Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Genetica ; 152(2-3): 101-117, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38724749

ABSTRACT

DnaJs/Hsp40s/JPDs are obligate co-chaperones of heat shock proteins (Hsp70), performing crucial biological functions within organisms. A comparative genome analysis of four genomes (Vitis vinifera, Eucalyptus grandis, Lagerstroemia indica, and Punica granatum) revealed that the DnaJ gene family in L. indica has undergone expansion, although not to the extent observed in P. granatum. Inter-genome collinearity analysis of four plants indicates that members belonging to Class A and B are more conserved during evolution. In L. indica, the expanded members primarily belong to Class-C. Tissue expression patterns and the biochemical characterization of LiDnaJs further suggested that DnaJs may be involved in numerous biological processes in L. indica. Transcriptome and qPCR analyses of salt stressed leaves identified at least ten LiDnaJs that responded to salt stress. In summary, we have elucidated the expansion mechanism of the LiDnaJs, which is attributed to a recent whole-genome triplication. This research laid the foundation for functional analysis of LiDnaJs and provides gene resources for breeding salt-tolerant varieties of L. indica.


Subject(s)
Gene Expression Regulation, Plant , Lagerstroemia , Multigene Family , Plant Proteins , Salt Stress , Salt Stress/genetics , Lagerstroemia/genetics , Plant Proteins/genetics , Genome, Plant , HSP40 Heat-Shock Proteins/genetics , Phylogeny , Genomics/methods
2.
Genes (Basel) ; 15(4)2024 03 28.
Article in English | MEDLINE | ID: mdl-38674363

ABSTRACT

The Homeodomain leucine zipper (HD-Zip) family of transcription factors is crucial in helping plants adapt to environmental changes and promoting their growth and development. Despite research on the HD-Zip family in various plants, studies in Lagerstroemia (crape myrtle) have not been reported. This study aimed to address this gap by comprehensively analyzing the HD-Zip gene family in crape myrtle. This study identified 52 HD-Zip genes in the genome of Lagerstroemia indica, designated as LinHDZ1-LinHDZ52. These genes were distributed across 22 chromosomes and grouped into 4 clusters (HD-Zip I-IV) based on their phylogenetic relationships. Most gene structures and motifs within each cluster were conserved. Analysis of protein properties, gene structure, conserved motifs, and cis-acting regulatory elements revealed diverse roles of LinHDZs in various biological contexts. Examining the expression patterns of these 52 genes in 6 tissues (shoot apical meristem, tender shoot, and mature shoot) of non-dwarf and dwarf crape myrtles revealed that 2 LinHDZs (LinHDZ24 and LinHDZ14) and 2 LinHDZs (LinHDZ9 and LinHDZ35) were respectively upregulated in tender shoot of non-dwarf crape myrtles and tender and mature shoots of dwarf crape myrtles, which suggested the important roles of these genes in regulate the shoot development of Lagerstroemia. In addition, the expression levels of 2 LinHDZs (LinHDZ23 and LinHDZ34) were significantly upregulated in the shoot apical meristem of non-dwarf crape myrtle. These genes were identified as key candidates for regulating Lagerstroemia plant height. This study enhanced the understanding of the functions of HD-Zip family members in the growth and development processes of woody plants and provided a theoretical basis for further studies on the molecular mechanisms underlying Lagerstroemia plant height.


Subject(s)
Gene Expression Regulation, Plant , Lagerstroemia , Leucine Zippers , Multigene Family , Plant Proteins , Genome, Plant , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Lagerstroemia/genetics , Lagerstroemia/metabolism , Leucine Zippers/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Plant Cell Rep ; 43(5): 122, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642121

