynurenine 3-monooxygenase (KMO). KMO mRNA levels and activity in prefrontal cortex (PFC) are reduced in schizophrenia. We hypothesized that KMO expression in PFC would be reduced in bipolar disorder with psychotic features and that a functional genetic variant of KMO would associate with this disease, CSF KYNA level and KMO expression. KMO mRNA levels were reduced in PFC of bipolar disorder patients with lifetime psychotic features (P=0.005, n=19) or schizophrenia (P=0.02, n=36) compared with nonpsychotic patients and controls. KMO genetic association to psychotic features in bipolar disorder type 1 was studied in 493 patients and 1044 controls from Sweden. The KMO Arg(452) allele was associated with psychotic features during manic episodes (P=0.003). KMO Arg(452) was studied for association to CSF KYNA levels in an independent sample of 55 Swedish patients, and to KMO expression in 717 lymphoblastoid cell lines and 138 hippocampal biopsies. KMO Arg(452) associated with increased levels of CSF KYNA (P=0.03) and reduced lymphoblastoid and hippocampal KMO expression (P≤0.05). Thus, findings from five independent cohorts suggest that genetic variation in KMO influences the risk for psychotic features in mania of bipolar disorder patients. This provides a possible mechanism for the previous findings of elevated CSF KYNA levels in those bipolar patients with lifetime psychotic features and positive association between KYNA levels and number of manic episodes.


Subject(s)
Bipolar Disorder/genetics , Bipolar Disorder/metabolism , Kynurenic Acid/cerebrospinal fluid , Kynurenine 3-Monooxygenase/biosynthesis , Kynurenine 3-Monooxygenase/genetics , Psychotic Disorders/genetics , Psychotic Disorders/metabolism , Adult , Aged , Alleles , Bipolar Disorder/complications , Bipolar Disorder/diagnosis , Case-Control Studies , Cell Line , Female , Gene Expression , Genetic Predisposition to Disease/genetics , Hippocampus/metabolism , Humans , Male , Middle Aged , Prefrontal Cortex/metabolism , Psychotic Disorders/complications , Schizophrenia/cerebrospinal fluid , Schizophrenia/metabolism , Young Adult
16.
Neuropsychopharmacology ; 38(5): 743-52, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23299933

ABSTRACT

The NMDA-receptor antagonist ketamine has proven efficient in reducing symptoms of suicidality, although the mechanisms explaining this effect have not been detailed in psychiatric patients. Recent evidence points towards a low-grade inflammation in brains of suicide victims. Inflammation leads to production of quinolinic acid (QUIN) and kynurenic acid (KYNA), an agonist and antagonist of the glutamatergic N-methyl-D-aspartate (NMDA) receptor, respectively. We here measured QUIN and KYNA in the cerebrospinal fluid (CSF) of 64 medication-free suicide attempters and 36 controls, using gas chromatography mass spectrometry and high-performance liquid chromatography. We assessed the patients clinically using the Suicide Intent Scale and the Montgomery-Asberg Depression Rating Scale (MADRS). We found that QUIN, but not KYNA, was significantly elevated in the CSF of suicide attempters (P<0.001). As predicted, the increase in QUIN was associated with higher levels of CSF interleukin-6. Moreover, QUIN levels correlated with the total scores on Suicide Intent Scale. There was a significant decrease of QUIN in patients who came for follow-up lumbar punctures within 6 months after the suicide attempt. In summary, we here present clinical evidence of increased QUIN in the CSF of suicide attempters. An increased QUIN/KYNA quotient speaks in favor of an overall NMDA-receptor stimulation. The correlation between QUIN and the Suicide Intent Scale indicates that changes in glutamatergic neurotransmission could be specifically linked to suicidality. Our findings have important implications for the detection and specific treatment of suicidal patients, and might explain the observed remedial effects of ketamine.


Subject(s)
Encephalitis/cerebrospinal fluid , Encephalitis/psychology , Excitatory Amino Acid Agonists/cerebrospinal fluid , Suicide/psychology , Adult , Aged , Excitatory Amino Acid Agonists/therapeutic use , Female , Follow-Up Studies , Humans , Interleukin-6/metabolism , Kynurenic Acid/cerebrospinal fluid , Kynurenine/cerebrospinal fluid , Male , Mental Disorders/complications , Mental Disorders/psychology , Middle Aged , Psychiatric Status Rating Scales , Quinolinic Acid/cerebrospinal fluid , Retrospective Studies , Somatosensory Disorders/complications , Spinal Puncture , Tritium/cerebrospinal fluid , Young Adult
17.
Psychiatry Res ; 205(1-2): 165-7, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-22980480

ABSTRACT

Relationships between concentrations of cerebrospinal fluid (CSF) kynurenic acid (KYNA) and suicidal behavior were evaluated in 59 patients with psychosis after 22 years of follow-up. Three patients died from suicide and nine patients had a history of attempted suicide. Patients with attempted suicide had significantly lower concentrations of CSF KYNA.


Subject(s)
Kynurenic Acid/cerebrospinal fluid , Psychotic Disorders/cerebrospinal fluid , Schizophrenia/cerebrospinal fluid , Suicide , Adolescent , Adult , Cohort Studies , Female , Follow-Up Studies , Humans , Linear Models , Male , Middle Aged , Psychotic Disorders/mortality , Risk Assessment , Schizophrenia/mortality , Suicide, Attempted , Young Adult
18.
Bipolar Disord ; 14(7): 719-26, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23030601

ABSTRACT

OBJECTIVES: Kynurenic acid (KYNA), an end metabolite of tryptophan degradation, antagonizes glutamatergic and cholinergic receptors in the brain. Recently, we reported elevated levels of cerebrospinal fluid (CSF) KYNA in male patients with bipolar disorder. Here, we investigate the relationship between symptomatology and the concentration of CSF KYNA in patients with bipolar I disorder. METHODS: CSF KYNA levels from euthymic male {n = 21; mean age: 41 years [standard deviation (SD) = 14]} and female [n = 34; mean age: 37 years (SD = 14)] patients diagnosed with bipolar I disorder were analyzed using high-performance liquid chromatography (HPLC). RESULTS: Euthymic bipolar I disorder patients with a lifetime occurrence of psychotic features had higher CSF levels of KYNA {2.0 nm [standard error of the mean (SEM) = 0.2]; n = 43} compared to patients without any history of psychotic features [1.3 nm (SEM = 0.2); n = 12] (p = 0.01). Logistic regression, with age as covariate, similarly showed an association between a history of psychotic features and CSF KYNA levels [n = 55; odds ratio (OR) = 4.9, p = 0.03]. Further, having had a recent manic episode (within the previous year) was also associated with CSF KYNA adjusted for age (n = 34; OR = 4.4, p = 0.03), and the association remained significant when adjusting for a lifetime history of psychotic features (OR = 4.1, p = 0.05). CONCLUSIONS: Although the causality needs to be determined, the ability of KYNA to influence dopamine transmission and behavior, along with previous reports showing increased brain levels of the compound in patients with schizophrenia and bipolar disorder, may indicate a possible pathophysiological role of KYNA in the development of manic or psychotic symptoms.


Subject(s)
Bipolar Disorder/cerebrospinal fluid , Bipolar Disorder/complications , Kynurenic Acid/cerebrospinal fluid , Psychotic Disorders/complications , Adult , Antimanic Agents/therapeutic use , Bipolar Disorder/drug therapy , Chromatography, High Pressure Liquid , Female , Humans , Logistic Models , Male , Middle Aged , Psychiatric Status Rating Scales , Statistics, Nonparametric , Young Adult
19.
J Intern Med ; 272(4): 394-401, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22443218

ABSTRACT

BACKGROUND: Kynurenic acid (KYNA) is a neuroactive metabolite of tryptophan that is thought to regulate cognitive functions. Previous studies have shown that levels of KYNA increase during virus infection and that this metabolite interacts with the immune system. OBJECTIVE: The aim of the study was to investigate whether patients with tick-borne encephalitis (TBE), a viral infectious disease associated with long-term cognitive impairment, have increased levels of KYNA in the cerebrospinal fluid (CSF). METHODS: CSF KYNA was analysed using high-performance liquid chromatography in 108 patients with TBE and 52 age-matched controls. Patients were classified according to the severity of TBE: mild (47%), moderate (44%) or severe (9%). RESULTS: Concentrations of CSF KYNA were considerably higher in patients with TBE (5.3 nmol L(-1) ) than in control subjects (0.99 nmol L(-1) ). KYNA concentration in the CSF varied greatly amongst individuals with TBE and increased (P < 0.05) with the severity of disease. CONCLUSIONS: This is the first study to demonstrate increased levels of CSF KYNA in patients with TBE. The importance of brain KYNA in both immune modulation and neurotransmission raises the possibility that abnormal levels of the compound in TBE might play a part in the pathophysiology of the disease. A detailed knowledge of endogenous brain KYNA during the course of CNS infection might yield further insights into the neuroimmunological role of the compound and may also provide new pharmacological approaches for the treatment of cognitive symptoms.


Subject(s)
Encephalitis, Tick-Borne/cerebrospinal fluid , Kynurenic Acid/cerebrospinal fluid , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult
20.
Schizophr Bull ; 38(3): 426-32, 2012 May.
Article in English | MEDLINE | ID: mdl-20729465

ABSTRACT

BACKGROUND: The kynurenic acid (KYNA) hypothesis for schizophrenia is partly based on studies showing increased brain levels of KYNA in patients. KYNA is an endogenous metabolite of tryptophan (TRP) produced in astrocytes and antagonizes N-methyl-D-aspartate and α7* nicotinic receptors. METHODS: The formation of KYNA is determined by the availability of substrate, and hence, we analyzed KYNA and its precursors, kynurenine (KYN) and TRP, in the cerebrospinal fluid (CSF) of patients with schizophrenia. CSF from male patients with schizophrenia on olanzapine treatment (n = 16) was compared with healthy male volunteers (n = 29). RESULTS: KYN and KYNA concentrations were higher in patients with schizophrenia (60.7 ± 4.37 nM and 2.03 ± 0.23 nM, respectively) compared with healthy volunteers (28.6 ± 1.44 nM and 1.36 ± 0.08 nM, respectively), whereas TRP did not differ between the groups. In all subjects, KYN positively correlated to KYNA. CONCLUSION: Our results demonstrate increased levels of CSF KYN and KYNA in patients with schizophrenia and further support the hypothesis that KYNA is involved in the pathophysiology of schizophrenia.


Subject(s)
Kynurenic Acid/cerebrospinal fluid , Kynurenine/cerebrospinal fluid , Schizophrenia/cerebrospinal fluid , Adult , Antipsychotic Agents/therapeutic use , Benzodiazepines/therapeutic use , Humans , Kynurenine/biosynthesis , Male , Middle Aged , Olanzapine , Schizophrenia/drug therapy , Tryptophan/biosynthesis , Tryptophan/cerebrospinal fluid , Up-Regulation/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL