Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.958
Filter
1.
Glycobiology ; 34(9)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39115362

ABSTRACT

α -Lactalbumin, an abundant protein present in the milk of most mammals, is associated with biological, nutritional and technological functionality. Its sequence presents N-glycosylation motifs, the occupancy of which is species-specific, ranging from no to full occupancy. Here, we investigated the N-glycosylation of bovine α-lactalbumin in colostrum and milk sampled from four individual cows, each at 9 time points starting from the day of calving up to 28.0 d post-partum. Using a glycopeptide-centric mass spectrometry-based glycoproteomics approach, we identified N-glycosylation at both Asn residues found in the canonical Asn-Xxx-Ser/Thr motif, i.e. Asn45 and Asn74 of the secreted protein. We found similar glycan profiles in all four cows, with partial site occupancies, averaging at 35% and 4% for Asn45 and Asn74, respectively. No substantial changes in occupancy occurred over lactation at either site. Fucosylation, sialylation, primarily with N-acetylneuraminic acid (Neu5Ac), and a high ratio of N,N'-diacetyllactosamine (LacdiNAc)/N-acetyllactosamine (LacNAc) motifs were characteristic features of the identified N-glycans. While no substantial changes occurred in site occupancy at either site during lactation, the glycoproteoform (i.e. glycosylated form of the protein) profile revealed dynamic changes; the maturation of the α-lactalbumin glycoproteoform repertoire from colostrum to mature milk was marked by substantial increases in neutral glycans and the number of LacNAc motifs per glycan, at the expense of LacdiNAc motifs. While the implications of α-lactalbumin N-glycosylation on functionality are still unclear, we speculate that N-glycosylation at Asn74 results in a structurally and functionally different protein, due to competition with the formation of its two intra-molecular disulphide bridges.


Subject(s)
Colostrum , Lactalbumin , Milk , Lactalbumin/metabolism , Lactalbumin/chemistry , Animals , Glycosylation , Colostrum/chemistry , Colostrum/metabolism , Cattle , Milk/chemistry , Milk/metabolism , Female , Lactation/metabolism , Amino Sugars/chemistry , Amino Sugars/metabolism , Glycopeptides/metabolism , Glycopeptides/chemistry , Glycopeptides/analysis , Lactose/metabolism , Lactose/chemistry
2.
J Chromatogr A ; 1730: 465114, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38964160

ABSTRACT

Protein chromatography is the dominant method of purification of biopharmaceuticals. Although all practical chromatography involves competitive absorption and separation of M. species, competitive protein absorption has remained inadequately understood. We previously introduced the measurement of equilibrium protein adsorption isotherms with all intensive variables held constant, including competitor concentration. In this work, we introduce isocratic chromatographic retention measurements of dynamic protein adsorption in the presence of a constant concentration of a competitor protein. These measurements are achieved by establishing a dynamic equilibrium with a constant concentration of competitor (insulin) in the mobile phase flowing through an ion exchange adsorbent column and following the behavior of a test protein (α-lactalbumin) injected into this environment. We observed decreased retention times for α-lactalbumin in presence of the competitor. The presence of competitor also reduces the heterogeneity of the sites available for adsorption of the test protein. This investigation provides an approach to fundamental understanding of competitive dynamics of multicomponent protein chromatography.


Subject(s)
Insulin , Lactalbumin , Chromatography, Ion Exchange/methods , Adsorption , Lactalbumin/chemistry , Lactalbumin/isolation & purification , Insulin/chemistry , Insulin/isolation & purification , Proteins/isolation & purification , Proteins/chemistry , Animals , Cattle
3.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000318

ABSTRACT

This study is focused on fractionation of insulin-like growth factor I (IGF-I) and transforming growth factor-ß2 (TGF-ß2) using a new electro-based membrane process calledelectrodialysis with filtration membranes (EDFM). Before EDFM, different pretreatments were tested, and four pH conditions (4.25, 3.85, 3.45, and 3.05) were used during EDFM. It was demonstrated that a 1:1 dilution of defatted colostrum with deionized water to decrease mineral content followed by the preconcentration of GFs by UF is necessary and allow for these compounds to migrate to the recovery compartment during EDFM. MS analyses confirmed the migration, in low quantity, of only α-lactalbumin (α-la) and ß-lactoglobulin (ß-lg) from serocolostrum to the recovery compartment during EDFM. Consequently, the ratio of GFs to total protein in recovery compartment compared to that of feed serocolostrum solution was 60× higher at pH value 3.05, the optimal pH favoring the migration of IGF-I and TGF-ß2. Finally, these optimal conditions were tested on acid whey to also demonstrate the feasibility of the proposed process on one of the main by-products of the cheese industry; the ratio of GFs to total protein was 2.7× higher in recovery compartment than in feed acid whey solution, and only α-la migrated. The technology of GF enrichment for different dairy solutions by combining ultrafiltration and electrodialysis technologies was proposed for the first time.


Subject(s)
Dialysis , Filtration , Dialysis/methods , Filtration/methods , Insulin-Like Growth Factor I/analysis , Hydrogen-Ion Concentration , Membranes, Artificial , Dairy Products/analysis , Animals , Colostrum/chemistry , Cattle , Whey/chemistry , Lactoglobulins/chemistry , Lactoglobulins/analysis , Lactalbumin/chemistry , Lactalbumin/analysis
4.
J Food Sci ; 89(7): 4109-4122, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957103

ABSTRACT

The elucidation of the interaction mechanism between phospholipids and milk proteins within emulsions is pivotal for comprehending the properties of infant formula fat globules. In this study, multispectral methods and molecular docking were employed to explore the relationship between phosphatidylcholine (PC) and whey protein isolate (WPI). Observations indicate that the binding constant, alongside thermodynamic parameters, diminishes as temperature ascends, hinting at a predominantly static quenching mechanism. Predominantly, van der Waals forces and hydrogen bonds constitute the core interactions between WPI and PC. This assertion is further substantiated by Fourier transform infrared spectroscopy, which verifies PC's influence on WPI's secondary structure. A detailed assessment of thermodynamic parameters coupled with molecular docking reveals that PC predominantly adheres to specific sites within α-lactalbumin, ß-lactoglobulin, and bovine serum albumin, propelled by a synergy of hydrophobic interactions, hydrogen bonding, and van der Waals forces, with binding energies noted at -5.59, -6.71, and -7.85 kcal/mol, respectively. An increment in PC concentration is observed to amplify the emulsification properties of WPI whilst concurrently diminishing the zeta potential. This study establishes a theoretical foundation for applying the PC-WPI interaction mechanism in food.


Subject(s)
Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Phosphatidylcholines , Thermodynamics , Whey Proteins , Whey Proteins/chemistry , Phosphatidylcholines/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Lactoglobulins/chemistry , Lactoglobulins/metabolism , Emulsions/chemistry , Lactalbumin/chemistry , Lactalbumin/metabolism , Serum Albumin, Bovine/chemistry , Infant Formula/chemistry
5.
Protein Expr Purif ; 223: 106555, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39004261

ABSTRACT

Whey, a valuable byproduct of dairy processing, contains essential proteins like ß-lactoglobulin (ßLG) and α-lactalbumin (αLA), making it a focus of research for its nutritional benefits. Various techniques, including chromatography and membrane filtration, are employed for protein extraction, often requiring multiple purification steps. One approach that has gained prominence for the purification and concentration of proteins, including those present in whey, is the use of polyethylene glycol (PEG) in aqueous two-phase systems. Our study simplifies this process by using PEG alone for whey protein purification. This approach yielded impressive results, achieving 92 % purity for ßLG and 90 % for αLA. These findings underscore the effectiveness of PEG-based purification in isolating whey proteins with high purity.


Subject(s)
Lactalbumin , Lactoglobulins , Milk , Polyethylene Glycols , Animals , Lactalbumin/isolation & purification , Lactalbumin/chemistry , Lactoglobulins/isolation & purification , Lactoglobulins/chemistry , Milk/chemistry , Cattle , Polyethylene Glycols/chemistry , Whey Proteins/chemistry , Whey Proteins/isolation & purification
6.
Food Res Int ; 190: 114604, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945616

ABSTRACT

Sheep's milk (SM) is known to differ from cow's milk (CM) in nutritional composition and physicochemical properties, which may lead to different digestion behaviours. This work aimed to investigate the impact of the species (cow vs sheep) and the structure (milk vs yogurt) on the digestion of dairy products. Using an in vitro static gastrointestinal digestion model, CM, SM, cow's milk yogurt (CY) and sheep's milk yogurt (SY) were compared on particle size evolution, microscopic observations, degree of lipolysis, degree of proteolysis, specific protein degradation and calcium bioaccessibility. Species and structure affected particle size evolution during the gastric phase resulting in smaller particles for yogurts compared to milks as well as for CM products compared to SM products. Species impacted lipid composition and lipolysis, with SM products presenting higher short/medium-chain fatty acids content and higher intestinal degree of lipolysis. Proteolysis was influenced by structure, with milks showing higher intestinal degree of proteolysis compared to yogurts. Caseins were digested faster in CM, ⍺-lactalbumin was digested faster in SM despite its higher concentration, and during gastric digestion ß-lactoglobulin was more degraded in CM products compared to SM products and more in yogurts compared to milks. Lastly, SM products released more bioaccessible calcium than CM products. In conclusion, species (cow vs sheep) impacted more the digestion compared to the structure (milk vs yogurt). In fact, SM was different from CM mainly due to a denser protein network that might slow down the accessibility of the enzyme to its substrate which induce a delay of gastric disaggregation and thus lead to slower the digestion of the nutrients.


Subject(s)
Digestion , Lipolysis , Milk , Particle Size , Proteolysis , Yogurt , Animals , Digestion/physiology , Cattle , Yogurt/analysis , Sheep , Milk/chemistry , Lactoglobulins/metabolism , Gastrointestinal Tract/metabolism , Dairy Products/analysis , Lactalbumin/metabolism , Caseins/metabolism , Caseins/analysis , Species Specificity , Milk Proteins/analysis , Milk Proteins/metabolism
7.
J Agric Food Chem ; 72(27): 15198-15212, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38941263

ABSTRACT

Numerous studies have highlighted the potential of Lactic acid bacteria (LAB) fermentation of whey proteins for alleviating allergies. Nonetheless, the impact of LAB-derived metabolites on whey proteins antigenicity during fermentation remains uncertain. Our objective was to elucidate the impact of small molecular metabolites on the antigenicity of α-lactalbumin (α-LA) and ß-lactoglobulin (ß-LG). Through metabolomic analysis, we picked 13 bioactive small molecule metabolites from Lactobacillus delbrueckii subsp. bulgaricus DLPU F-36 for coincubation with α-LA and ß-LG, respectively. The outcomes revealed that valine, arginine, benzoic acid, 2-keto butyric acid, and glutaric acid significantly diminished the sensitization potential of α-LA and ß-LG, respectively. Moreover, chromatographic analyses unveiled the varying influence of small molecular metabolites on the structure of α-LA and ß-LG, respectively. Notably, molecular docking underscored that the primary active sites of α-LA and ß-LG involved in protein binding to IgE antibodies aligned with the interaction sites of small molecular metabolites. In essence, LAB-produced metabolites wield a substantial influence on the antigenic properties of whey proteins.


Subject(s)
Lactobacillus delbrueckii , Molecular Docking Simulation , Whey Proteins , Lactobacillus delbrueckii/metabolism , Lactobacillus delbrueckii/chemistry , Lactobacillus delbrueckii/immunology , Whey Proteins/chemistry , Whey Proteins/metabolism , Fermentation , Lactoglobulins/chemistry , Lactoglobulins/immunology , Lactoglobulins/metabolism , Lactalbumin/chemistry , Lactalbumin/immunology , Lactalbumin/metabolism , Animals , Cattle , Antigens/immunology , Antigens/chemistry
8.
Food Res Int ; 188: 114485, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823871

ABSTRACT

Whey protein isolate (WPI) is mainly composed of ß-lactoglobulin (ß-LG), α-lactalbumin (α-LA) and bovine serum albumin (BSA). The aim of this study was to compare and analyze the influence of WPI and its three main constituent proteins, as well as proportionally reconstituted WPI (R-WPI) on resveratrol. It was found that the storage stability of resveratrol was protected by WPI, not affected by R-WPI, but reduced by individual whey proteins at 45°C for 30 days. The rank of accelerated degradation of resveratrol by individual whey proteins was BSA > α-LA > ß-LG. The antioxidant activity, localization of resveratrol and oxidation of carrier proteins were determined by ABTS, H2O2 assay, synchronous fluorescence, carbonyl and circular dichroism. The non-covalent interactions and disulfide bonds between constituent proteins improved the antioxidant activity of the R-WPI-resveratrol complex, the oxidation stability of the carrier and the solvent shielding effect on resveratrol, which synergistically inhibited the degradation of resveratrol in R-WPI system. The results gave insight into elucidating the interaction mechanism of resveratrol with protein carriers.


