Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34.874
Filter
1.
Int J Biol Macromol ; 267(Pt 1): 131436, 2024 May.
Article in English | MEDLINE | ID: mdl-38593897

ABSTRACT

Block polymer micelles have been proven highly biocompatible and effective in improving drug utilization for delivering atorvastatin calcium. Therefore, it is of great significance to measure the stability of drug-loading nano micelles from the perspective of block polymer molecular sequence design, which would provide theoretical guidance for subsequent clinical applications. This study aims to investigate the structural stability of drug-loading micelles formed by two diblock/triblock polymers with various block sequences through coarse-grained dissipative particle dynamics (DPD) simulations. From the perspectives of the binding strength of poly(L-lactic acid) (PLLA) and polyethylene glycol (PEG) in nanoparticles, hydrophilic bead surface coverage, and the morphological alteration of nanoparticles induced by shear force, the ratio of hydrophilic/hydrophobic sequence length has been observed to affect the stability of nanoparticles. We have found that for diblock polymers, PEG3kda-PLLA2kda has the best stability (corresponding hydrophilic coverage ratio is 0.832), while PEG4kda-PLLA5kda has the worst (coverage ratio 0.578). For triblock polymers, PEG4kda-PLLA2kda-PEG4kda has the best stability (0.838), while PEG4kda-PLLA5kda-PEG4kda possesses the worst performance (0.731), and the average performance on stability is better than nanoparticles composed of diblock polymers.


Subject(s)
Atorvastatin , Hydrophobic and Hydrophilic Interactions , Lactates , Nanoparticles , Polyethylene Glycols , Atorvastatin/chemistry , Polyethylene Glycols/chemistry , Nanoparticles/chemistry , Drug Carriers/chemistry , Micelles , Polyesters/chemistry , Drug Compounding , Molecular Dynamics Simulation
2.
Sci Rep ; 14(1): 8507, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38605071

ABSTRACT

While cellular metabolism was proposed to be a driving factor of the activation and differentiation of B cells and the function of the resulting antibody-secreting cells (ASCs), the study of correlations between cellular metabolism and functionalities has been difficult due to the absence of technologies enabling the parallel measurement. Herein, we performed single-cell transcriptomics and introduced a direct concurrent functional and metabolic flux quantitation of individual murine B cells. Our transcriptomic data identified lactate metabolism as dynamic in ASCs, but antibody secretion did not correlate with lactate secretion rates (LSRs). Instead, our study of all splenic B cells during an immune response linked increased lactate metabolism with acidic intracellular pH and the upregulation of apoptosis. T cell-dependent responses increased LSRs, and added TLR4 agonists affected the magnitude and boosted LSRhigh B cells in vivo, while resulting in only a few immunoglobulin-G secreting cells (IgG-SCs). Therefore, our observations indicated that LSRhigh cells were not differentiating into IgG-SCs, and were rather removed due to apoptosis.


Subject(s)
Antibody-Producing Cells , B-Lymphocytes , Animals , Mice , Apoptosis , Immunoglobulin G/metabolism , Lactates/metabolism
3.
Ann Card Anaesth ; 27(2): 128-135, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38607876

ABSTRACT

INTRODUCTION: Extra Corporeal Membrane Oxygenation (ECMO) has long been used for cardiorespiratory support in the immediate post-paediatric cardiac surgery period with a 2-3% success as per the ELSO registry. Success in recovery depends upon the optimal delivery of critical care to paediatric patients and a comprehensive healthcare team. METHODOLOGY: The survival benefit of children placed on central veno arterial (VA) ECMO following elective cardiac surgeries for congenital heart disease (n = 672) was studied in a cohort of 29 (4.3%) cases from the period of Jan 2018 to Dec 2022 in our cardiac surgical centre. Indications for placing these patients on central VA ECMO included inability to wean from cardiopulmonary bypass (CPB), low cardiac output syndrome, severe pulmonary arterial hypertension, significant bleeding, anaphylaxis, respiratory failure and severe pulmonary edema. RESULTS: The mean time to initiation of ECMO was less than 5 h and the mean duration of ECMO support was 56 h with a survival rate of 58.3%. Amongst perioperative complications, sepsis and arrhythmia on ECMO were found to be negatively associated with survival. Improvements in the pH, PaO2 levels and serum lactate levels after initiation of ECMO were associated with survival benefits. CONCLUSION: The early initiation of ECMO for paediatric cardiotomies could be a beacon of hope for families and medical teams confronting these challenging situations. Improvement in indicators of adequate perfusion and ventricular recoveries like pH and serum lactate and absence of arrhythmia and sepsis are associated with good outcomes.


