Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.461
Filter
1.
World J Microbiol Biotechnol ; 40(7): 199, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727988

ABSTRACT

Glucagon-like peptide-1(GLP-1) is an incretin hormone secreted primarily from the intestinal L-cells in response to meals. GLP-1 is a key regulator of energy metabolism and food intake. It has been proven that P9 protein from A. muciniphila could increase GLP-1 release and improve glucose homeostasis in HFD-induced mice. To obtain an engineered Lactococcus lactis which produced P9 protein, mature polypeptide chain of P9 was codon-optimized, fused with N-terminal signal peptide Usp45, and expressed in L. lactis NZ9000. Heterologous secretion of P9 by recombinant L. lactis NZP9 were successfully detected by SDS-PAGE and western blotting. Notably, the supernatant of L. lactis NZP9 stimulated GLP-1 production of NCI-H716 cells. The relative expression level of GLP-1 biosynthesis gene GCG and PCSK1 were upregulated by 1.63 and 1.53 folds, respectively. To our knowledge, this is the first report on the secretory expression of carboxyl-terminal processing protease P9 from A. muciniphila in L. lactis. Our results suggest that genetically engineered L. lactis which expressed P9 may have therapeutic potential for the treatment of diabetes, obesity and other metabolic disorders.


Subject(s)
Akkermansia , Glucagon-Like Peptide 1 , Lactococcus lactis , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/genetics , Akkermansia/genetics , Akkermansia/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Humans , L Cells , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Animals , Mice , Cell Line , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
2.
Nat Commun ; 15(1): 3955, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729929

ABSTRACT

Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.


Subject(s)
DNA-Directed RNA Polymerases , Gene Expression Regulation, Bacterial , Lactococcus lactis , Nucleic Acid Conformation , RNA, Bacterial , Riboswitch , Transcription, Genetic , Riboswitch/genetics , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/chemistry , Manganese/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Single Molecule Imaging
3.
Molecules ; 29(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611811

ABSTRACT

Lactic acid bacteria (LAB) play an important role in the ripening of cheeses and contribute to the development of the desired profile of aroma and flavor compounds. Therefore, it is very important to monitor the dynamics of bacterial proliferation in order to obtain an accurate and reliable number of their cells at each stage of cheese ripening. This work aimed to identify and conduct a quantitative assessment of the selected species of autochthonous lactic acid bacteria from raw cow's milk cheese by the development of primers and probe pairs based on the uniqueness of the genetic determinants with which the target microorganisms can be identified. For that purpose, we applied real-time quantitative PCR (qPCR) protocols to quantify Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactococcus lactis subsp. cremoris cells in cheese directly after production and over three-month and six-month ripening periods. While L. lactis subsp. cremoris shows good acidification ability and the ability to produce antimicrobial compounds, L. delbrueckii subsp. bulgaricus has good proteolytic ability and produces exo-polysaccharides, and S. thermophilus takes part in the formation of the diacetyl flavor compound by metabolizing citrate to develop aroma, they all play an important role in the cheese ripening. The proposed qPCR protocols are very sensitive and reliable methods for a precise enumeration of L. delbrueckii subsp. bulgaricus, S. thermophilus, and L. lactis subsp. cremoris in cheese samples.


Subject(s)
Cheese , Lactobacillales , Lactobacillus delbrueckii , Lactococcus lactis , Lactococcus , Animals , Cattle , Female , Lactobacillales/genetics , Milk , Real-Time Polymerase Chain Reaction , Lactobacillus delbrueckii/genetics , Lactococcus lactis/genetics
4.
Gut Microbes ; 16(1): 2337317, 2024.
Article in English | MEDLINE | ID: mdl-38619316

ABSTRACT

The diet during pregnancy, or antenatal diet, influences the offspring's intestinal health. We previously showed that antenatal butyrate supplementation reduces injury in adult murine offspring with dextran sulfate sodium (DSS)-induced colitis. Potential modulators of butyrate levels in the intestine include a high fiber diet or dietary supplementation with probiotics. To test this, we supplemented the diet of pregnant mice with high fiber, or with the probiotic bacteria Lactococcus lactis subspecies cremoris or Lactobacillus rhamnosus GG. We then induced chronic colitis with DSS in their adult offspring. We demonstrate that a high fiber antenatal diet, or supplementation with Lactococcus lactis subspecies cremoris during pregnancy diminished the injury from DSS-induced colitis in offspring. These data are evidence that antenatal dietary interventions impact offspring gut health and define the antenatal diet as a therapeutic modality to enhance offspring intestinal health.


Subject(s)
Colitis , Gastrointestinal Microbiome , Lactococcus lactis , Lactococcus , Female , Pregnancy , Animals , Mice , Lactococcus lactis/genetics , Dietary Supplements , Butyrates
5.
Food Microbiol ; 121: 104514, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637076

ABSTRACT

The enzymatic repertoire of starter cultures belonging to the Lactococcus genus determines various important characteristics of fermented dairy products but might change in response to the substantial environmental changes in the manufacturing process. Assessing bacterial proteome adaptation in dairy and other food environments is challenging due to the high matrix-protein concentration and is even further complicated in particularly cheese by the high fat concentrations, the semi-solid state of that matrix, and the non-growing state of the bacteria. Here, we present bacterial harvesting and processing procedures that enable reproducible, high-resolution proteome determination in lactococcal cultures harvested from laboratory media, milk, and miniature Gouda cheese. Comparative proteome analysis of Lactococcus cremoris NCDO712 grown in laboratory medium and milk revealed proteome adaptations that predominantly reflect the differential (micro-)nutrient availability in these two environments. Additionally, the drastic environmental changes during cheese manufacturing only elicited subtle changes in the L. cremoris NCDO712 proteome, including modified expression levels of enzymes involved in flavour formation. The technical advances we describe offer novel opportunities to evaluate bacterial proteomes in relation to their performance in complex, protein- and/or fat-rich food matrices and highlight the potential of steering starter culture performance by preculture condition adjustments.


Subject(s)
Cheese , Cultured Milk Products , Lactococcus lactis , Animals , Proteome/metabolism , Fermentation , Cheese/microbiology , Milk/microbiology , Lactococcus lactis/genetics , Lactococcus lactis/metabolism
6.
PLoS One ; 19(4): e0298680, 2024.
Article in English | MEDLINE | ID: mdl-38557757

ABSTRACT

In the dairy industry bacteriophage (phage) contamination significantly impairs the production and quality of products like yogurt and cheese. To combat this issue, the strains of bacteria used as starter cultures possess mechanisms that make them resistant to phage infection, such as envelope resistance, or processes that render them immune to phage infection, such as restriction-modification and CRISPR-Cas. Lactococcus lactis, used to manufacture cheese and other dairy products, can also block the reproduction of infecting phages by abortive infection (Abi), a process in which phage-infected cells die before the phage replicate. We employ mathematical-computer simulation models and experiments with two Lactococcus lactis strains and two lytic phages to investigate the conditions under which Abi can limit the proliferation of phages in L. lactis populations and prevent the extinction of their populations by these viruses. According to our model, if Abi is almost perfect and there are no other populations of bacteria capable of supporting the replication of the L. lactis phages, Abi can protect bacterial populations from succumbing to infections with these viruses. This prediction is supported by the results of our experiment, which indicate that Abi can help protect L. lactis populations from extinction by lytic phage infections. However, our results also predict abortive infection is only one element of L. lactis defenses against phage infection. Mutant phages that can circumvent the Abi systems of these bacteria emerge. The survival of L. lactis populations then depends on the evolution of envelope mutants that are resistant to the evolved host-range phage.


Subject(s)
Bacteriophages , Lactococcus lactis , Bacteriophages/genetics , Lactococcus lactis/genetics , Computer Simulation , Bacterial Proteins , Bacteria
7.
BMC Genomics ; 25(1): 324, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561675

ABSTRACT

Lactococcus lactis is widely applied by the dairy industry for the fermentation of milk into products such as cheese. Adaptation of L. lactis to the dairy environment often depends on functions encoded by mobile genetic elements (MGEs) such as plasmids. Other L. lactis MGEs that contribute to industrially relevant traits like antimicrobial production and carbohydrate utilization capacities belong to the integrative conjugative elements (ICE). Here we investigate the prevalence of ICEs in L. lactis using an automated search engine that detects colocalized, ICE-associated core-functions (involved in conjugation or mobilization) in lactococcal genomes. This approach enabled the detection of 36 candidate-ICEs in 69 L. lactis genomes. By phylogenetic analysis of conserved protein functions encoded in all lactococcal ICEs, these 36 ICEs could be classified in three main ICE-families that encompass 7 distinguishable ICE-integrases and are characterized by apparent modular-exchangeability and plasticity. Finally, we demonstrate that phylogenetic analysis of the conjugation-associated VirB4 ATPase function differentiates ICE- and plasmid-derived conjugation systems, indicating that conjugal transfer of lactococcal ICEs and plasmids involves genetically distinct machineries. Our genomic analysis and sequence-based classification of lactococcal ICEs creates a comprehensive overview of the conserved functional repertoires encoded by this family of MGEs in L. lactis, which can facilitate the future exploitation of the functional traits they encode by ICE mobilization to appropriate starter culture strains.


Subject(s)
Lactococcus lactis , Lactococcus lactis/genetics , Phylogeny , Plasmids/genetics , Proteins/metabolism , Genome , Conjugation, Genetic , DNA Transposable Elements
8.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38618721

ABSTRACT

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Subject(s)
Gastrointestinal Microbiome , Insecticide Resistance , Pyrethrins , Reactive Oxygen Species , Tephritidae , Animals , Reactive Oxygen Species/metabolism , Pyrethrins/pharmacology , Pyrethrins/metabolism , Insecticide Resistance/genetics , Tephritidae/microbiology , Tephritidae/genetics , Insecticides/pharmacology , Insecticides/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Lactobacillales/genetics , Lactobacillales/metabolism , Lactobacillales/drug effects , Lactobacillales/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Enterococcus/genetics , Enterococcus/metabolism , Enterococcus/drug effects , Glutathione Transferase/genetics , Glutathione Transferase/metabolism
9.
Biomed Pharmacother ; 173: 116384, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471270

ABSTRACT

Bone marrow has the capacity to produce different types of immune cells, such as natural killer cells, macrophages, dendritic cells (DCs) and T cells. Improving the activation of immune cells in the bone marrow can enhance the therapy of bone metastases. Previously, we designed an engineered probiotic Lactococcus lactis, capable of expressing a fusion protein of Fms-like tyrosine kinase 3 ligand and co-stimulator OX40 ligand (FOLactis), and proved that it can induce the activation and differentiation of several immune cells. In this research, we successfully establish mouse models of bone metastasis, lung metastasis and intraperitoneal dissemination, and we are the first to directly inject the probiotics into the bone marrow to inhibit tumor growth. We observe that injecting FOLactis into the bone marrow of mice can better regulate the immune microenvironment of tumor-bearing mice, resulting in a tumor-suppressive effect. Compared to subcutaneous (s.c.) injection, intra-bone marrow (IBM) injection is more effective in increasing mature DCs and CD8+ T cells and prolonging the survival of tumor-bearing mice. Our results confirm that IBM injection of FOLactis reprograms the immune microenvironment of bone marrow and has remarkable effectiveness in various metastatic tumor models.


Subject(s)
Lactococcus lactis , Lung Neoplasms , Mice , Animals , Bone Marrow , Lactococcus lactis/genetics , CD8-Positive T-Lymphocytes , Immunotherapy, Adoptive/methods , Lung Neoplasms/secondary , Tumor Microenvironment
10.
ACS Synth Biol ; 13(4): 1365-1372, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38518262

ABSTRACT

Lactococcus cremoris (homotypic synonym: Lactococcus lactis) is receiving increasing attention as a prominent vehicle for the delivery of live vaccines. This can hardly be achieved without developing tools for the genetic manipulation of L. cremoris, and the paucity of studies on L. cremoris endogenous promoters has attracted our attention. Here, we report the discovery and characterization of 29 candidate promoters identified from L. cremoris subsp. cremoris NZ9000 by RNA sequencing analysis. Furthermore, 18 possible constitutive promoters were obtained by RT-qPCR screening from these 29 candidate promoters. Then, these 18 promoters were cloned and characterized by a reporter gene, gusA, encoding ß-glucuronidase. Eventually, eight endogenous constitutive promoters of L. cremoris were obtained, which can be applied to genetic manipulation of lactic acid bacteria.


Subject(s)
Lactococcus lactis , Lactococcus , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Promoter Regions, Genetic/genetics , Genes, Reporter/genetics , Gene Expression
11.
J Agric Food Chem ; 72(13): 7279-7290, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38519413

ABSTRACT

PepXLcMY-3, an X-prolyl dipeptidyl aminopeptidase derived from Lactobacillus lactis MY-3, was screened and recombinantly expressed in Escherichia coli. The enzyme could exhibit about 40% activity within the pH range of 6.0-10. To further improve the pH robustness, site E396 located in the active pocket was discovered through alanine scanning. The mutant E396I displayed both developed activity and kcat/Km. The optimal pH of E396I shifted from 6.0 to 10 compared to WT, with the relative activity within the pH range of 6.0-10 significantly increased. The site K648 was then proposed by semirational design. The activity of mutant E396I/K648D reached 4.03 U/mg. The optimal pH was restored to 6.0, and the pH stability was further improved. E396I/K648D could totally hydrolyze ß-casomorphin 7 within 30 min. The hydrolysate showed 64.5% inhibition on angiotensin I converting enzyme, which was more efficient than those produced by E396I and WT, 23.2 and 44.7%, respectively.


Subject(s)
Lactococcus lactis , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Amino Acid Sequence , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Peptides/genetics , Hydrolases , Aminopeptidases/genetics , Aminopeptidases/chemistry , Aminopeptidases/metabolism , Hydrogen-Ion Concentration
12.
Can Vet J ; 65(3): 259-266, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38434158

ABSTRACT

Objectives: To evaluate the effects of a cell-free supernatant from Lactococcus lactis (CFSM) on performance and diarrhearelated parameters and the presence of F4+ enterotoxigenic E. coli (ETEC) in piglets during post-weaning, and to evaluate the in vitro effect of the CFSM on faeG gene expression in an E. coli F4+. Animals and procedure: In 3 trials with 90 piglets per trial, pigs were assigned to receive a placebo or 1 of 2 CFSM treatments and observed for diarrhea and performance. Fecal swabs were taken to determine the presence of ETEC. Quantitative RT-PCR was used to assess faeG gene expression in E. coli 21259 after treatment with CFSM at 50 mg/mL. Results: The CFSM administered for 14 d at a dose of 24 mg/kg BW (2X) reduced diarrhea-related parameters compared to the placebo. Quantitative RT-PCR showed that, in E. coli 21259 treated with CFSM at 50 mg/mL, expression of the faeG gene was significantly repressed (P < 0.0001) relative to that in the untreated control. Conclusion: The evaluated CFSM reduced the frequency and prevalence of diarrhea in a field situation. The in vitro treatment had an inhibitory effect on the expression of the faeG gene in F4+ E. coli 21259.


Effet d'un surnageant de culture de Lactococcus lactis sur la diarrhée et les paramètres de performance des porcelets en période post-sevrage et sur l'expression du gène faeG in vitro. Objectifs: Évaluer les effets d'un surnageant acellulaire de Lactococcus lactis (CFSM) sur les paramètres de performance et de diarrhée et la présence d'E. coli entérotoxinogène F4+ (ETEC) chez les porcelets en post-sevrage, et évaluer l'effet in vitro du CFSM sur l'expression du gène faeG dans un E. coli F4+. Animaux et procédure: Dans 3 essais portant sur 90 porcelets par essai, les porcs ont reçu un placebo ou 1 des 2 traitements CFSM et ont été observés pour détecter la diarrhée et leurs performances. Des prélèvements fécaux ont été effectués pour déterminer la présence d'ETEC. La RT-PCR quantitative a été utilisée pour évaluer l'expression du gène faeG dans E. coli 21259 après traitement avec CFSM à 50 mg/mL. Résultats: Le CFSM administré pendant 14 jours à une dose de 24 mg/kg de poids corporel (2X) a réduit les paramètres liés à la diarrhée par rapport au placebo. La RT-PCR quantitative a montré que, chez E. coli 21259 traité avec CFSM à 50 mg/mL, l'expression du gène faeG était significativement réprimée (P < 0,0001) par rapport à celle du témoin non traité. Conclusion: Le CFSM évalué a réduit la fréquence et la prévalence de la diarrhée sur le terrain. Le traitement in vitro a eu un effet inhibiteur sur l'expression du gène faeG chez F4+ E. coli 21259.(Traduit par Dr Serge Messier).