ABSTRACT

KEY MESSAGE: Extensive leaf transcriptome profiling and differential gene expression analysis of field grown and elicited shoot cultures of L. speciosa suggest that differential synthesis of CRA is mediated primarily by CYP and TS genes, showing functional diversity. Lagerstroemia speciosa L. is a tree species with medicinal and horticultural attributes. The pentacyclic triterpene, Corosolic acid (CRA) obtained from this species is widely used for the management of diabetes mellitus in traditional medicine. The high mercantile value of the compound and limited availability of innate resources entail exploration of alternative sources for CRA production. Metabolic pathway engineering for enhanced bioproduction of plant secondary metabolites is an attractive proposition for which, candidate genes in the pathway need to be identified and characterized. Therefore, in the present investigation, we focused on the identification of cytochrome P450 (CYP450) and oxidosqualene cyclases (OSC) genes and their differential expression during biosynthesis of CRA. The pattern of differential expression of these genes in the shoot cultures of L. speciosa, elicited with different epigenetic modifiers (azacytidine (AzaC), sodium butyrate (NaBu) and anacardic acid (AA)), was studied in comparison with field grown plant. Further, in vitro cultures with varying (low to high) concentrations of CRA were systematically assessed for the expression of CYP-TS and associated genes involved in CRA biosynthesis by transcriptome sequencing. The sequenced samples were de novo assembled into 180,290 transcripts of which, 92,983 transcripts were further annotated by UniProt. The results are collectively given in co-occurrence heat maps to identify the differentially expressed genes. The combined transcript and metabolite profiles along with RT-qPCR analysis resulted in the identification of CYP-TS genes with high sequence variation. Further, instances of concordant/discordant relation between CRA biosynthesis and CYP-TS gene expression were observed, indicating functional diversity in genes.


Subject(s)
Lagerstroemia , Transcriptome , Triterpenes , Transcriptome/genetics , Lagerstroemia/genetics , Lagerstroemia/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Profiling
4.
BMC Plant Biol ; 24(1): 171, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443839

ABSTRACT

BACKGROUND: Lagerstroemia indica is a widely cultivated ornamental woody shrub/tree of the family Lythraceae that is used as a traditional medicinal plant in East Asia and Egypt. However, unlike other ornamental woody plants, its genome is not well-investigated, which hindered the discovery of the key genes that regulate important traits and the synthesis of bioactive compounds. RESULTS: In this study, the genomic sequences of L. indica were determined using several next-generation sequencing technologies. Altogether, 324.01 Mb sequences were assembled and 98.21% (318.21 Mb) of them were placed in 24 pseudo-chromosomes. The heterozygosity, repeated sequences, and GC residues occupied 1.65%, 29.17%, and 38.64% of the genome, respectively. In addition, 28,811 protein-coding gene models, 327 miRNAs, 552 tRNAs, 214 rRNAs, and 607 snRNAs were identified. The intra- and interspecies synteny and Ks analysis revealed that L. indica exhibits a hexaploidy. The co-expression profiles of the genes involved in the phenylpropanoid (PA) and flavonoid/anthocyanin (ABGs) pathways with the R2R3 MYB genes (137 members) showed that ten R2R3 MYB genes positively regulate flavonoid/anthocyanin biosynthesis. The colors of flowers with white, purple (PB), and deep purplish pink (DPB) petals were found to be determined by the levels of delphinidin-based (Dp) derivatives. However, the substrate specificities of LiDFR and LiOMT probably resulted in the different compositions of flavonoid/anthocyanin. In L. indica, two LiTTG1s (LiTTG1-1 and LiTTG1-2) were found to be the homologs of AtTTG1 (WD40). LiTTG1-1 was found to repress anthocyanin biosynthesis using the tobacco transient transfection assay. CONCLUSIONS: This study showed that the ancestor L. indica experienced genome triplication approximately 38.5 million years ago and that LiTTG1-1 represses anthocyanin biosynthesis. Furthermore, several genes such as LiDFR, LiOMTs, and R2R3 LiMYBs are related to anthocyanin biosynthesis. Further studies are required to clarify the mechanisms and alleles responsible for flower color development.


Subject(s)
Lagerstroemia , Lagerstroemia/genetics , Anthocyanins , Gene Expression Profiling , Genomics , Flavonoids/genetics
5.
BMC Plant Biol ; 24(1): 78, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38287275

ABSTRACT

BACKGROUND: Annexin (ANN) is calcium (Ca2+)-dependent and phospholipid binding protein family, which is involved in plant growth and development and response to various stresses. However, little known about ANN genes were identified from crape myrtle, an ornamental horticultural plant widely cultivated in the world. RESULTS: Here, 9 LiANN genes were identified from Lagerstroemia indica, and their characterizations and functions were investigated in L. indica for the first time. The LiANN genes were divided into 2 subfamilies. The gene structure, chromosomal location, and collinearity relationship were also explored. In addition, the GO annotation analysis of these LiANNs indicated that they are enriched in molecular functions, cellular components, and biological processes. Moreover, transcription factors (TFs) prediction analysis revealed that bHLH, MYB, NAC, and other TFs can interact with the LiANN promoters. Interestingly, the LiANN2/4/6-9 were demonstrated to play critical roles in the branching architecture of crape myrtle. Furthermore, the LiANN2/6/8/9 were differentially expressed under salt treatment, and a series of TFs regulating LiANN2/6/8/9 expression were predicted to play essential roles in salt resistance. CONCLUSIONS: These results shed light on profile and function of the LiANN gene family, and lay a foundation for further studies of the LiANN genes.


Subject(s)
Lagerstroemia , Myrtus , Lagerstroemia/genetics , Annexins/genetics , Transcription Factors/genetics , Salt Stress/genetics , Gene Expression Regulation, Plant , Phylogeny
6.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36835020

ABSTRACT

Lagerstroemia indica L. is a well-known ornamental plant with large pyramidal racemes, long flower duration, and diverse colors and cultivars. It has been cultivated for nearly 1600 years and is essential for investigating the germplasm and assessing genetic variation to support international cultivar identification and breeding programs. In this study, 20 common Lagerstroemia indica cultivars from different varietal groups and flower morphologies, as well as multiple wild relative species, were analyzed to investigate the maternal donor of Lagerstroemia indica cultivars and to discover the genetic variation and relationships among cultivars based on plastome and nuclear ribosomal DNA (nrDNA) sequences. A total of 47 single nucleotide polymorphisms (SNPs) and 24 insertion/deletions (indels) were identified in the 20 L. indica cultivars' plastome and 25 SNPs were identified in the nrDNA. Phylogenetic analysis based on the plastome sequences showed that all the cultivars formed a clade with the species of L. indica, indicating that L. indica was the maternal donor of the cultivars. Population structure and PCA analyses supported two clades of cultivars, which exhibited significant genetic differences according to the plastome dataset. The results of the nrDNA supported that all 20 cultivars were divided into three clades and most of the cultivars had at least two genetic backgrounds and higher gene flow. Our results suggest that the plastome and nrDNA sequences can be used as molecular markers for assessing the genetic variation and relationships of L. indica cultivars.


Subject(s)
Lagerstroemia , Lagerstroemia/genetics , Phylogeny , Plant Breeding , Flowers/genetics , DNA, Ribosomal , Genetic Variation
7.
J Plant Physiol ; 280: 153886, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36493670

ABSTRACT

Photooxidation is the major physiological performance of the Lagerstroemia indica chlorosis mutant gl1 under field conditions. The mechanisms of the progressive symptoms of oxidative damage from the lower older leaves to the upper mature leaves are complicated and still unclear. The aim of this work was to investigate the physiological mechanisms of oxidative stress from the perspective of the photosynthetic metabolites. The phytosynthetic metabolites of gl1 mutant changed significantly compared to wild type (WT) L. indica, such as by increasing phenolics, decreasing soluble sugar, protein and ascorbate, and redistributing antioxidant enzyme activities. The co-accumulation of phenolics and guaiacol-POD in gl1 mutant promote the removal of H2O2, as well the increase of phenoxyl radicals levels. Furthermore, the ion balance was significantly disturbed and Fe accumulated the most among these fluctuating nutrients in the leaves of gl1 mutant. The accumulated Fe was found neither in the chloroplasts nor in the cell wall of the leaves and became unshielded Fe, which favors the Fenton/Haber-Weiss reaction and stabilizes the phenoxyl radicals in metal complexation. The results suggested that the increase of phenolics and Fe accumulation were obviously involved in oxidative damage of gl1 mutant.


Subject(s)
Anemia, Hypochromic , Ferroptosis , Lagerstroemia , Lagerstroemia/genetics , Lagerstroemia/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Antioxidants/metabolism , Anemia, Hypochromic/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism
8.
J Cosmet Dermatol ; 21(7): 2763-2773, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35596731

ABSTRACT

BACKGROUND: Lagerstroemia indica (L. indica) is reported to have diverse biological activities including anti-inflammatory, anti-cancer, neuro-regulatory, antidiabetic, and antioxidant activity. AIMS: The purpose of this study is to examine the potential of hair growth promotion and/or hair loss prevention by L. indica extract. PATIENTS/METHODS: The effects of L. indica on hair growth have been studied in human hair follicle dermal papillary (hHFDP) cells and follicular organ culture ex vivo by cell proliferation assay, PCR, western blot analysis, and reporter gene activity assay. Moreover, a clinical trial was conducted in healthy volunteers. RESULTS: Lagerstroemia indica significantly promoted the proliferation of hHFDP cells, which was associated with increased expression of TCF/LEF, VEGF, and Gli1 mRNA, and inhibition of STAT6 and Smad2 mRNA. Treatment with L. indica also increased the TCF/LEF reporter gene activity but downregulated the SBE- and STAT6-luciferase activities. The expression of total ß-catenin, CDK4, and CDK2 were elevated, while that of STAT6 and SMAD2/3 was suppressed upon treatment with L. indica. In human hair follicles organ culture, L. indica significantly inhibited hair follicular degeneration. The clinical trial showed a statistically significant rise in total hair count in test group (n = 24) after 24 weeks of applying the hair tonic enriched with L. indica (141.46 ± 21.27 number/cm2 , p < 0.05). CONCLUSION: We suggest that L. indica extract prevents hair loss as well as stimulate hair growth by regulating the Wnt-ß-catenin, JAK3-STAT6, and TGF-ß1-Smad signaling pathways, and may be further developed as a novel functional cosmetic for preventing hair loss.


Subject(s)
Lagerstroemia , beta Catenin , Alopecia/metabolism , Cell Proliferation , Cells, Cultured , Hair , Hair Follicle , Humans , Lagerstroemia/genetics , Lagerstroemia/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , RNA, Messenger/metabolism , STAT6 Transcription Factor/metabolism , STAT6 Transcription Factor/pharmacology , Wnt Signaling Pathway , beta Catenin/metabolism
9.
BMC Genomics ; 22(1): 434, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34107868

ABSTRACT

BACKGROUND: Crape myrtles, belonging to the genus Lagerstroemia L., have beautiful paniculate inflorescences and are cultivated as important ornamental tree species for landscaping and gardening. However, the phylogenetic relationships within Lagerstroemia have remained unresolved likely caused by limited sampling and the insufficient number of informative sites used in previous studies. RESULTS: In this study, we sequenced 20 Lagerstroemia chloroplast genomes and combined with 15 existing chloroplast genomes from the genus to investigate the phylogenetic relationships and divergence times within Lagerstroemia. The phylogenetic results indicated that this genus is a monophyletic group containing four clades. Our dating analysis suggested that Lagerstroemia originated in the late Paleocene (~ 60 Ma) and started to diversify in the middle Miocene. The diversification of most species occurred during the Pleistocene. Four variable loci, trnD-trnY-trnE, rrn16-trnI, ndhF-rpl32-trnL and ycf1, were discovered in the Lagerstroemia chloroplast genomes. CONCLUSIONS: The chloroplast genome information was successfully utilized for molecular characterization of diverse crape myrtle samples. Our results are valuable for the global genetic diversity assessment, conservation and utilization of Lagerstroemia.


Subject(s)
Genome, Chloroplast , Lagerstroemia , Lythraceae , Chloroplasts/genetics , Lagerstroemia/genetics , Lythraceae/genetics , Phylogeny
10.
Mol Biol Rep ; 48(2): 1677-1685, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33575959

ABSTRACT

Quantitative gene expression analysis by qPCR requires reference genes for normalization. Lagerstroemia indica (crape myrtle) is a popular ornamental plant in the world, but suitable endogenous reference genes are lacking. To find suitable reference genes, we evaluated the stabilities of nine candidate genes in six experimental data sets: six different tissues, three leaf colors, nine flower colors, and under three abiotic stresses (salt, drought, cold) using four statistical algorithms. A target gene LiMYB56 (homolog of Arabidopsis MYB56) was used to verify the authenticity and accuracy of the candidate reference genes. The results showed that the combination of two stably expressed reference genes, rather than a single reference gene, improved the accuracy of the qPCR. LiEF1α-2 + LiEF1α-3 was best for the tissue, salt treatment, and drought treatment sets; LiEF1α-2 + LiEF1α-1 was optimal for leaf color; LiEF1α-2 + LiACT7 was optimal for cold treatment; and LiUBC + LiEF1α-1 was best for the flower color set. Notably, LiEF1α-2 had high expression stability in all six experimental sets, implying it may be a good reference gene for expression studies in L. indica. Our results will facilitate future gene expression studies in L. indica.


Subject(s)
Flowers/metabolism , Gene Expression Regulation, Plant/genetics , Lagerstroemia/metabolism , Real-Time Polymerase Chain Reaction/methods , Stress, Physiological/genetics , Algorithms , Arabidopsis Proteins/genetics , Cold-Shock Response/genetics , Droughts , Eukaryotic Initiation Factor-1/genetics , Flowers/genetics , Gene Expression Profiling , Genes, Plant , Lagerstroemia/genetics , Organ Specificity/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Salt Stress/genetics , Sensitivity and Specificity , Sodium Chloride/pharmacology , Transcription Factors/genetics
11.
Plant Mol Biol ; 102(6): 659-676, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31997112

ABSTRACT

KEY MESSAGE: Seven divergence hotspots as plastid markers for DNA barcoding was selected, and the phylogeny of 13 Lagerstroemia species based on the cp genome data was reconstructed within Myrtales. The Lagerstroemia species used in this study originated in China and have high economic and ecological value. The shared interspecific morphological characteristics and intraspecific morphological variation resulting from hybridization among Lagerstroemia taxa have made resolving their classification problems and phylogenetic relationships difficult. Systematic comparative genomic analysis has been shown to resolve phylogenetic relationships. We sequenced and annotated 6 Lagerstroemia cp genomes (Lagerstroemia excelsa, Lagerstroemia limii, Lagerstroemia siamica, Lagerstroemia tomentosa, Lagerstroemia venusta, and Lagerstroemia calyculata) for the first time and combined them with previously published genomes for Lagerstroemia species. Bioinformatics was used to analyse the 13 cp genomes in terms of gene structure and organization, codon usage, contraction and expansion of inverted repeat regions, repeat structure, divergence hotspots, species pairwise Ka/Ks ratios and phylogenetic relationships. The length varied between 152,049 bp in Lagerstroemia subcostata and 152,521 bp in L. venusta. We selected seven divergence hotspots in the cp genomes that had the potential to act as plastid markers to distinguish Lagerstroemia species. The phylogenetic relationships within Myrtales inferred from the cp genomes of 13 Lagerstroemia species and 27 other Myrtales species were highly supported, which illustrated several novel relationships within Myrtales. Taken together, our results provide comprehensive chloroplast genomic resources, which can be used further for species identification and molecular breeding of Lagerstroemia species.


Subject(s)
Chloroplasts/genetics , Genome, Chloroplast/genetics , Lagerstroemia/classification , Lagerstroemia/genetics , Phylogeny , Base Sequence , Databases, Nucleic Acid , Evolution, Molecular , Molecular Sequence Annotation , Plant Proteins/genetics , Plastids , Sequence Analysis, DNA
12.
Int J Mol Sci ; 20(22)2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31718025

ABSTRACT

Lagerstroemia indica is an important ornamental tree worldwide. The development of cultivars with colorful leaves and increased ornamental value represents one of the current main research topics. We investigated the anthocyanin profiles in two contrasting cultivars for leaf color phenotypes and explored the underlying molecular basis. Both cultivars display purple-red young leaves (Stage 1), and when the leaves mature (Stage 2), they turn green in HD (Lagerstroemia Dynamite) but remain unchanged in ZD (Lagerstroemia Ebony Embers). Seven different anthocyanins were detected, and globally, the leaves of ZD contained higher levels of anthocyanins than those of HD at the two stages with the most pronounced difference observed at Stage 2. Transcriptome sequencing revealed that in contrast to HD, ZD tends to keep a higher activity level of key genes involved in the flavonoid-anthocyanin biosynthesis pathways throughout the leaf developmental stages in order to maintain the synthesis, accumulation, and modification of anthocyanins. By applying gene co-expression analysis, we detected 19 key MYB regulators were co-expressed with the flavonoid-anthocyanin biosynthetic genes and were found strongly down-regulated in HD. This study lays the foundation for the artificial manipulation of the anthocyanin biosynthesis in order to create new L. indica cultivars with colorful leaves and increased ornamental value.


Subject(s)
Anthocyanins/genetics , Lagerstroemia/genetics , Phenotype , Plant Leaves/metabolism , Anthocyanins/metabolism , Lagerstroemia/metabolism , Pigmentation , Plant Breeding , Transcriptome
13.
Sci Rep ; 8(1): 15162, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30310123

ABSTRACT

Plant architecture is a popular research topic because plants with different growth habits that may generate economic or ornamental value are in great demand by orchards and nurseries. However, the molecular basis of the architecture of woody perennial plants is poorly understood due to the complexity of the phenotypic and regulatory relationships. Here, transcriptional profiling of dwarf and non-dwarf crapemyrtles was performed, and potential target genes were identified based on the phenotype, histology and phytohormone metabolite levels. An integrated analysis demonstrated that the internode length was explained mainly by cell number and secondarily by cell length and revealed important hormones in regulatory pathway of Lagerstroemia architecture. Differentially expressed genes (DEGs) involved in phytohormone pathways and cellular patterning regulation were analysed, and the regulatory relationships between these parameters were evaluated at the transcriptional level. Exogenous indole-3-acetic acid (IAA) and gibberellin A4 (GA4) treatments further indicated the pivotal role of auxin in cell division within the shoot apical meristem (SAM) and suggested an interaction between auxin and GA4 in regulating the internode length of Lagerstroemia. These results provide insights for further functional genomic studies on the regulatory mechanisms underlying Lagerstroemia plant architecture and may improve the efficiency of woody plant molecular breeding.


Subject(s)
Gene Expression Regulation, Developmental , Lagerstroemia/genetics , Plant Growth Regulators/pharmacology , Transcriptome , Cell Division , Gene Expression Regulation, Plant , Lagerstroemia/growth & development , Lagerstroemia/metabolism , Meristem/cytology , Meristem/drug effects , Meristem/growth & development , Plant Growth Regulators/metabolism
14.
Genetica ; 146(6): 461-474, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30159822

ABSTRACT

Pomegranate (Punica granatum L.) is one of the oldest known edible fruits. It has grown in popularity and is a profitable fruit crop due to its attractive features including a bright red appearance and its biological activities. Scientific exploration of the genetics and evolution of these beneficial traits has been hampered by limited genomic information. In this study, we sequenced the complete chloroplast (cp) genome of the native P. granatum (cultivar Helow) cultivated in the mountains of Jabal Al-Akhdar, Oman. The results revealed a P. granatum cp genome length of 158,630 bp, characterized by a relatively conserved structure containing 2 inverted repeat regions of 25,466 bp, an 18,686 bp small single copy regions, and an 89,015 bp large single copy region. The 86 protein-coding genes included 37 transfer RNA genes and 8 ribosomal RNA genes. Comparison of the P. granatum whole cp genome with seven Lagerstroemia species revealed an overall high degree of sequence similarity with divergence among intergenic spacers. The location, distribution, and divergence of repeat sequences and shared genes of the Punica and Lagerstroemia species were highly similar. Analyses of nucleotide substitution, insertion/deletions, and highly variable regions in these cp genomes identified potential plastid markers for taxonomic and phylogenetic studies in Myrtales. A phylogenetic study of the cp genomes and 76 shared coding regions generated similar cladograms. The complete cp genome of P. granatum will aid in taxonomical studies of the family Lythraceae.


Subject(s)
Genome, Chloroplast , Lythraceae/genetics , Phylogeny , Lagerstroemia/classification , Lagerstroemia/genetics , Lythraceae/classification , Molecular Sequence Annotation
15.
PLoS One ; 13(3): e0195004, 2018.
Article in English | MEDLINE | ID: mdl-29579116

ABSTRACT

Quantitative real-time polymerase chain reaction (qRT-PCR) is a prevalent method for gene expression analysis, depending on the stability of the reference genes for data normalization. Lagerstroemia indica and L. speciosa are popular ornamental plants which are famous for the long flowering period. However, no systematic studies on reference genes in Lagerstroemia have yet been conducted. In the present study, we selected nine candidate reference genes (GAPDH, TUA, TUB, 18S, RPII, EF-1α, ATC, EIF5A and CYP) and evaluated their expression stability in different tissues during floral development of L. indica and L. speciosa using four algorithms (geNorm, NormFinder, BestKeeper and, RefFinder). Results showed that RPII and EF-1α were the most stably expressed and suitable reference genes for both of Lagerstroemia species. Moreover, ACT exhibited high expression stability in L. indica and GAPDH was a suitable reference gene for L. speciosa in different flower development stages. TUB was an unsuitable reference gene for gene expression normalization due to significant variations in expression across all samples. Finally, we verified the reliability of the selected candidate reference genes by amplifying an AGAMOUS homolog (LsAG1) of Arabidopsis thaliana. This study provides a list of suitable reference genes, thereby broadening the genetic basis of the gene expression patterns in Lagerstroemia species.


Subject(s)
Genes, Plant , Lagerstroemia/genetics , Real-Time Polymerase Chain Reaction/methods , DNA, Complementary/chemistry , DNA, Complementary/metabolism , Flowers/genetics , Gene Expression Profiling , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/standards , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/standards , RNA Polymerase II/genetics , RNA Polymerase II/standards , RNA, Plant/isolation & purification , RNA, Plant/metabolism , Real-Time Polymerase Chain Reaction/standards , Reference Standards
16.
DNA Cell Biol ; 36(5): 354-366, 2017 May.
Article in English | MEDLINE | ID: mdl-28277741

ABSTRACT

Crape myrtle (Lagerstroemia indica) is a woody ornamental plant popularly grown because of its long-lasting, midsummer blooms and beautiful colors. The GL1 dominant mutant is the first chlorophyll-less mutant identified in crape myrtle. It was obtained from a natural yellow leaf bud mutation. We previously revealed that leaf color of the GL1 mutant is affected by light intensity. However, the mechanism of the GL1 mutant on light response remained unclear. The acclimation response of mutant and wild-type (WT) plants was assessed in a time series after transferring from low light (LL) to high light (HL) by analyzing chlorophyll synthesis precursor content, photosynthetic performance, and gene expression. In LL conditions, coproporphyrinogen III (Coprogen III) content had the greatest amount of accumulation in the mutant compared with WT, increasing by 100%. This suggested that the yellow leaf phenotype of the GL1 dominant mutant might be caused by disruption of coproporphyrinogen III oxidase (CPO) biosynthesis. Furthermore, the candidate gene, oxygen-independent CPO (HEMN), might only affect expression of upstream genes involved in chlorophyll metabolism in the mutant. Moreover, two genes, photosystem II (PSII) 10 kDa protein (psbR) and chlorophyll a/b binding protein gene (CAB1), had decreased mRNA levels in the GL1 mutant within the first 96 h following LL/HL transfer compared with the WT. Hierarchical clustering revealed that these two genes shared a similar expression trend as the oxygen-dependent CPO (HEMF). These findings provide evidence that GL1 is highly coordinated with PSII stability and chloroplast biogenesis.


Subject(s)
Chlorophyll/genetics , Lagerstroemia/genetics , Mutation , Acclimatization/genetics , Gene Expression Regulation, Plant/radiation effects , Genes, Dominant , Genetic Complementation Test , Light , Photosynthesis/genetics , Plant Leaves/genetics , Plants, Genetically Modified
17.
PLoS One ; 11(7): e0158970, 2016.
Article in English | MEDLINE | ID: mdl-27404662

ABSTRACT

The genetic control of plant architecture is a promising approach to breed desirable cultivars, particularly in ornamental flowers. In this study, the F1 population (142 seedlings) derived from Lagerstroemia fauriei (non-dwarf) × L. indica 'Pocomoke' (dwarf) was phenotyped for six traits (plant height (PH), internode length (IL), internode number, primary lateral branch height (PLBH), secondary lateral branch height and primary branch number), and the IL and PLBH traits were positively correlated with the PH trait and considered representative indexes of PH. Fifty non-dwarf and dwarf seedlings were pooled and subjected to a specific-locus amplified fragment sequencing (SLAF-seq) method, which screened 1221 polymorphic markers. A total of 3 markers segregating between bulks were validated in the F1 population, with the M16337 and M38412 markers highly correlated with the IL trait and the M25207 marker highly correlated with the PLBH trait. These markers provide a predictability of approximately 80% using a single marker (M25207) and a predictability of 90% using marker combinations (M16337 + M25207) in the F1 population, which revealed that the IL and the PLBH traits, especially the PLBH, were the decisive elements for PH in terms of molecular regulation. Further validation was performed in the BC1 population and a set of 28 Lagerstroemia stocks using allele-specific PCR (AS-PCR) technology, and the results showed the stability and reliability of the SNP markers and the co-determination of PH by multiple genes. Our findings provide an important theoretical and practical basis for the early prediction and indirect selection of PH using the IL and the PLBH, and the detected SNPs may be useful for marker-assisted selection (MAS) in crape myrtle.


Subject(s)
Genetic Markers/genetics , High-Throughput Nucleotide Sequencing , Lagerstroemia/growth & development , Lagerstroemia/genetics , Phenotype , Polymorphism, Single Nucleotide , Genotype , Lagerstroemia/anatomy & histology , Polymerase Chain Reaction
18.
PLoS One ; 11(3): e0150752, 2016.
Article in English | MEDLINE | ID: mdl-26950701

ABSTRACT

Lagerstroemia (crape myrtle) is an important plant genus used in ornamental horticulture in temperate regions worldwide. As such, numerous hybrids have been developed. However, DNA sequence resources and genome information for Lagerstroemia are limited, hindering evolutionary inferences regarding interspecific relationships. We report the complete plastid genome of Lagerstroemia fauriei. To our knowledge, this is the first reported whole plastid genome within Lythraceae. This genome is 152,440 bp in length with 38% GC content and consists of two single-copy regions separated by a pair of 25,793 bp inverted repeats. The large single copy and the small single copy regions span 83,921 bp and 16,933 bp, respectively. The genome contains 129 genes, including 17 located in each inverted repeat. Phylogenetic analysis of genera sampled from Geraniaceae, Myrtaceae, and Onagraceae corroborated the sister relationship between Lythraceae and Onagraceae. The plastid genomes of L. fauriei and several other Lythraceae species lack the rpl2 intron, which indicating an early loss of this intron within the Lythraceae lineage. The plastid genome of L. fauriei provides a much needed genetic resource for further phylogenetic research in Lagerstroemia and Lythraceae. Highly variable markers were identified for application in phylogenetic, barcoding and conservation genetic applications.


Subject(s)
Genome, Plastid/genetics , Introns/genetics , Lagerstroemia/cytology , Lagerstroemia/genetics , Base Sequence , Evolution, Molecular , Genomics , Microsatellite Repeats/genetics , Molecular Sequence Annotation , Phylogeny , Species Specificity
19.
Genet Mol Res ; 14(2): 4369-80, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25966210

ABSTRACT

Plant height is one of the most important traits of plant architecture as it modulates both economic and ornamental values. Crape myrtle (Lagerstroemia indica L.) is a popular ornamental woody plant because of its long-lasting mid-summer bloom, rich colors, and diversified plant architecture. These traits also make it an ideal model of woody species for genetic analysis of many ornamental traits. To understand the inheritance of plant height and screen for genes modulating plant height in Lagerstroemia, segregation of the plant height trait was analyzed using the F1 population of L. fauriei (standard) x L. indica 'Pocomoke' (dwarf) with 96 seedlings, while dwarf genes were screened using the bulked segregant analysis method, combined with 28 amplified fragment length polymorphism primers and 41 simple sequence repeat primers. The results showed that the dwarf trait of crape myrtle was controlled by a major gene and modified by minor genes. An amplified fragment length polymorphism marker, M53E39-92, which was 23.33 cM from the loci controlling the dwarf trait, was screened. These results provide basic information for marker-assisted selection in Lagerstromia and cloning of dwarf genes in future studies.


Subject(s)
Genes, Plant , Lagerstroemia/anatomy & histology , Phenotype , Amplified Fragment Length Polymorphism Analysis , Biometry , Genetic Markers , Lagerstroemia/genetics
20.
Phytochemistry ; 106: 94-103, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25092227

ABSTRACT

Lagerstroemia speciosa commonly known as 'Banaba' is native of south-east Asia which exhibits both horticultural and therapeutic value. The anti-diabetic and anti-obese property of the tree is attributed to corosolic acid (CRA)-a pentacyclic triterpene seen predominantly in the mature leaves. Although there are studies on either chemical or genetic variation in L. speciosa from different regions, none have dealt with their association to discuss the formation of chemical diversity. For the first time, we have analyzed CRA content in 12 natural populations corresponding to 42 samples seen in the Southern Western Ghats (SWG) using chromatography techniques and genetic variation estimated using SSR markers. Significant variation in percentage distribution of CRA ranging from 0.005% to 0.868% dr.wt. was recorded wherein populations from the north SWG contain relatively more active principle (mean=0.321%) than their counterparts in the south (mean=0.064%). Similarly, SSR data showing relatively high rate of gene flow (Nm=2.72) and low genetic differentiation (FST=0.14) is indicative that populations from north are genetically more diverse than those in the south (Nm=0.48; FST=0.38). The scatter plot derived by Principle Component Analysis (PCA) of chemical and genetic data shows similar pattern of clustering that reveals strong association between the two sets of data. It is concluded that the observed variation in CRA content in natural populations of the species depends more on the genetic background and less on edaphic factors.


Subject(s)
Lagerstroemia/chemistry , Lagerstroemia/genetics , Microsatellite Repeats , Triterpenes/chemistry , Gene Flow , Genetic Variation , Genetics, Population , Geography , India
SELECTION OF CITATIONS
SEARCH DETAIL
...