Subject(s)
Extracorporeal Membrane Oxygenation , Hypertension, Pulmonary , Sepsis , Humans , Child , Arrhythmias, Cardiac , Power, Psychological , Lactates
4.
Molecules ; 29(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38611749

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with a high degree of malignancy and poor prognosis. Tumor-associated macrophages (TAMs) have been identified as significant contributors to the growth and metastasis of TNBC through the secretion of various growth factors and chemokines. Salvianolic acid A (SAA) has been shown to have anti-cancer activities. However, the potential activity of SAA on re-polarized TAMs remains unclear. As there is a correlation between the TAMs and TNBC, this study investigates the effect of SAA on TAMs in the TNBC microenvironment. For that purpose, M2 TAM polarization was induced by two kinds of TNBC-conditioned medium (TNBC-TCM) in the absence or presence of SAA. The gene and protein expression of TAM markers were analyzed by qPCR, FCM, IF, ELISA, and Western blot. The protein expression levels of ERK and p-ERK in M2-like TAMs were analyzed by Western blot. The migration and invasion properties of M2-like TAMs were analyzed by Transwell assays. Here, we demonstrated that SAA increased the expression levels of CD86, IL-1ß, and iNOS in M2-like TAMs and, conversely, decreased the expression levels of Arg-1 and CD206. Moreover, SAA inhibited the migration and invasion properties of M2-like TAMs effectively and decreased the protein expression of TGF-ß1 and p-ERK in a concentration-dependent manner, as well as TGF-ß1 gene expression and secretion. Our current findings for the first time demonstrated that SAA inhibits macrophage polarization to M2-like TAMs by inhibiting the ERK pathway and promotes M2-like TAM re-polarization to the M1 TAMs, which may exert its anti-tumor effect by regulating M1/M2 TAM polarization. These findings highlight SAA as a potential regulator of M2 TAMs and the possibility of utilizing SAA to reprogram M2 TAMs offers promising insights for the clinical management of TNBC.


Subject(s)
Caffeic Acids , Lactates , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Transforming Growth Factor beta1 , Tumor Microenvironment , Tumor-Associated Macrophages
5.
J Cancer Res Clin Oncol ; 150(4): 199, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627278

ABSTRACT

PURPOSE: Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant and fatal liver tumor with increasing incidence worldwide. Lactate metabolism has been recently reported as a crucial contributor to tumor progression and immune regulation in the tumor microenvironment. However, it remains poorly identified about the biological functions of lactate metabolism in iCCA, which hinders the development of prognostic tools and therapeutic interventions. METHODS: The univariate Cox regression analysis and Boruta algorithm were utilized to identify key lactate metabolism-related genes (LMRGs), and a prognostic signature was constructed based on LMRG scores. Genomic variations and immune cell infiltration were evaluated in the high and low LMRG score groups. Finally, the biological functions of key LMRGs were verified with in vitro and in vivo experiments. RESULTS: Patients in the high LMRG score group exhibit a poor prognosis compared to those in the low LMRG score group, with a high frequency of TP53 and KRAS mutations. Moreover, the infiltration and function of NK cells were compromised in the high LMRG score group, consistent with the results from two independent single-cell RNA sequencing datasets and immunohistochemistry of tissue microarrays. Experimental data revealed that lactate dehydrogenase A (LDHA) knockdown inhibited proliferation and migration in iCCA cell lines and tumor growth in immunocompetent mice. CONCLUSION: Our study revealed the biological roles of LDHA in iCCA and developed a reliable lactate metabolism-related prognostic signature for iCCA, offering promising therapeutic targets for iCCA in the clinic.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Animals , Mice , Prognosis , Cholangiocarcinoma/genetics , Lactate Dehydrogenase 5 , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic , Lactates , Tumor Microenvironment/genetics
6.
Clin Exp Pharmacol Physiol ; 51(6): e13855, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636942

ABSTRACT

Cardiac microvascular endothelial cells (CMECs) are important cells surrounding the cardiomyocytes in the heart that maintain microenvironment homeostasis. Salvianic acid A sodium (SAAS) has been reported to prevent myocardial infarction (MI) injury. However, the role of SAAS on CMEC proliferation remains unclear. CEMCs exposed to oxygen glucose deprivation (OGD) were used to explore the angiogenic abilities of SAAS. In vivo, C57BL/6 mice were divided into three groups: sham, MI and SAAS + MI groups. Compared to OGD group, SAAS led to a reduction in the apoptotic rate and an increase of the proliferation in vitro. Additionally, SAAS increased the protein levels of Bcl2, HIF-1α and vascular endothelial growth factor (VEGF) with the reduction of Bax. In terms of the specific mechanisms, SAAS might inhibit HIF-1α ubiquitination and enhance the HIF-1α/VEGF signalling pathway to increase CMEC proliferation. Furthermore, SAAS increased the density of vessels, inhibited myocardial fibrosis and improved cardiac dysfunction in vivo. The present study has revealed that SAAS could potentially be used as an active substance to facilitate CMEC proliferation post-MI.


Subject(s)
Lactates , Myocardial Infarction , Vascular Endothelial Growth Factor A , Mice , Animals , Endothelial Cells/metabolism , Sodium/metabolism , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Cell Proliferation , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
7.
Food Microbiol ; 121: 104513, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637075

ABSTRACT

Saccharomyces cerevisiae is a major actor in winemaking that converts sugars from the grape must into ethanol and CO2 with outstanding efficiency. Primary metabolites produced during fermentation have a great importance in wine. While ethanol content contributes to the overall profile, other metabolites like glycerol, succinate, acetate or lactate also have significant impacts, even when present in lower concentrations. S. cerevisiae is known for its great genetic diversity that is related to its natural or technological environment. However, the variation range of metabolic diversity which can be exploited to enhance wine quality depends on the pathway considered. Our experiment assessed the diversity of primary metabolites production in a set of 51 S. cerevisiae strains from various genetic backgrounds. Results pointed out great yield differences depending on the metabolite considered, with ethanol having the lowest variation. A negative correlation between ethanol and glycerol was observed, confirming glycerol synthesis as a suitable lever to reduce ethanol yield. Genetic groups were linked to specific yields, such as the wine group and high α-ketoglutarate and low acetate yields. This research highlights the potential of using natural yeast diversity in winemaking. It also provides a detailed data set on production of well known (ethanol, glycerol, acetate) or little-known (lactate) primary metabolites.


Subject(s)
Saccharomyces cerevisiae , Wine , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Wine/analysis , Fermentation , Glycerol/metabolism , Carbon/metabolism , Ethanol/metabolism , Acetates/metabolism , Lactates
8.
Cancer Res ; 84(7): 950-952, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558131

ABSTRACT

Acute myeloid leukemia (AML) is one of the most prevalent blood cancers, characterized by a dismal survival rate. This poor outcome is largely attributed to AML cells that persist despite treatment and eventually result in relapse. Relapse-initiating cells exhibit diverse resistance mechanisms, encompassing genetic factors and, more recently discovered, nongenetic factors such as metabolic adaptations. Leukemic stem cells (LSC) rely on mitochondrial metabolism for their survival, whereas hematopoietic stem cells primarily depend on glycolysis. Furthermore, following treatments such as cytarabine, a standard in AML treatment for over four decades, drug-persisting leukemic cells exhibit an enhanced reliance on mitochondrial metabolism. In this issue of Cancer Research, two studies investigated dependencies of AML cells on two respiratory substrates, α-ketoglutarate and lactate-derived pyruvate, that support mitochondrial oxidative phosphorylation (OXPHOS) following treatment with the imipridone ONC-213 and the BET inhibitor INCB054329, respectively. Targeting lactate utilization by interfering with monocarboxylate transporter 1 (MCT1 or SLC16A1) or lactate dehydrogenase effectively sensitized cells to BET inhibition in vitro and in vivo. In addition, ONC-213 affected αKGDH, a pivotal NADH-producing enzyme of the TCA cycle, to induce a mitochondrial stress response through ATF4 activation that diminished the expression of the antiapoptotic protein MCL1, consequently promoting apoptosis of AML cells. In summary, targeting these mitochondrial dependencies might be a promising strategy to kill therapy-naïve and treatment-resistant OXPHOS-reliant LSCs and to delay or prevent relapse. See related articles by Monteith et al., p. 1101 and Su et al., p. 1084.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Cytarabine/pharmacology , Citric Acid Cycle , Lactates , Recurrence
9.
Shock ; 61(5): 748-757, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38662612

ABSTRACT

ABSTRACT: Cardiac fibrosis, characterized by excessive collagen accumulation in heart tissues, poses a significant clinical challenge in various heart diseases and complications. Although salvianolic acid A (Sal A) from Danshen ( Salvia miltiorrhiza ) has shown promise in the treatment of ischemic heart disease, myocardial infarction, and atherosclerosis, its effects on cardiac fibrosis remain unexplored. Our study investigated the efficacy of Sal A in reducing cardiac fibrosis and elucidated its underlying molecular mechanisms. We observed that Sal A demonstrated significant cardioprotective effects against Angiotensin II (Ang II)-induced cardiac remodeling and fibrosis, showing a dose-dependent reduction in fibrosis in mice and suppression of cardiac fibroblast proliferation and fibrotic protein expression in vitro . RNA sequencing revealed that Sal A counteracted Ang II-induced upregulation of Txnip, and subsequent experiments indicated that it acts through the inflammasome and ROS pathways. These findings establish the antifibrotic effects of Sal A, notably attenuated by Txnip overexpression, and highlight its significant role in modulating inflammation and oxidative stress pathways. This underscores the importance of further research on Sal A and similar compounds, especially regarding their effects on inflammation and oxidative stress, which are key factors in various cardiovascular diseases.


Subject(s)
Angiotensin II , Carrier Proteins , Fibrosis , Lactates , Signal Transduction , Thioredoxins , Animals , Mice , Signal Transduction/drug effects , Carrier Proteins/metabolism , Male , Lactates/pharmacology , Lactates/therapeutic use , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Cell Cycle Proteins/metabolism
10.
Biosci Rep ; 44(4)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38567515

ABSTRACT

The complex metabolic relationship between the retinal pigment epithelium (RPE) and photoreceptors is essential for maintaining retinal health. Recent evidence indicates the RPE acts as an adjacent lactate sink, suppressing glycolysis in the epithelium in order to maximize glycolysis in the photoreceptors. Dysregulated metabolism within the RPE has been implicated in the pathogenesis of age-related macular degeneration (AMD), a leading cause of vision loss. In the present study, we investigate the effects of four cytokines associated with AMD, TNFα, TGF-ß2, IL-6, and IL-1ß, as well as a cocktail containing all four cytokines, on RPE metabolism using ARPE-19 cells, primary human RPE cells, and ex vivo rat eyecups. Strikingly, we found cytokine-specific changes in numerous metabolic markers including lactate production, glucose consumption, extracellular acidification rate, and oxygen consumption rate accompanied by increases in total mitochondrial volume and ATP production. Together, all four cytokines could potently override the constitutive suppression of glycolysis in the RPE, through a mechanism independent of PI3K/AKT, MEK/ERK, or NF-κB. Finally, we observed changes in glycolytic gene expression with cytokine treatment, including in lactate dehydrogenase subunit and glucose transporter expression. Our findings provide new insights into the metabolic changes in the RPE under inflammatory conditions and highlight potential therapeutic targets for AMD.


Subject(s)
Macular Degeneration , Retinal Pigment Epithelium , Humans , Rats , Animals , Retinal Pigment Epithelium/metabolism , Metabolic Reprogramming , Cytokines/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Macular Degeneration/genetics , Macular Degeneration/metabolism , Lactates/metabolism
11.
Arq Bras Cardiol ; 121(2): e20230247, 2024.
Article in Portuguese, English | MEDLINE | ID: mdl-38597532

ABSTRACT

BACKGROUND: Cardiac surgery patients may be exposed to tissue hypoperfusion and anaerobic metabolism. OBJECTIVE: To verify whether the biomarkers of tissue hypoperfusion have predictive value for prolonged intensive care unit (ICU) stay in patients with left ventricular dysfunction who underwent coronary artery bypass surgery. METHODS: After approval by the institution's Ethics Committee and the signing of informed consent, 87 patients with left ventricular dysfunction (ejection fraction < 50%) undergoing coronary artery bypass surgery were enrolled. Hemodynamic and metabolic biomarkers were collected at five time points: after anesthesia, at the end of the surgery, at ICU admission, and at six and twelve hours after. An analysis of variance for repeated measures followed by a Bonferroni post hoc test was used for repeated, continuous variables (hemodynamic and metabolic variables) to determine differences between the two groups over the course of the study period. The level of statistical significance adopted was 5%. RESULTS: Thirty-eight patients (43.7%) who presented adverse outcomes were older, higher Euro score (p<0.001), and elevated ΔpCO2 as analyzed 12 hours after ICU admission (p<0.01), while increased arterial lactate concentration at 6 hours postoperatively was found to be a negative predictive factor (p<0.01). CONCLUSIONS: Euro SCORE, six-hour postoperative arterial lactate, 12-hour postoperative ΔPCO2, and eRQ are independent predictors of adverse outcomes in patients with left ventricular dysfunction after cardiac surgery.


FUNDAMENTO: Pacientes submetidos à cirurgia cardíaca podem estar expostos à hipoperfusão tecidual e metabolismo anaeróbico. OBJETIVO: Verificar se os biomarcadores de hipoperfusão tecidual têm valor preditivo para permanência prolongada na Unidade de Terapia Intensiva (UTI) em pacientes com disfunção ventricular esquerda submetidos à cirurgia de bypass da artéria coronária. MÉTODOS: Após aprovação pelo comitê de ética institucional e assinatura do termo de consentimento, 87 pacientes com disfunção ventricular esquerda (fração de ejeção <50%) submetidos à cirurgia de bypass coronário foram incluídos. Biomarcadores hemodinâmicos e metabólicos foram coletados em cinco momentos: após anestesia, ao final da cirurgia, na admissão na UTI, e a seis e 12 horas depois. Uma análise de variância para medidas repetidas seguida de um teste post-hoc de Bonferroni foi usado para variáveis contínuas repetidas (variáveis metabólicas e hemodinâmicas) para determinar diferenças entre os dois grupos ao longo do estudo. O nível de significância adotado foi de 5%. RESULTADOS: Trinta e oito pacientes (43,7%) que apresentaram desfechos adversos eram mais velhos, apresentaram um Euroscore mais alto (p<0,001), e gradiente venoarterial de CO2 (ΔPCO2) elevado, analisados 12 horas após a admissão na UTI (p<0,01), enquanto uma concentração de lactato arterial aumentada seis horas após a cirurgia foi um fator preditivo negativo (p<0,01). CONCLUSÕES: EuroSCORE, lactato arterial seis horas após a cirurgia, ΔPCO212 horas após a cirurgia e QRe são preditores independentes de desfechos adversos em pacientes com disfunção ventricular esquerda após cirurgia cardíaca.


Subject(s)
Coronary Artery Bypass , Ventricular Dysfunction, Left , Humans , Coronary Artery Bypass/adverse effects , Ventricular Dysfunction, Left/etiology , Perfusion , Biomarkers , Lactates
12.
Eur Radiol Exp ; 8(1): 46, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38594558

ABSTRACT

BACKGROUND: Monitoring pyruvate metabolism in the spleen is important for assessing immune activity and achieving successful radiotherapy for cervical cancer due to the significance of the abscopal effect. We aimed to explore the feasibility of utilizing hyperpolarized (HP) [1-13C]-pyruvate magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) to evaluate pyruvate metabolism in the human spleen, with the aim of identifying potential candidates for radiotherapy in cervical cancer. METHODS: This prospective study recruited six female patients with cervical cancer (median age 55 years; range 39-60) evaluated using HP [1-13C]-pyruvate MRI/MRS at baseline and 2 weeks after radiotherapy. Proton (1H) diffusion-weighted MRI was performed in parallel to estimate splenic cellularity. The primary outcome was defined as tumor response to radiotherapy. The Student t-test was used for comparing 13C data between the groups. RESULTS: The splenic HP [1-13C]-lactate-to-total carbon (tC) ratio was 5.6-fold lower in the responders than in the non-responders at baseline (p = 0.009). The splenic [1-13C]-lactate-to-tC ratio revealed a 1.7-fold increase (p = 0.415) and the splenic [1-13C]-alanine-to-tC ratio revealed a 1.8-fold increase after radiotherapy (p = 0.482). The blood leukocyte differential count revealed an increased proportion of neutrophils two weeks following treatment, indicating enhanced immune activity (p = 0.013). The splenic apparent diffusion coefficient values between the groups were not significantly different. CONCLUSIONS: This exploratory study revealed the feasibility of HP [1-13C]-pyruvate MRS of the spleen for evaluating baseline immune potential, which was associated with clinical outcomes of cervical cancer after radiotherapy. TRIAL REGISTRATION: ClinicalTrials.gov NCT04951921 , registered 7 July 2021. RELEVANCE STATEMENT: This prospective study revealed the feasibility of using HP 13C MRI/MRS for assessing pyruvate metabolism of the spleen to evaluate the patients' immune potential that is associated with radiotherapeutic clinical outcomes in cervical cancer. KEY POINTS: • Effective radiotherapy induces abscopal effect via altering immune metabolism. • Hyperpolarized 13C MRS evaluates patients' immune potential non-invasively. • Pyruvate-to-lactate conversion in the spleen is elevated following radiotherapy.


Subject(s)
Pyruvic Acid , Uterine Cervical Neoplasms , Humans , Female , Middle Aged , Pyruvic Acid/metabolism , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy , Prospective Studies , Carbon-13 Magnetic Resonance Spectroscopy/methods , Lactates
13.
Mol Biol Rep ; 51(1): 503, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38600404

ABSTRACT

BACKGROUND: Komagataeibacter nataicola (K. nataicola) is a gram-negative acetic acid bacterium that produces natural bacterial cellulose (BC) as a fermentation product under acidic conditions. The goal of this work was to study the complete genome of K. nataicola and gain insight into the functional genes in K. nataicola that are responsible for BC synthesis in acidic environments. METHODS AND RESULT: The pure culture of K. nataicola was obtained from yeast-glucose-calcium carbonate (YGC) agar, followed by genomic DNA extraction, and subjected to whole genome sequencing on a Nanopore flongle flow cell. The genome of K. nataicola consists of a 3,767,936 bp chromosome with six contigs and 4,557 protein coding sequences. The maximum likelihood phylogenetic tree and average nucleotide identity analysis confirmed that the bacterial isolate was K. nataicola. The gene annotation via RAST server discovered the presence of cellulose synthase, along with three genes associated with lactate utilization and eight genes involved in lactate fermentation that could potentially contribute to the increase in acid concentration during BC synthesis. CONCLUSION: A more comprehensive genome study of K. nataicola may shed light into biological pathway in BC productivity as well as benefit the analysis of metabolites generated and understanding of biological and chemical interactions in BC production later.


Subject(s)
Acetobacteraceae , Food Loss and Waste , Refuse Disposal , Cellulose/metabolism , Phylogeny , Food , Whole Genome Sequencing , Lactates
14.
J Vis Exp ; (205)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38587369

ABSTRACT

Over the recent decades, the development of animal models allowed us to better understand various pathologies and identify new treatments. Hemorrhagic shock, i.e., organ failure due to rapid loss of a large volume of blood, is associated with a highly complex pathophysiology involving several pathways. Numerous existing animal models of hemorrhagic shock strive to replicate what happens in humans, but these models have limits in terms of clinical relevance, reproducibility, or standardization. The aim of this study was to refine these models to develop a new model of hemorrhagic shock. Briefly, hemorrhagic shock was induced in male Wistar Han rats (11-13 weeks old) by a controlled exsanguination responsible for a drop in the mean arterial pressure. The next phase of 75 min was to maintain a low mean arterial blood pressure, between 32 mmHg and 38 mmHg, to trigger the pathophysiological pathways of hemorrhagic shock. The final phase of the protocol mimicked patient care with an administration of intravenous fluids, Ringer Lactate solution, to elevate the blood pressure. Lactate and behavioral scores were assessed 16 h after the protocol started, while hemodynamics parameters and plasmatic markers were evaluated 24 h after injury. Twenty-four hours post-hemorrhagic shock induction, the mean arterial and diastolic blood pressure were decreased in the hemorrhagic shock group (p < 0.05). Heart rate and systolic blood pressure remained unchanged. All organ damage markers were increased with the hemorrhagic shock (p < 0.05). The lactatemia and behavioral scores were increased compared to the sham group (p < 0.05). In conclusion, we demonstrated that the protocol described here is a relevant model of hemorrhagic shock that can be used in subsequent studies, particularly to evaluate the therapeutic potential of new molecules.


Subject(s)
Shock, Hemorrhagic , Rats , Male , Humans , Animals , Rats, Wistar , Reproducibility of Results , Resuscitation/methods , Isotonic Solutions/therapeutic use , Lactates , Disease Models, Animal
15.
BMC Anesthesiol ; 24(1): 130, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580909

ABSTRACT

BACKGROUND: Skin mottling is a common manifestation of peripheral tissue hypoperfusion, and its severity can be described using the skin mottling score (SMS). This study aims to evaluate the value of the SMS in detecting peripheral tissue hypoperfusion in critically ill patients following cardiac surgery. METHODS: Critically ill patients following cardiac surgery with risk factors for tissue hypoperfusion were enrolled (n = 373). Among these overall patients, we further defined a hypotension population (n = 178) and a shock population (n = 51). Hemodynamic and perfusion parameters were recorded. The primary outcome was peripheral hypoperfusion, defined as significant prolonged capillary refill time (CRT, > 3.0 s). The characteristics and hospital mortality of patients with and without skin mottling were compared. The area under receiver operating characteristic curves (AUROC) were used to assess the accuracy of SMS in detecting peripheral hypoperfusion. Besides, the relationships between SMS and conventional hemodynamic and perfusion parameters were investigated, and the factors most associated with the presence of skin mottling were identified. RESULTS: Of the 373-case overall population, 13 (3.5%) patients exhibited skin mottling, with SMS ranging from 1 to 5 (5, 1, 2, 2, and 3 cases, respectively). Patients with mottling had lower mean arterial pressure, higher vasopressor dose, less urine output (UO), higher CRT, lactate levels and hospital mortality (84.6% vs. 12.2%, p < 0.001). The occurrences of skin mottling were higher in hypotension population and shock population, reaching 5.6% and 15.7%, respectively. The AUROC for SMS to identify peripheral hypoperfusion was 0.64, 0.68, and 0.81 in the overall, hypotension, and shock populations, respectively. The optimal SMS threshold was 1, which corresponded to specificities of 98, 97 and 91 and sensitivities of 29, 38 and 67 in the three populations (overall, hypotension and shock). The correlation of UO, lactate, CRT and vasopressor dose with SMS was significant, among them, UO and CRT were identified as two major factors associated with the presence of skin mottling. CONCLUSION: In critically ill patients following cardiac surgery, SMS is a very specific yet less sensitive parameter for detecting peripheral tissue hypoperfusion.


Subject(s)
Cardiac Surgical Procedures , Hypotension , Shock, Septic , Humans , Critical Illness , Cardiac Surgical Procedures/adverse effects , Hypotension/diagnosis , Hypotension/complications , Lactates
16.
Int Immunopharmacol ; 132: 111971, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38565040

ABSTRACT

DNA damage resulting from UV irradiation on the skin has been extensively documented in numerous studies. In our prior investigations, we demonstrated that UVB-induced DNA breakage from keratinocytes can activate the cGAS-STING pathway in macrophages. The cGAS-STING signaling pathway serves as the principal effector for detecting and responding to abnormal double-stranded DNA in the cytoplasm. Expanding on our previous findings, we have further validated that STING knockout significantly diminishes UVB-induced skin damage, emphasizing the critical role of cGAS-STING activation in this context. Salvianolic acid A, a principal active constituent of Salvia miltiorrhiza Burge, has been extensively studied for its therapeutic effects in conditions such as coronary heart disease, angina pectoris, and diabetic peripheral neuropathy. However, its effect on cGAS-STING pathway and its ability to alleviate skin damage have not been previously reported. In a co-culture system, supernatant from UVB-treated keratinocytes induced IRF3 activation in macrophages, and this activation was inhibited by salvianolic acid A. Our investigation, employing photodamage and photoaging models, establishes that salvianolic acid A effectively mitigates UV-induced epidermal thickening and collagen degeneration. Treatment with salvianolic acid A significantly reduced skin damage, epidermal thickness increase, and keratinocyte hyperproliferation compared to the untreated photo-damage and photoaging model groups. In summary, salvianolic acid A emerges as a promising candidate for preventing UV-induced skin damage by inhibiting cGAS-STING activation. This research enhances our understanding of the intricate mechanisms underlying skin photodamage and provides a potential avenue for the development of therapeutic interventions.


Subject(s)
Caffeic Acids , Keratinocytes , Lactates , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Skin , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Animals , Signal Transduction/drug effects , Keratinocytes/drug effects , Keratinocytes/radiation effects , Skin/drug effects , Skin/pathology , Skin/radiation effects , Nucleotidyltransferases/metabolism , Caffeic Acids/pharmacology , Humans , Mice , Macrophages/drug effects , Macrophages/immunology , Mice, Inbred C57BL , Skin Aging/drug effects , Skin Aging/radiation effects , DNA Damage/drug effects , Interferon Regulatory Factor-3/metabolism , Female , RAW 264.7 Cells
17.
Vet Med Sci ; 10(3): e1434, 2024 05.
Article in English | MEDLINE | ID: mdl-38567942

ABSTRACT

BACKGROUND: No tick-borne pathogens (TBPs) causing haemolytic anaemia in cattle have been reported, except Theileria orientalis and complete blood count (CBC) profile is the only haematological parameter to determine the severity of regenerative haemolytic anaemia. OBJECTIVES: To identify the causative agents of TBP-induced haemolytic anaemia and determine haematological parameters that indicate haemolytic anaemia in grazing cattle. METHODS: Eighty-two Korean indigenous cattle (Hanwoo) were divided into two groups: grazing (n = 67) and indoor (n = 15) groups. CBC and serum biochemistry were performed. PCR was conducted using whole blood-extracted DNA to investigate the prevalence of TBPs. RESULTS: TBP-induced haemolytic anaemia was observed in the grazing group. In grazing cattle, co-infection (43.3%, 29/67) was most frequently detected, followed by T. orientalis (37.6%, 25/67) and Anaplasma phagocytophilum infections (1.5%, 1/67). In indoor cattle, only co-infection (20%, 3/15) was identified. Grazing cattle exhibited regenerative haemolytic anaemia with marked monocytosis, mild neutropenia, and thrombocytopenia. According to grazing frequency, the 1st-time grazing group had more severe anaemia than the 2nd-time grazing group. Elevations in indirect bilirubin and L-lactate due to haemolytic anaemia were identified, and correlations with the respective markers were determined in co-infected grazing cattle. CONCLUSIONS: Quantitative evaluation of haematocrit, mean corpuscular volume, and reticulocytes (markers of regenerative haemolytic anaemia in cattle) was performed for the first time. Our results show that, in addition to T. orientalis, A. phagocytophilum is strongly associated with anaemia. The correlation between haemolytic anaemia severity and haematological parameters (indirect bilirubin, reticulocytes, and L-lactate) was confirmed.


Subject(s)
Anemia, Hemolytic , Cattle Diseases , Coinfection , Theileriasis , Ticks , Cattle , Animals , Theileriasis/epidemiology , Cattle Diseases/epidemiology , Coinfection/veterinary , Anemia, Hemolytic/etiology , Anemia, Hemolytic/veterinary , Bilirubin , Lactates
18.
Xenobiotica ; 54(4): 211-216, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38591142

ABSTRACT

To uncover the effect of danshensu on irbesartan pharmacokinetics and its underlying mechanisms.To investigate the effect of danshensu on the pharmacokinetics of irbesartan, Sprague-Dawley rats (n = 6) were orally administered 30 mg/kg irbesartan alone (control group) or pre-treated with 160 mg/kg danshensu (experimental group). The effect of danshensu on the metabolic stability of irbesartan in RLMs was examined by LC-MS/MS method. The effect of danshensu on CYP2C9 activity was also determined.Danshensu markedly increased the AUC(0-t) (9573 ± 441 vs. 16157 ± 559 µg/L*h) and Cmax (821 ± 24 vs. 1231 ± 44 µg/L) of irbesartan. Danshensu prolonged the t1/2 (13.39 ± 0.98 vs. 16.04 ± 1.21 h) and decreased the clearance rate (2.27 ± 0.14 vs. 1.19 ± 0.10 L/h/kg) of irbesartan. Danshensu enhanced the metabolic stability of irbesartan in vitro with prolonged t1/2 (36.34 ± 11.68 vs. 48.62 ± 12.03 min) and reduced intrinsic clearance (38.14 ± 10.24 vs. 28.51 ± 9.06 µL/min/mg protein). Additionally, the IC50 value for CYP2C9 inhibition by danshensu was 35.74 µM.Danshensu enhanced systemic exposure of irbesartan by suppressing CYP2C9. The finding can also serve as a guidance for further investigation of danshensu-irbesartan interaction in clinical practice.


Subject(s)
Drug Interactions , Irbesartan , Lactates , Rats, Sprague-Dawley , Irbesartan/pharmacology , Animals , Lactates/metabolism , Rats , Cytochrome P-450 CYP2C9/metabolism , Male , Biphenyl Compounds , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Tandem Mass Spectrometry , Tetrazoles/pharmacokinetics , Tetrazoles/pharmacology
19.
Neurotherapeutics ; 21(3): e00342, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493057

ABSTRACT

Novel therapeutics for the treatment of ischemic stroke remains to be the unmet clinical needs. Previous studies have indicated that salvianolic acid A (SAA) is a promising candidate for the treatment of the brain diseases. However, SAA has poor absolute bioavailability and does not efficiently cross the intact blood-brain barrier (BBB), which limit its efficacy. To this end we developed a brain-targeted liposomes for transporting SAA via the BBB by incorporating the liposomes to a transport receptor, insulin-like growth factor-1 receptor (IGF1R). The liposomes were prepared by ammonium sulfate gradients loading method. The prepared SAA-loaded liposomes (Lipo/SAA) were modified with IGF1R monoclonal antibody to generate IGF1R antibody-conjugated Lipo/SAA (IGF1R-targeted Lipo/SAA). The penetration of IGF1R-targeted Lipo/SAA into the brain was confirmed by labeling with Texas Red, and their efficacy were evaluate using middle cerebral artery occlusion (MCAO) model. The results showed that IGF1R-targeted Lipo/SAA are capable of transporting SAA across the BBB into the brain, accumulation in brain tissue, and sustained releasing SAA for several hours. Administration o IGF1R-targeted Lipo/SAA notably reduced infarct size and neuronal damage, improved neurological function and inhibited cerebral inflammation, which had much higher efficiency than no-targeted SAA.


Subject(s)
Ischemic Stroke , Liposomes , Animals , Ischemic Stroke/drug therapy , Male , Caffeic Acids/administration & dosage , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Receptor, IGF Type 1/metabolism , Mice , Lactates/administration & dosage , Lactates/chemistry , Infarction, Middle Cerebral Artery/drug therapy , Drug Delivery Systems/methods , Rats, Sprague-Dawley , Rats , Brain/metabolism , Brain/drug effects
20.
Eur Radiol Exp ; 8(1): 44, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38472611

ABSTRACT

BACKGROUND: Magnetic resonance (MR) imaging of deuterated glucose, termed deuterium metabolic imaging (DMI), is emerging as a biomarker of pathway-specific glucose metabolism in tumors. DMI is being studied as a useful marker of treatment response in a scan-rescan scenario. This study aims to evaluate the repeatability of brain DMI. METHODS: A repeatability study was performed in healthy volunteers from December 2022 to March 2023. The participants consumed 75 g of [6,6'-2H2]glucose. The delivery of 2H-glucose to the brain and its conversion to 2H-glutamine + glutamate, 2H-lactate, and 2H-water DMI was imaged at baseline and at 30, 70, and 120 min. DMI was performed using MR spectroscopic imaging on a 3-T system equipped with a 1H/2H-tuned head coil. Coefficients of variation (CoV) were computed for estimation of repeatability and between-subject variability. In a set of exploratory analyses, the variability effects of region, processing, and normalization were estimated. RESULTS: Six male participants were recruited, aged 34 ± 6.5 years (mean ± standard deviation). There was 42 ± 2.7 days between sessions. Whole-brain levels of glutamine + glutamate, lactate, and glucose increased to 3.22 ± 0.4 mM, 1.55 ± 0.3 mM, and 3 ± 0.7 mM, respectively. The best signal-to-noise ratio and repeatability was obtained at the 120-min timepoint. Here, the within-subject whole-brain CoVs were -10% for all metabolites, while the between-subject CoVs were -20%. CONCLUSIONS: DMI of glucose and its downstream metabolites is feasible and repeatable on a clinical 3 T system. TRIAL REGISTRATION: ClinicalTrials.gov, NCT05402566 , registered the 25th of May 2022. RELEVANCE STATEMENT: Brain deuterium metabolic imaging of healthy volunteers is repeatable and feasible at clinical field strengths, enabling the study of shifts in tumor metabolism associated with treatment response. KEY POINTS: • Deuterium metabolic imaging is an emerging tumor biomarker with unknown repeatability.  • The repeatability of deuterium metabolic imaging is on par with FDG-PET.  • The study of deuterium metabolic imaging in clinical populations is feasible.


Subject(s)
Glucose , Glutamine , Humans , Male , Deuterium , Glucose/metabolism , Glutamates , Healthy Volunteers , Lactates , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...