Subject(s)
Lactococcus lactis , Animals , Swine , Lactococcus lactis/genetics , Escherichia coli , Diarrhea/prevention & control , Diarrhea/veterinary , Specimen Handling/veterinary
13.
Cancer Lett ; 588: 216777, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38432582

ABSTRACT

Intrapleural immunotherapies have emerged as a prominent field in treating malignant pleural effusion (MPE). Among these, bacteria-based intrapleural therapy has exerted an anti-MPE effect by immuno-stimulating or cytotoxic properties. We previously engineered a probiotic Lactococcus lactis (FOLactis) expressing a fusion protein of Fms-like tyrosine kinase 3 and co-stimulator OX40 ligands. FOLactis activates tumor antigen-specific immune responses and displays systemic antitumor efficacy via intratumoral delivery. However, no available lesions exist in the pleural cavity of patients with MPE for intratumoral administration. Therefore, we further optimize FOLactis to treat MPE through intrapleural injection. Intrapleural administration of FOLactis (I-Pl FOLactis) not only distinctly suppresses MPE and pleural tumor nodules, but also significantly extends noticeable survival in MPE-bearing murine models. The proportion of CD103+ dendritic cells (DCs) in tumor-draining lymph nodes increases three-fold in FOLactis group, compared to the wild-type bacteria group. The enhanced DCs recruitment promotes the infiltration of effector memory T and CD8+ T cells, as well as the activation of NK cells and the polarization of macrophages to M1. Programmed death 1 blockade antibody combination further enhances the antitumor efficacy of I-Pl FOLactis. In summary, we first develop an innovative intrapleural strategy based on FOLactis, exhibiting remarkable efficacy and favorable biosafety profiles. These findings suggest prospective clinical translation of engineered probiotics for managing MPE through direct administration into the pleural cavity.


Subject(s)
Antineoplastic Agents , Lactococcus lactis , Pleural Effusion, Malignant , Humans , Animals , Mice , Pleural Effusion, Malignant/therapy , Lactococcus lactis/genetics , CD8-Positive T-Lymphocytes/metabolism , Prospective Studies , Antineoplastic Agents/therapeutic use
14.
Microbiol Spectr ; 12(4): e0392723, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38441470

ABSTRACT

Aeromonas hydrophila, an aquatic pathogenic bacterium, has been found to infect many fish species and cause huge aquaculture losses. Antibiotics are the most common drugs used to treat these infections. However, antibiotic abuse can lead to the development of antibiotic resistance. Probiotics have the potential to replace antibiotics for preventing infections. Zebrafish (Danio rerio) is a model organism used to study the innate immune system and host-pathogen interactions. Currently, there is little information on how the fish immune system responds to A. hydrophila and probiotic treatment. To increase the understanding of the molecular mechanisms behind the zebrafish defense against A. hydrophila and provide evidence that antibiotics can be replaced by probiotics, a transcriptome analysis of the zebrafish spleen was conducted 48 hours after infection by A. hydrophila, as well as after treatment using Lactococcus lactis KUST48 4 hours after infection. A total of 36,499 genes were obtained. There were 3,337 genes found to have significant differential expression between treatment and control groups. According to further annotation and enrichment analysis, differentially expressed genes (DEGs) were involved in signal transduction, endocrine system cancer, and the immune system. Insulin resistance disappeared in the zebrafish after treatment. Quantitative real-time PCR was performed to confirm the significant regulation of immune defense DEGs, the results of which were consistent with the RNA-sequencing data. These results could serve as a basis for future studies on the immune response to A. hydrophila and provide suggestions for probiotic alternatives to antibiotics, which will be of great significance to aquaculture and environmental protection.IMPORTANCEIn recent years, the unreasonable use of antibiotics has led to the emergence of drug-resistant pathogenic bacteria, antibiotic residues, cross infection, toxic side effects, and so on, which has caused a serious threat to human food safety and life health. In recent years, many studies have demonstrated the potential of probiotics as a substitute for antibiotics, but there is still a lack of understanding of the molecular mechanisms underlying probiotic therapy. We conduct a research on the impact of Lactococcus lactis KUST48 on the transcription profile of Aeromonas hydrophila-infected zebrafish spleen. Mortality of zebrafish infected with A. hydrophila was significantly reduced after treatment with L. lactis KUST48. Our results can help to strengthen our understanding of the pathogenic mechanisms of zebrafish and provide a valuable reference for the molecular mechanisms of probiotic therapy.


Subject(s)
Fish Diseases , Gram-Negative Bacterial Infections , Lactococcus lactis , Animals , Humans , Zebrafish , Aeromonas hydrophila/genetics , Lactococcus lactis/genetics , Spleen , Anti-Bacterial Agents , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Fish Diseases/microbiology
15.
Appl Environ Microbiol ; 90(3): e0227623, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38319095

ABSTRACT

Consumer demand for plant cheeses is increasing, but challenges of improving both flavor and quality remain. This study investigated the microbiological and physicochemical impact of seed germination and fermentation with Bacillus velezensis and Bacillus amyloliquefaciens on the ripening of plant cheese analogs. Chlorine treatment or addition of Lactiplantibacillus plantarum and Lactococcus lactis controlled microbial growth during seed germination. Lp. plantarum and Lc. lactis also served as starter cultures for the acidification of soy and lupine milk and were subsequently present in the unripened plant cheese as dominant microbes. Acidification also inhibited the growth and metabolic activity of bacilli but Bacillus spores remained viable throughout ripening. During plant cheese ripening, Lc. lactis was inactivated before Lp. plantarum and the presence of bacilli during seed germination delayed Lc. lactis inactivation. Metagenomic sequencing of full-length 16S rRNA gene amplicons confirmed that the relative abundance of the inoculated strains in each ripened cheese sample exceeded 99%. Oligosaccharides including raffinose, stachyose, and verbascose were rapidly depleted in the initial stage of ripening. Both germination and the presence of bacilli during seed germination had impact on polysaccharide hydrolysis during ripening. Bacilli but not seed germination enhanced proteolysis of plant cheese during ripening. In conclusion, the use of germination with lactic acid bacteria in combination with Bacillus spp. exhibited the potential to improve the quality of ripened plant cheeses with a positive effect on the reduction of hygienic risks. IMPORTANCE: The development of novel plant-based fermented food products for which no traditional templates exist requires the development of starter cultures. Although the principles of microbial flavor formation in plant-based analogs partially overlap with dairy fermentations, the composition of the raw materials and thus likely the selective pressure on the activity of starter cultures differs. Experiments that are described in this study explored the use of seed germination, the use of lactic acid bacteria, and the use of bacilli to reduce hygienic risks, to acidify plant milk, and to generate taste-active compounds through proteolysis and fermentative conversion of carbohydrates. The characterization of fermentation microbiota by culture-dependent and culture-independent methods also confirmed that the starter cultures used were able to control microbial communities throughout 90 d of ripening. Taken together, the results provide novel tools for the development of plant-based analogs of fermented dairy products.


Subject(s)
Bacillus , Cheese , Lactobacillales , Lactococcus lactis , Animals , Germination , Cheese/microbiology , RNA, Ribosomal, 16S/genetics , Seeds , Lactobacillales/genetics , Bacillus/genetics , Food Microbiology , Lactococcus lactis/genetics , Milk/microbiology
16.
Appl Environ Microbiol ; 90(3): e0215223, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38334291

ABSTRACT

The dairy fermentation industry relies on the activity of lactic acid bacteria in robust starter cultures to accomplish milk acidification. Maintenance of the composition of these starter cultures, whether defined or undefined, is essential to ensure consistent and high-quality fermentation end products. To date, limited information exists regarding the microbial composition of undefined starter culture systems. Here, we describe a culture-based analysis combined with a metagenomics approach to evaluate the composition of two undefined mesophilic starter cultures. In addition, we describe a qPCR-based genotype detection assay, which is capable of discerning nine distinct lactococcal genotypes to characterize these undefined starter cultures, and which can be applied to monitor compositional changes in an undefined starter culture during a fermentation. IMPORTANCE: This study reports on the development of a combined culture-based analysis and metagenomics approach to evaluate the composition of two undefined mesophilic starter cultures. In addition, a novel qPCR-based genotype detection assay, capable of discerning nine distinct lactococcal genotypes (based on lactococcal cell wall polysaccharide biosynthesis gene clusters), was used to monitor compositional changes in an undefined starter culture following phage attack. These analytical approaches facilitate a multifaceted assessment of starter culture compositional stability during milk fermentation, which has become an important QC aspect due to the increasing demand for consistent and high-quality dairy products.


Subject(s)
Bacteriophages , Lactobacillales , Lactococcus lactis , Animals , Lactococcus lactis/genetics , Milk/microbiology , Bacteriophages/genetics , Fermentation
17.
Appl Microbiol Biotechnol ; 108(1): 231, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396242

ABSTRACT

The acidic environment and enzyme degradation lead to oral vaccines often having little immune effect. Therefore, it is an attractive strategy to study an effective and safe oral vaccine delivery system that can promote gastrointestinal mucosal immune responses and inhibit antigen degradation. Moreover, the antigens uptake by microfold cells (M cells) is the determining step in initiating efficient immune responses. Therefore, M cell-targeting is one promising approach for enhancing oral vaccine potency. In the present study, an M cell-targeting L. lactis surface display system (plSAM) was built to favor the multivalent epitope vaccine antigen (FAdE) to achieve effective gastrointestinal mucosal immunity against Helicobacter pylori. Therefore, a recombinant Lactococcus lactic acid vaccine (LL-plSAM-FAdE) was successfully prepared, and its immunological properties and protective efficacy were analyzed. The results showed that LL-plSAM-FAdE can secretively express the recombinant proteins SAM-FAdE and display the SAM-FAdE on the bacterial cell surface. More importantly, LL-plSAM-FAdE effectively promoted the phagocytosis and transport of vaccine antigen by M cells in the gastrointestinal tract of mice, and simulated high levels of cellular and humoral immune responses against four key H. pylori adhesins (Urease, CagL, HpaA, and Lpp20) in the gastrointestinal tract, thus enabling effective prevention of H. pylori infection and to some extent eliminating H. pylori already present in the gastrointestinal tract. KEY POINTS: • M-cell-targeting L. lactis surface display system LL- plSAM was designed • This system displays H. pylori vaccine-promoted phagocytosis and transport of M cell • A promising vaccine candidate for controlling H. pylori infection was verified.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Lactococcus lactis , Animals , Mice , Helicobacter pylori/genetics , M Cells , Antigens, Bacterial , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Vaccines, Synthetic , Bacterial Vaccines , Helicobacter Infections/prevention & control , Mice, Inbred BALB C , Antibodies, Bacterial , Lactococcus lactis/genetics , Lactococcus lactis/metabolism
18.
Biosens Bioelectron ; 252: 116139, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38412686

ABSTRACT

Micro/nanomaterials display considerable potential for increasing the sensitivity of lateral flow immunoassay (LFIA) by acting as 3D carriers for both antibodies and signals. The key to achieving high detection sensitivity depends on the probe's orientation on the material surface and its multivalent biomolecular interactions with targets. Here, we engineer Lactococcus lactis as the bacterial microcarrier (BMC) for a multivalent immunorecognition probe that was genetically programmed to display multifunctional components including a phage-screened single-chain variable fragment (scFv), an enhanced green fluorescent protein (eGFP), and a C-terminal peptidoglycan-binding domain (AcmA) anchored on BMC through the cell wall peptidoglycan. The innovative design of this biocarrier system, which incorporates a lab-on-a-chip microfluidic device, allows for the rapid and non-destructive self-assembly of the multivalent scFv-eGFP-AcmA@BMC probe, in which the 3D structure of BMC with a large peptidoglycan surface area facilitates the precisely orientated attachment and immobilization of scFv-eGFP-AcmA. This leads to a remarkable fluorescence aggregation amplification effect in LFIA, outperforming a monovalent 2D scFv-eGFP-AcmA probe for florfenicol detection. By designing a portable sensing device, we achieved an exceptionally low detection limit of 0.28 pg/mL and 0.21 pg/mL for florfenicol in lake water and milk sample, respectively. The successful microfabrication of this biocarrier holds potential to inspire innovative biohybrid designs for environment and food safety biosensing applications.


Subject(s)
Biosensing Techniques , Lactococcus lactis , Thiamphenicol/analogs & derivatives , Animals , Anti-Bacterial Agents/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/chemistry , Peptidoglycan/metabolism , Microtechnology , Milk , Lakes , Immunoassay , Water
19.
Protein Expr Purif ; 217: 106443, 2024 May.
Article in English | MEDLINE | ID: mdl-38360084

ABSTRACT

Efficient expression of functional proteins in heterologous hosts has become the pivotal focus of modern biotechnology and biomedical research. To this end, multiple alternatives to E. coli are being explored for recombinant protein expression. L. lactis, being a gram-positive organism, circumvents the need for an endotoxin removal step during protein purification. We report here the optimisation of the expression of HIV-1 Tat, a notoriously difficult protein, in Lactococcus lactis system. We evaluated five different promoters in two different Lactococcus lactis strains and examined the effect of pH, glucose, and induction time on the yield and purity of Tat. Finally, the recombinant Tat was functionally competent in transactivating the HIV-1 promoter in HLM-1 reporter cells. Our work provides a scaffold for future work on the expression of toxic proteins in Lactococcus lactis.


Subject(s)
HIV-1 , Lactococcus lactis , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , HIV-1/genetics , HIV-1/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins , Biotechnology
20.
J Agric Food Chem ; 72(9): 4858-4868, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38377583

ABSTRACT

Lactococcus lactis is a safe lactic acid bacterium widely used in dairy fermentations. Normally, its main fermentation product is lactic acid; however, L. lactis can be persuaded into producing other compounds, e.g., through genetic engineering. Here, we have explored the possibility of rewiring the metabolism of L. lactis into producing pyruvate without using genetic tools. Depriving the thiamine-auxotrophic and lactate dehydrogenase-deficient L. lactis strain RD1M5 of thiamine efficiently shut down two enzymes at the pyruvate branch, the thiamine pyrophosphate (TPP) dependent pyruvate dehydrogenase (PDHc) and α-acetolactate synthase (ALS). After eliminating the remaining enzyme acting on pyruvate, the highly oxygen-sensitive pyruvate formate lyase (PFL), by simple aeration, the outcome was pyruvate production. Pyruvate could be generated by nongrowing cells and cells growing in a substrate low in thiamine, e.g., Florisil-treated milk. Pyruvate is a precursor for the butter aroma compound diacetyl. Using an α-acetolactate decarboxylase deficient L. lactis strain, pyruvate could be converted to α-acetolactate and diacetyl. Summing up, by starving L. lactis for thiamine, secretion of pyruvate could be attained. The food-grade pyruvate produced has many applications, e.g., as an antioxidant or be used to make butter aroma.


Subject(s)
Lactates , Lactococcus lactis , Pyruvic Acid , Pyruvic Acid/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Thiamine/metabolism , Diacetyl/metabolism , L-Lactate Dehydrogenase/metabolism , Lactic Acid/metabolism , Butter
SELECTION OF CITATIONS
SEARCH DETAIL
...