Subject(s)
Antioxidants , Lactalbumin , Lactoglobulins , Oxidation-Reduction , Resveratrol , Serum Albumin, Bovine , Whey Proteins , Resveratrol/chemistry , Resveratrol/pharmacology , Whey Proteins/chemistry , Lactalbumin/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Lactoglobulins/chemistry , Serum Albumin, Bovine/chemistry , Circular Dichroism
9.
Food Chem ; 457: 140096, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38905830

ABSTRACT

The research explored the role of γ-oryzanol (γs) on stabilization behavior of Pickering emulsion gels (PEGs) loaded by α-lactalbumin (α-LA) or ß-lactoglobulin (ß-LG), being analyzed by experimental and computer methods (molecular dynamic simulation, MD). Primarily, the average particle size of ß-LG-γS was expressed 100.07% decrease over that of α-LA-γS. In addition, γs decreased the dynamic interfacial tension of two proteins with the order of ß-LG < α-LA. Meanwhile, quartz crystal microbalance with dissipation proved that ß-LG-γS exhibited higher adsorption mass and denser rigid interface layer than α-LA-γS. Moreover, the hydrophobic group of γS had electrostatic repulsion with polar water molecules in the aqueous phase, which spread to the oil phase. ß-LG-γS had lower RMSD/Rg value and narrower fluctuation compared with α-LA-γS. This work strength the exploration of interfacial stabilization mechanism of whey protein-based PEGs, which enriched its theoretical research for industrial-scale production as the replacement of trans fat and cholesterol.


Subject(s)
Emulsions , Gels , Lactalbumin , Lactoglobulins , Phenylpropionates , Lactalbumin/chemistry , Lactoglobulins/chemistry , Emulsions/chemistry , Phenylpropionates/chemistry , Gels/chemistry , Molecular Dynamics Simulation , Particle Size , Hydrophobic and Hydrophilic Interactions
10.
Vet Microbiol ; 295: 110153, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889618

ABSTRACT

Bovine leukemia virus (BLV) is a widespread virus that decreases milk production and quality in dairy cows. As crucial components of BLV, BLV-encoded microRNAs (BLV-miRNAs) affect BLV replication and may impact the synthesis of Lactoferrin (LTF), Lactoperoxidase (LPO), Alpha-lactalbumin (alpha-LA), and Beta-lactoglobulin (beta-LG). In this study, we investigated the targeting relationship between BLV-miRNAs and LTF, LPO, alpha-LA, and beta-LG in cow's milk. Additionally, we investigated the possible mechanisms by which BLV reduces milk quality. The results showed that cow's milk had significantly lower levels of LTF, LPO, and alpha-LA proteins in BLV-positive cows than in BLV-negative cows. BLV-△miRNAs (miRNA-deleted BLV) enhanced the reduction of LPO, alpha-LA, and beta-LG protein levels caused by BLV infection. Multiple BLV-miRNAs have binding sites with LTF and LPO mRNA; however, only BLV-miR-B1-5 P has a targeting relationship with LPO mRNA. The results revealed that BLV-miR-B1-5 P inhibits LPO protein expression by targeting LPO mRNA. However, BLV does not directly regulate the expression of LTF, alpha-LA, or beta-LG proteins through BLV-miRNAs.


Subject(s)
Lactalbumin , Lactoferrin , Lactoglobulins , Lactoperoxidase , Leukemia Virus, Bovine , MicroRNAs , Milk , Animals , Lactoferrin/genetics , Lactoferrin/metabolism , Lactoperoxidase/metabolism , Lactoperoxidase/genetics , Lactalbumin/genetics , Lactalbumin/metabolism , Cattle , Lactoglobulins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Leukemia Virus, Bovine/genetics , Female , Enzootic Bovine Leukosis/virology , Enzootic Bovine Leukosis/genetics
11.
Nutrients ; 16(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38794693

ABSTRACT

Human milk (HM) contains the essential macronutrients and bioactive compounds necessary for the normal growth and development of newborns. The milk collected by human milk banks is stored frozen and pasteurized, reducing its nutritional and biological value. The purpose of this study was to determine the effect of hyperbaric storage at subzero temperatures (HS-ST) on the macronutrients and bioactive proteins in HM. As control samples, HM was stored at the same temperatures under 0.1 MPa. A Miris HM analyzer was used to determine the macronutrients and the energy value. The lactoferrin (LF), lysozyme (LYZ) and α-lactalbumin (α-LAC) content was checked using high-performance liquid chromatography, and an ELISA test was used to quantify secretory immunoglobulin A (sIgA). The results showed that the macronutrient content did not change significantly after 90 days of storage at 60 MPa/-5 °C, 78 MPa/-7 °C, 111 MPa/-10 °C or 130 MPa/-12 °C. Retention higher than 90% of LYZ, α-LAC, LF and sIgA was observed in the HM stored at conditions of up to 111 MPa/-10 °C. However, at 130 MPa/-12 °C, there was a reduction in LYZ and LF, by 39 and 89%, respectively. The storage of HM at subzero temperatures at 0.1 MPa did not affect the content of carbohydrates or crude and true protein. For fat and the energy value, significant decreases were observed at -5 °C after 90 days of storage.


Subject(s)
Food Storage , Lactoferrin , Milk, Human , Muramidase , Nutritive Value , Humans , Milk, Human/chemistry , Lactoferrin/analysis , Food Storage/methods , Muramidase/analysis , Muramidase/metabolism , Lactalbumin/analysis , Immunoglobulin A, Secretory/analysis , Immunoglobulin A, Secretory/metabolism , Nutrients/analysis , Milk Proteins/analysis , Female
12.
J Proteomics ; 301: 105194, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38723850

ABSTRACT

This study explores the disulfide bridges present in the human milk proteome by a novel approach permitting both positional identification and relative quantification of the disulfide bridges. Human milk from six donors was subjected to trypsin digestion without reduction. The digested human milk proteins were analyzed by nanoLC-timsTOF Pro combined with data analysis using xiSEARCH. A total of 85 unique disulfide bridges were identified in 25 different human milk proteins. The total relative abundance of disulfide bridge-containing peptides constituted approximately 5% of the total amount of tryptic-peptides. Seven inter-molecular disulfide bridges were identified between either α-lactalbumin and lactotransferrin (5) or αS1-casein and κ-casein (2). All cysteines involved in the observed disulfide bridges of α-lactalbumin and lactotransferrin were mapped onto protein models using AlphaFold2 Multimer to estimate the length of the observed disulfide bridges. The lengths of the disulfide bridges of lactotransferrin indicate a potential for multi- or poly-merization of lactotransferrin. The high number of intramolecular lactotransferrin disulfide bridges identified, suggests that these are more heterogeneous than previously presumed. SIGNIFICANCE: Disulfide-bridges in the human milk proteome are an often overseen post-transaltional modification. Thus, mapping the disulfide-bridges, their positions and relative abundance, are valuable new knowledge needed for an improved understanding of human milk protein behaviour. Although glycosylation and phosphorylation have been described, even less information is available on the disulfide bridges and the disulfide-bridge derived protein complexes. This is important for future work in precision fermentation for recombinant production of human milk proteins, as this will highlight which disulfide-bridges are naturally occouring in human milk proteins. Further, this knowledge would be of value for the infant formula industry as it provides more information on how to humanize bovine-milk based infant formula. The novel method developed here can be broadly applied in other biological systems as the disulfid-brigdes are important for the structure and functionality of proteins.


Subject(s)
Disulfides , Milk, Human , Proteome , Proteomics , Humans , Milk, Human/chemistry , Disulfides/chemistry , Disulfides/analysis , Proteomics/methods , Proteome/analysis , Lactoferrin/analysis , Lactoferrin/chemistry , Milk Proteins/analysis , Milk Proteins/chemistry , Lactalbumin/chemistry , Lactalbumin/analysis , Female
13.
J Food Sci ; 89(7): 4505-4521, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38778560

ABSTRACT

Cow milk allergy is one of the common food allergies. Our previous study showed that the allergenicity of fermented milk is lower than that of unfermented skimmed milk in vitro, and the antigenicity of ß-lactoglobulin and α-lactalbumin in fermented milk was decreased by 67.54% and 80.49%, respectively. To confirm its effects in vivo, allergic BALB/C mice model was used to further study the allergenicity of fermented milk. It was found that compared with the skim milk (SM) group, the intragastrically sensitization with fermented milk had no obvious allergic symptoms and the fingers were more stable: lower levels of IgE, IgG, and IgA in serum, lower levels of plasma histamine and mast cell protein-1, and immune balance of Th1/Th2 and Treg/Th17. At the same time, intragastrically sensitization with fermented milk increased the α diversity of intestinal microbiota and changed the microbiota abundance: the relative abundance of norank-f-Muribaculaceae and Staphylococcus significantly decreased, and the abundance of Lachnospiraceae NK4A136 group, Bacteroides, and Turicibacter increased. In addition, fermented milk can also increase the level of short-chain fatty acids in the intestines of mice. It turns out that fermented milk is much less allergenicity than SM. PRACTICAL APPLICATION: Fermentation provides a theoretical foundation for reducing the allergenicity of milk and dairy products, thereby facilitating the production of low-allergenic dairy products suitable for individuals with milk allergies.


Subject(s)
Fermentation , Gastrointestinal Microbiome , Immunoglobulin E , Lactobacillales , Mice, Inbred BALB C , Milk Hypersensitivity , Milk , Animals , Milk Hypersensitivity/immunology , Mice , Immunoglobulin E/immunology , Immunoglobulin E/blood , Milk/immunology , Female , Lactobacillales/immunology , Cattle , Cultured Milk Products/microbiology , Lactoglobulins/immunology , Immunoglobulin A , Lactalbumin/immunology , Immunoglobulin G/blood , Fatty Acids, Volatile/metabolism , Histamine/metabolism
14.
J Agric Food Chem ; 72(15): 8285-8303, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38588092

ABSTRACT

The gut barrier plays an important role in health maintenance by preventing the invasion of dietary pathogens and toxins. Disruption of the gut barrier can cause severe intestinal inflammation. As a natural source, milk is enriched with many active constituents that contribute to numerous beneficial functions, including immune regulation. These components collectively serve as a shield for the gut barrier, protecting against various threats such as biological, chemical, mechanical, and immunological threats. This comprehensive review delves into the active ingredients in milk, encompassing casein, α-lactalbumin, ß-lactoglobulin, lactoferrin, the milk fat globular membrane, lactose, transforming growth factor, and glycopeptides. The primary focus is to elucidate their impact on the integrity and function of the gut barrier. Furthermore, the implications of different processing methods of dairy products on the gut barrier protection are discussed. In conclusion, this study aimed to underscore the vital role of milk and dairy products in sustaining gut barrier health, potentially contributing to broader perspectives in nutritional sciences and public health.


Subject(s)
Caseins , Milk , Animals , Milk/metabolism , Caseins/metabolism , Lactalbumin/metabolism , Lactoglobulins/metabolism , Diet
15.
Nutrients ; 16(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38613059

ABSTRACT

High protein intake during infancy results in accelerated early weight gain and potentially later obesity. The aim of this follow-up study at 12 months was to evaluate if modified low-protein formulas fed during early infancy have long-term effects on growth and metabolism. In a double-blinded RCT, the ALFoNS study, 245 healthy-term infants received low-protein formulas with either alpha-lactalbumin-enriched whey (α-lac-EW; 1.75 g protein/100 kcal), casein glycomacropeptide-reduced whey (CGMP-RW; 1.76 g protein/100 kcal), or standard infant formula (SF; 2.2 g protein/100 kcal) between 2 and 6 months of age. Breastfed (BF) infants served as a reference. At 12 months, anthropometrics and dietary intake were assessed, and serum was analyzed for insulin, C-peptide, and insulin-like growth factor 1 (IGF-1). Weight gain between 6 and 12 months and BMI at 12 months were higher in the SF than in the BF infants (p = 0.019; p < 0.001, respectively), but were not significantly different between the low-protein formula groups and the BF group. S-insulin and C-peptide were higher in the SF than in the BF group (p < 0.001; p = 0.003, respectively), but more alike in the low-protein formula groups and the BF group. Serum IGF-1 at 12 months was similar in all study groups. Conclusion: Feeding modified low-protein formula during early infancy seems to reduce insulin resistance, resulting in more similar growth, serum insulin, and C-peptide concentrations to BF infants at 6-months post intervention. Feeding modified low-protein formula during early infancy results in more similar growth, serum insulin, and C-peptide concentrations to BF infants 6-months post intervention, probably due to reduced insulin resistance in the low-protein groups.


Subject(s)
Infant Formula , Insulin Resistance , Humans , Infant , C-Peptide , Follow-Up Studies , GTP-Binding Proteins , Insulin , Insulin-Like Growth Factor I , Lactalbumin , Weight Gain , Prospective Studies
16.
Chembiochem ; 25(11): e202400108, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38567504

ABSTRACT

Detailed insights into protein structure/function relationships require robust characterization methodologies. Free-solution capillary electrophoresis (CE) is a unique separation technique which is sensitive to the conformation and/or composition of proteins, and therefore provides information on the heterogeneity of these properties. Three unrelated, conformationally/compositionally-altered proteins were separated by CE. An electrophoretic mobility distribution was determined for each protein along with its conformational and/or compositional heterogeneity. The CE results were compared with molar mass distributions obtained from size-exclusion chromatography coupled to light scattering (SEC-MALS). Bovine serum albumin multimers and two monomeric species were separated, highlighting variations in conformational/compositional heterogeneity among the multimers. Analysis of yeast alcohol dehydrogenase resolved two monomeric conformers and various tetrameric species, illustrating the impact of zinc ion removal and disulfide bond reduction on the protein's heterogeneity. The apo (calcium-free) and holo forms of bovine α-lactalbumin were separated and differences in the species' heterogeneity were measured; by contrast, the SEC-MALS profiles were identical. Comparative analysis of these structurally unrelated proteins provided novel insights into the interplay between molar mass and conformational/compositional heterogeneity. Overall, this study expands the utility of CE by demonstrating its capacity to discern protein species and their heterogeneity, properties which are not readily accessible by other analytical techniques.


Subject(s)
Electrophoresis, Capillary , Protein Conformation , Cattle , Animals , Alcohol Dehydrogenase/chemistry , Alcohol Dehydrogenase/metabolism , Serum Albumin, Bovine/chemistry , Lactalbumin/chemistry
17.
Soft Matter ; 20(9): 2100-2112, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38348915

ABSTRACT

In this study, we conducted a comprehensive computational investigation of the interaction between α-lactalbumin, a small globular protein, and strong anionic oligoelectrolyte chains with a polymerization degree from 2 to 9. Both the protein and oligoelectrolyte chains are represented using coarse-grained models, and their properties were calculated by the Monte Carlo method under constant pH conditions. We were able to estimate the effects of this interaction on the electrostatic potential around the protein. At acidic pH, the protein had a net positive charge; therefore, the electrostatic potential around it was also positive. To neutralize or reverse this electrostatic potential, oligoelectrolyte chains with a minimum size of six monomers were necessary. Simultaneously, low salt concentrations were required as elevated salt levels led to a significant attenuation of the electrostatic interactions and the corresponding electrostatic potential.


Subject(s)
Lactalbumin , Sodium Chloride , Lactalbumin/chemistry , Static Electricity , Hydrogen-Ion Concentration
18.
Nutrients ; 16(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38201979

ABSTRACT

Shifts toward increased proteolytic fermentation, such as, for example, in athlete and high-protein weight loss diets, may alter the relative abundance of microbial species in the gut and generate bioactive, potentially deleterious metabolic products. In the current investigation, intestinal (caecal) microbiota composition was studied in rats fed diets differing only in their constituent proteins: milk (casein (CAS), lactalbumin (LA)) or legume (Cicer arietinum, Lupinus angustifolius) protein isolates (chickpea protein isolate (CPI), lupin protein isolate (LI)). ANOSIM and Discriminant Analysis showed significant (p < 0.05) differences at both family and genus levels in both microbiota composition and functionality as a consequence of feeding the different proteins. Differences were also significant (p < 0.05) for predicted functionality parameters as determined by PICRUSt analysis. LA induced a generally healthier microbiota composition than CAS, and higher amounts of Methanobrevibacter spp. and Methanogenic_PWY were found in the LI group. LEfSe analysis of bacterial composition and functional activities revealed a number of groups/functions able to explain the different effects found with milk and legume protein isolates. In conclusion, the mostly beneficial modulation of intestinal microbiota generally found with legume-based diets is likely to be due, at least in part, to their constituent proteins.


Subject(s)
Cicer , Fabaceae , Gastrointestinal Microbiome , Microbiota , Humans , Animals , Rats , Milk , Diet , Vegetables , Caseins , Lactalbumin , Legumins
19.
Int J Biol Macromol ; 254(Pt 1): 127751, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38287593

ABSTRACT

In order to meet the market demand and avoid the increase of operation amount and cleaning cost in the process of ultrafiltration, it is particularly important to find more practical and efficient methods to control and improve membrane fouling. In this study, the ions in the ultrafiltration process were regulated to affect membrane surface proteins composition (lactoferrin, α-lactalbumin, ß-lactoglobulin A and ß-lactoglobulin B) and delay membrane fouling. It was found that Na+ (21 mmol/L), Zn2+ (0.25 mmol/L) and K+ (44 mmol/L) was added at 4 min, 8 min and 12 min, respectively during ultrafiltration process. The continuous regulation slowed down the decline rate of membrane flux and reduced the content of α-lactalbumin, ß-lactoglobulin A and ß-lactoglobulin B on the membrane surface analyzed by HPLC. This could reduce the irreversible membrane fouling of proteins cake resistance. Furthermore, the ions concentration was also investigated after filtration. The concentration of K+ was increased significantly and other ions concentration was not significantly changed after continuous regulation such Na+, Mg2+, Zn2+ and Ca2+ compared to control. Therefore, dynamic ionic regulation of whey protein ultrafiltration process is a simple and effective method, which provides technical theoretical basis for optimizing and improving membrane technology.


Subject(s)
Ultrafiltration , Water Purification , Ultrafiltration/methods , Whey Proteins , Lactalbumin , Chromatography, High Pressure Liquid , Lactoglobulins , Membrane Proteins , Transcription Factors , Ions , Membranes, Artificial , Water Purification/methods
20.
Expert Opin Drug Metab Toxicol ; 20(1-2): 61-72, 2024.
Article in English | MEDLINE | ID: mdl-38226638

ABSTRACT

INTRODUCTION: This Expert Opinion covers recent updates in the use of Inositol in polycystic ovary syndrome (PCOS) and type II diabetes and gives support to researchers and clinicians. AREAS COVERED: This article discusses the role of Myo-Inositol (MI) and D-Chiro-Inositol (DCI) in physiological function, the use of MI in PCOS, the risks of using DCI in reproductive conditions, the 40:1 combination of MI/DCI in PCOS. Furthermore, we discuss the issues of insulin resistance and how α-lactalbumin may increase the intestinal bioavailability of MI. The paper then transitions to talk about the use of inositols in diabetes, including type II diabetes, Gestational Diabetes Mellitus (GDM), and double diabetes. Literature searches were performed with the use of PubMed, Google Scholar, and Web of Science between July and October 2023. EXPERT OPINION: Inositol therapy has grown in the clinical field of PCOS, with it demonstrating an efficacy like that of metformin. The use of α-lactalbumin has further supported the use of MI, as issues with intestinal bioavailability have been largely overcome. In contrast, the effect of inositol treatment on the different PCOS phenotypes remains an outstanding question. The use of inositols in type II diabetes requires further study despite promising analogous data from GDM.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes, Gestational , Insulin Resistance , Polycystic Ovary Syndrome , Pregnancy , Female , Humans , Inositol/pharmacology , Inositol/therapeutic use , Polycystic Ovary Syndrome/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Lactalbumin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL