Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Cancer Lett ; 522: 32-43, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34520819

ABSTRACT

Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzing the conversion of tryptophan (Trp) to kynurenine (Kyn) in kynurenine pathway (KP) is involved in the immunosuppression in pancreatic cancer (PC), but the value of IDO1 as an independent prognostic marker for PC is uncertain. Moreover, the correlation between tryptophan 2,3-dioxygenase (TDO), an isozyme of IDO1, and PC is largely unknown. Using TCGA database, the correlation between IDO1 and/or TDO expression and PC patients' survival was analyzed. The expressions of IDO1 and TDO in PC cells and PC mice were examined. The effects of IDO1, TDO or dual inhibition on IDO1 and TDO effector pathway (Aryl hydrocarbon receptor, AhR) and on migration and invasion of PC cells were investigated. The block effect of IDO1/TDO dual inhibitor RY103 on KP was evaluated. The preclinical efficacy of RY103 and its immunomodulatory effect on KPIC orthotopic PC mice and Pan02 tumor-bearing mice were explored. Results showed that IDO1/TDO co-expression is an independent prognostic marker for PC. RY103 can significantly block KP and target Kyn-AhR pathway to blunt the migration and invasion of PC cells, exhibit preclinical efficacy and ameliorate IDO1/TDO-mediated immunosuppression in PC mice.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Organic Chemicals/pharmacology , Pancreatic Neoplasms/drug therapy , Receptors, Aryl Hydrocarbon/genetics , Tryptophan Oxygenase/genetics , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Kynurenine/biosynthesis , Mice , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Organic Chemicals/therapeutic use , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Signal Transduction/drug effects , Tryptophan Oxygenase/antagonists & inhibitors , Pancreatic Neoplasms
2.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34074779

ABSTRACT

Some methane-oxidizing bacteria use the ribosomally synthesized, posttranslationally modified natural product methanobactin (Mbn) to acquire copper for their primary metabolic enzyme, particulate methane monooxygenase. The operons encoding the machinery to biosynthesize and transport Mbns typically include genes for two proteins, MbnH and MbnP, which are also found as a pair in other genomic contexts related to copper homeostasis. While the MbnH protein, a member of the bacterial diheme cytochrome c peroxidase (bCcP)/MauG superfamily, has been characterized, the structure and function of MbnP, the relationship between the two proteins, and their role in copper homeostasis remain unclear. Biochemical characterization of MbnP from the methanotroph Methylosinus trichosporium OB3b now reveals that MbnP binds a single copper ion, present in the +1 oxidation state, with high affinity. Copper binding to MbnP in vivo is dependent on oxidation of the first tryptophan in a conserved WxW motif to a kynurenine, a transformation that occurs through an interaction of MbnH with MbnP. The 2.04-Å-resolution crystal structure of MbnP reveals a unique fold and an unusual copper-binding site involving a histidine, a methionine, a solvent ligand, and the kynurenine. Although the kynurenine residue may not serve as a CuI primary-sphere ligand, being positioned ∼2.9 Å away from the CuI ion, its presence is required for copper binding. Genomic neighborhood analysis indicates that MbnP proteins, and by extension kynurenine-containing copper sites, are widespread and may play diverse roles in microbial copper homeostasis.


Subject(s)
Bacterial Proteins/chemistry , Copper/chemistry , Kynurenine/chemistry , Metalloproteins/chemistry , Methylosinus trichosporium/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Copper/metabolism , Crystallography, X-Ray , Kynurenine/biosynthesis , Kynurenine/genetics , Metalloproteins/genetics , Metalloproteins/metabolism , Methylosinus trichosporium/genetics , Methylosinus trichosporium/metabolism , Protein Domains
3.
Bioorg Med Chem Lett ; 33: 127738, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33316404

ABSTRACT

Through structural modification of an oxalamide derived chemotype, a novel class of highly potent, orally bioavailable IDO1-specific inhibitors was identified. Representative compound 18 inhibited human IDO1 with IC50 values of 3.9 nM and 52 nM in a cellular and human whole blood assay, respectively. In vitro assessment of the ADME properties of 18 demonstrated very high metabolic stability. Pharmacokinetic profiling in mice showed a significantly reduced clearance compared to the oxalamides. In a mouse pharmacodynamic model 18 nearly completely suppressed lipopolysaccharide-induced kynurenine production. Hepatocyte data of 18 suggest the human clearance to be in a similar range to linrodostat (1).


Subject(s)
Amides/pharmacology , Bridged Bicyclo Compounds/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Oxamic Acid/pharmacology , Amides/chemical synthesis , Amides/chemistry , Animals , Bridged Bicyclo Compounds/chemical synthesis , Bridged Bicyclo Compounds/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/antagonists & inhibitors , Kynurenine/biosynthesis , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Molecular Structure , Oxamic Acid/chemical synthesis , Oxamic Acid/chemistry , Structure-Activity Relationship
4.
Cell Death Dis ; 10(8): 557, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324754

ABSTRACT

The bromodomain and extra terminal domain (BET) family members, including BRD2, BRD3, and BRD4, act as epigenetic readers to regulate gene expression. Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme that participates in tumor immune escape primarily by catalyzing tryptophan to L-kynurenine. Here, we report that IDO1 is a new target gene of the BET family. RNA profiling showed that compound 9, a new BET inhibitor, reduced IDO1 mRNA up to seven times in Ty-82 cells. IDO1 differentially expressed in tumor cells and its expression could be induced with interferon gamma (IFN-γ). BET inhibitors (ABBV-075, JQ1, and OTX015) inhibited both constitutive and IFN-γ-inducible expression of IDO1. Similarly, reduction of BRD2, BRD3, or BRD4 decreased IDO1 expression. All these BET family members bound to the IDO1 promoter via the acetylated histone H3. JQ1 led to their release and reduced enrichment of RNA polymerase II (Pol II) on the promoter. IFN-γ increased the binding of BRD2, BRD3, BRD4, and Pol II on the IDO1 promoter by increasing the acetylation of histone H3, which could be prevented by JQ1 partially or even completely. Furthermore, both JQ1 and OTX015 decreased the production of L-kynurenine. The combination of BET inhibitors with the IDO1 inhibitor further reduced L-kynurenine, though only marginally. Importantly, the BET inhibitor ABBV-075 significantly inhibited the growth of human Ty-82 xenografts in nude mice and reduced both protein and mRNA levels of IDO1 in the xenografts. This finding lays a basis for the potential combination of BET inhibitors and IDO1 inhibitors for the treatment of IDO1-expressing cancers.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Gene Expression/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/biosynthesis , Transcription Factors/antagonists & inhibitors , A549 Cells , Acetylation , Animals , Cell Cycle Proteins/genetics , Female , HL-60 Cells , HeLa Cells , Histones/metabolism , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Mice , Mice, Inbred BALB C , Mice, Nude , Promoter Regions, Genetic , Pyridones/pharmacology , RNA, Messenger/genetics , Sulfonamides/pharmacology , Transcription Factors/genetics , Transfection , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
5.
Angew Chem Int Ed Engl ; 58(25): 8394-8399, 2019 06 17.
Article in English | MEDLINE | ID: mdl-30963655

ABSTRACT

l-4-Chlorokynurenine (l-4-Cl-Kyn) is a neuropharmaceutical drug candidate that is in development for the treatment of major depressive disorder. Recently, this amino acid was naturally found as a residue in the lipopeptide antibiotic taromycin. Herein, we report the unprecedented conversion of l-tryptophan into l-4-Cl-Kyn catalyzed by four enzymes in the taromycin biosynthetic pathway from the marine bacterium Saccharomonospora sp. CNQ-490. We used genetic, biochemical, structural, and analytical techniques to establish l-4-Cl-Kyn biosynthesis, which is initiated by the flavin-dependent tryptophan chlorinase Tar14 and its flavin reductase partner Tar15. This work revealed the first tryptophan 2,3-dioxygenase (Tar13) and kynurenine formamidase (Tar16) enzymes that are selective for chlorinated substrates. The substrate scope of Tar13, Tar14, and Tar16 was examined and revealed intriguing promiscuity, thereby opening doors for the targeted engineering of these enzymes as useful biocatalysts.


Subject(s)
Amino Acids/metabolism , Anti-Bacterial Agents/metabolism , Antidepressive Agents/metabolism , Kynurenine/analogs & derivatives , Lipopeptides/metabolism , Prodrugs/metabolism , Amino Acids/chemistry , Anti-Bacterial Agents/chemistry , Antidepressive Agents/chemistry , Arylformamidase/metabolism , Crystallography, X-Ray , Kynurenine/biosynthesis , Kynurenine/chemistry , Lipopeptides/chemistry , Models, Molecular , Molecular Structure , Prodrugs/chemistry , Tryptophan Oxygenase/metabolism
6.
Mol Cancer Res ; 17(1): 30-41, 2019 01.
Article in English | MEDLINE | ID: mdl-30213797

ABSTRACT

Tryptophan-2,3-dioxygenase (TDO2), a rate-limiting enzyme in the tryptophan catabolism pathway, is induced in triple-negative breast cancer (TNBC) by inflammatory signals and anchorage-independent conditions. TNBCs express extremely low levels of the miR-200 family compared with estrogen receptor-positive (ER+) breast cancer. In normal epithelial cells and ER+ breast cancers and cell lines, high levels of the family member miR-200c serve to target and repress genes involved in epithelial-to-mesenchymal transition (EMT). To identify mechanism(s) that permit TNBC to express TDO2 and other proteins not expressed in the more well-differentiated ER+ breast cancers, miRNA-200c was restored in TNBC cell lines. The data demonstrate that miR-200c targeted TDO2 directly resulting in reduced production of the immunosuppressive metabolite kynurenine. Furthermore, in addition to reversing a classic EMT signature, miR-200c repressed many genes encoding immunosuppressive factors including CD274/CD273, HMOX-1, and GDF15. Restoration of miR-200c revealed a mechanism, whereby TNBC hijacks a gene expression program reminiscent of that used by trophoblasts to suppress the maternal immune system to ensure fetal tolerance during pregnancy. IMPLICATIONS: Knowledge of the regulation of tumor-derived immunosuppressive factors will facilitate development of novel therapeutic strategies that complement current immunotherapy to reduce mortality for patients with TNBC.


Subject(s)
MicroRNAs/metabolism , Triple Negative Breast Neoplasms/metabolism , Tryptophan/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Humans , Kynurenine/biosynthesis , Kynurenine/genetics , Kynurenine/immunology , MicroRNAs/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Tryptophan Oxygenase/genetics , Tryptophan Oxygenase/metabolism
7.
Bioorg Med Chem Lett ; 28(17): 2846-2849, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30055888

ABSTRACT

Kynurenine is biosynthesised from tryptophan catalysed by indoleamine 2,3-dioxygenase (IDO). The abrogation of kynurenine production is considered a promising therapeutic target for immunological cancer treatment. In the course of our IDO inhibitor programme, formal cyclisation of the isothiourea moiety of the IDO inhibitor 1 afforded the 5-Cl-benzimidazole derivative 2b-6, which inhibited both recombinant human IDO (rhIDO) activity and cellular kynurenine production. Further derivatisation of 2b-6 provided the potent inhibitor of cellular kynurenine production 2i (IC50 = 0.34 µM), which unexpectedly exerted little effect on the enzymatic activity of rhIDO. Elucidation of the mechanism of action revealed that compound 2i suppresses IDO expression at the protein level by inhibiting STAT1 expression in IFN-γ-treated A431 cells. The kynurenine-production inhibitor 2i is expected to be a promising starting point for a novel approach to immunological cancer treatment.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/antagonists & inhibitors , Thiourea/pharmacology , Cell Line , Dose-Response Relationship, Drug , Humans , Kynurenine/biosynthesis , Molecular Structure , Recombinant Proteins/metabolism , Structure-Activity Relationship , Thiourea/analogs & derivatives , Thiourea/chemistry
8.
FEBS J ; 284(2): 218-221, 2017 01.
Article in English | MEDLINE | ID: mdl-28121076

ABSTRACT

Our antiviral arsenal to fight influenza viruses is limited and we need novel anti-flu drugs. Recently, cellular drug targets came into focus and omics analysis were instrumental to suggest candidate factors. In this issue of The FEBS Journal, Kainov and colleagues used transcriptome data to investigate virus-induced changes in tryptophan metabolism that may serve as immunomodulatory approach against viruses.


Subject(s)
Antiviral Agents/pharmacology , Immunologic Factors/pharmacology , Influenza, Human/drug therapy , Kynurenine/antagonists & inhibitors , Metabolic Networks and Pathways/drug effects , Orthomyxoviridae/metabolism , Host-Pathogen Interactions , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Influenza, Human/immunology , Influenza, Human/pathology , Influenza, Human/virology , Interferons/genetics , Interferons/immunology , Kynurenine/biosynthesis , Macrophages/drug effects , Macrophages/virology , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Orthomyxoviridae/genetics , Orthomyxoviridae/growth & development , Transcriptome , Tryptophan/metabolism
9.
FEBS J ; 284(2): 222-236, 2017 01.
Article in English | MEDLINE | ID: mdl-27860276

ABSTRACT

Influenza A viruses (IAVs) remain serious threats to public health because of the shortage of effective means of control. Developing more effective virus control modalities requires better understanding of virus-host interactions. It has previously been shown that IAV induces the production of kynurenine, which suppresses T-cell responses, enhances pain hypersensitivity and disturbs behaviour in infected animals. However, the regulation of kynurenine biosynthesis during IAV infection remains elusive. Here we showed that IAV infection induced expression of interferons (IFNs), which upregulated production of indoleamine-2,3-dioxygenase (IDO1), which catalysed the kynurenine biosynthesis. Furthermore, IAV attenuated the IDO1 expression and the production of kynurenine through its NS1 protein. Interestingly, inhibition of viral replication prior to IFN induction limited IDO1 expression, while inhibition after did not. Finally, we showed that kynurenine biosynthesis was activated in macrophages in response to other stimuli, such as influenza B virus, herpes simplex virus 1 and 2 as well as bacterial lipopolysaccharides. Thus, the tight regulation of the kynurenine biosynthesis by host cell and, perhaps, pathogen might be a basic signature of a wide range of host-pathogen interactions, which should be taken into account during development of novel antiviral and antibacterial drugs.


Subject(s)
Antiviral Agents/pharmacology , Immunologic Factors/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Kynurenine/antagonists & inhibitors , Metabolic Networks and Pathways/drug effects , Orthomyxoviridae Infections/drug therapy , Animals , Female , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Indoles , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/metabolism , Interferons/genetics , Interferons/immunology , Kynurenine/biosynthesis , Lung/drug effects , Lung/immunology , Lung/virology , Macrophages/drug effects , Macrophages/virology , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Oxazoles/pharmacology , Oximes/pharmacology , Primary Cell Culture , Pyrroles/pharmacology , Sulfonamides/pharmacology , Thiazoles/pharmacology , Transcriptome , Tryptophan/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication
10.
Sci Rep ; 6: 35169, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27762317

ABSTRACT

Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) play a central role in tryptophan metabolism and are involved in many cellular and disease processes. Here we report the crystal structure of human TDO (hTDO) in a ternary complex with the substrates L-Trp and O2 and in a binary complex with the product N-formylkynurenine (NFK), defining for the first time the binding modes of both substrates and the product of this enzyme. The structure indicates that the dioxygenation reaction is initiated by a direct attack of O2 on the C2 atom of the L-Trp indole ring. The structure also reveals an exo binding site for L-Trp, located ~42 Å from the active site and formed by residues conserved among tryptophan-auxotrophic TDOs. Biochemical and cellular studies indicate that Trp binding at this exo site does not affect enzyme catalysis but instead it retards the degradation of hTDO through the ubiquitin-dependent proteasomal pathway. This exo site may therefore provide a novel L-Trp-mediated regulation mechanism for cellular degradation of hTDO, which may have important implications in human diseases.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry , Oxygen/chemistry , Protein Structure, Secondary , Tryptophan Oxygenase/chemistry , Tryptophan/chemistry , Catalysis , Crystallography, X-Ray , Humans , Kynurenine/analogs & derivatives , Kynurenine/biosynthesis , Protein Binding/physiology , Tryptophan Oxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL