Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 302
Filter
1.
Parasitol Res ; 123(8): 301, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150558

ABSTRACT

Schistosomiasis is a significant public health threat, and Oncomelania hupensis is the only intermediate host for schistosoma japonicum. We conducted 12-year monthly repeated surveys to explore the interactive and lag effects of environmental factors on snail density and to monitor their long-term and seasonal trends in a bottomland around the Dongting Lake region in China. Relevant environmental data were obtained from multiple sources. A Bayesian kernel machine regression model and a Bayesian temporal model combined with a distributed lag model were constructed to analyze interactive and lag effects of environmental factors on snail density. The results indicated the average annual snail density in the study site exhibited an increasing and then decreasing trend, peaking in 2013. Snail densities were the highest in October and the lowest in January in a year. Normalized Difference Vegetation Index (NDVI) and water level were the most effective predictors of snail density, with potential interactions among temperature, precipitation, and NDVI. The mean minimum temperature in January, water level, precipitation and NDVI were positively correlated with snail density at lags ranging from 1 to 4 months. These findings could serve as references for relevant authorities to monitor the changing trend of snail density and implement control measures, thereby reducing the occurrence of schistosomiasis.


Subject(s)
Seasons , Snails , Animals , China/epidemiology , Snails/parasitology , Schistosoma japonicum/physiology , Population Density , Lakes/parasitology , Schistosomiasis japonica/epidemiology , Schistosomiasis japonica/parasitology , Schistosomiasis japonica/transmission , Temperature , Bayes Theorem , Schistosomiasis/epidemiology , Schistosomiasis/transmission , Schistosomiasis/parasitology , Environment
2.
Parasite ; 31: 46, 2024.
Article in English | MEDLINE | ID: mdl-39109983

ABSTRACT

African cichlids are model systems for evolutionary studies and host-parasite interactions, because of their adaptive radiations and because they harbour many species of monogenean parasites with high host-specificity. Five locations were sampled in southern Lake Victoria: gill-infecting monogeneans were surveyed from 18 cichlid species belonging to this radiation superflock and two others representing two older and distantly related lineages. We found one species of Gyrodactylidae, Gyrodactylus sturmbaueri Vanhove, Snoeks, Volckaert & Huyse, 2011, and seven species of Dactylogyridae. Four are described herein: Cichlidogyrus pseudodossoui n. sp., Cichlidogyrus nyanza n. sp., Cichlidogyrus furu n. sp., and Cichlidogyrus vetusmolendarius n. sp. Another Cichlidogyrus species is reported but not formally described (low number of specimens, morphological similarity with C. furu n. sp.). Two other species are redescribed: C. bifurcatus Paperna, 1960 and C. longipenis Paperna & Thurston, 1969. Our results confirm that the monogenean fauna of Victorian littoral cichlids displays lower species richness and lower host-specificity than that of Lake Tanganyika littoral cichlids. In C. furu n. sp., hooks V are clearly longer than the others, highlighting the need to re-evaluate the current classification system that considers hook pairs III-VII as rather uniform. Some morphological features of C. bifurcatus, C. longipenis, and C. nyanza n. sp. suggest that these are closely related to congeners that infect other haplochromines. Morphological traits indicate that representatives of Cichlidogyrus colonised Lake Victoria haplochromines or their ancestors at least twice, which is in line with the Lake Victoria superflock being colonised by two cichlid tribes (Haplochromini and Oreochromini).


Title: Quatre espèces nouvelles de Cichlidogyrus (Plathelminthes, Monopisthocotyla, Dactylogyridae) parasites d'haplochrominés (Cichlidae) du lac Victoria, avec la redescription de C. bifurcatus et C. longipenis. Abstract: Les cichlidés africains sont des systèmes modèles pour les études évolutives et les interactions hôtes-parasites, en raison de leurs radiations adaptatives et parce qu'ils hébergent de nombreuses espèces de monogènes parasites avec une spécificité d'hôte étroite. Cinq sites ont été échantillonnés dans le sud du lac Victoria, les monogènes infectant les branchies ont été étudiés chez 18 espèces de cichlidés appartenant à ce superflock et de deux autres espèces représentant deux lignées plus anciennes et éloignées. Nous avons trouvé une espèce de Gyrodactylidae, Gyrodactylus sturmbaueri Vanhove, Snoeks, Volckaert & Huyse, 2011, et sept espèces de Dactylogyridae. Quatre sont décrites ici : Cichlidogyrus pseudodossoui n. sp., Cichlidogyrus nyanza n. sp., Cichlidogyrus furu n. sp. et Cichlidogyrus vetusmolendarius n. sp. Une autre espèce de Cichlidogyrus est signalée mais non formellement décrite (faible nombre de spécimens, similarité morphologique avec C. furu n. sp.). Deux autres espèces sont redécrites : C. bifurcatus Paperna, 1960 et C. longipenis Paperna & Thurston, 1969. Nos résultats confirment que la faune des monogènes des cichlidés du littoral du lac Victoria présente une richesse en espèces et une spécificité d'hôte inférieures à celles des cichlidés du littoral du lac Tanganyika. Chez C. furu n. sp., les crochets V sont clairement plus longs que les autres, ce qui souligne la nécessité de réévaluer le système de classification actuel qui considère que les crochets III-VII sont plutôt uniformes. Certaines caractéristiques morphologiques de C. bifurcatus, C. longipenis et C. nyanza n. sp. suggèrent que ceux-ci sont étroitement liés aux congénères qui infectent les autres haplochrominés. Les traits morphologiques indiquent que les représentants de Cichlidogyrus ont colonisé les haplochrominés du lac Victoria ou leurs ancêtres au moins deux fois, ce qui concorde avec le fait que le superflock du lac Victoria a été colonisé par deux tribus de cichlidés (Haplochromini et Oreochromini).


Subject(s)
Cichlids , Fish Diseases , Gills , Lakes , Platyhelminths , Trematode Infections , Animals , Cichlids/parasitology , Lakes/parasitology , Fish Diseases/parasitology , Trematode Infections/parasitology , Trematode Infections/veterinary , Gills/parasitology , Platyhelminths/classification , Platyhelminths/anatomy & histology , Platyhelminths/isolation & purification , Host-Parasite Interactions , Male , Host Specificity , Female , Phylogeny
3.
Microbiome ; 12(1): 133, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030632

ABSTRACT

BACKGROUND: Protists, single-celled eukaryotic organisms, are critical to food web ecology, contributing to primary productivity and connecting small bacteria and archaea to higher trophic levels. Lake Mendota is a large, eutrophic natural lake that is a Long-Term Ecological Research site and among the world's best-studied freshwater systems. Metagenomic samples have been collected and shotgun sequenced from Lake Mendota for the last 20 years. Here, we analyze this comprehensive time series to infer changes to the structure and function of the protistan community and to hypothesize about their interactions with bacteria. RESULTS: Based on small subunit rRNA genes extracted from the metagenomes and metagenome-assembled genomes of microeukaryotes, we identify shifts in the eukaryotic phytoplankton community over time, which we predict to be a consequence of reduced zooplankton grazing pressures after the invasion of a invasive predator (the spiny water flea) to the lake. The metagenomic data also reveal the presence of the spiny water flea and the zebra mussel, a second invasive species to Lake Mendota, prior to their visual identification during routine monitoring. Furthermore, we use species co-occurrence and co-abundance analysis to connect the protistan community with bacterial taxa. Correlation analysis suggests that protists and bacteria may interact or respond similarly to environmental conditions. Cryptophytes declined in the second decade of the timeseries, while many alveolate groups (e.g., ciliates and dinoflagellates) and diatoms increased in abundance, changes that have implications for food web efficiency in Lake Mendota. CONCLUSIONS: We demonstrate that metagenomic sequence-based community analysis can complement existing efforts to monitor protists in Lake Mendota based on microscopy-based count surveys. We observed patterns of seasonal abundance in microeukaryotes in Lake Mendota that corroborated expectations from other systems, including high abundance of cryptophytes in winter and diatoms in fall and spring, but with much higher resolution than previous surveys. Our study identified long-term changes in the abundance of eukaryotic microbes and provided context for the known establishment of an invasive species that catalyzes a trophic cascade involving protists. Our findings are important for decoding potential long-term consequences of human interventions, including invasive species introduction. Video Abstract.


Subject(s)
Bacteria , Lakes , Metagenomics , Lakes/microbiology , Lakes/parasitology , Animals , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Eukaryota/genetics , Eukaryota/classification , Phytoplankton/genetics , Phytoplankton/classification , Food Chain , Metagenome , Zooplankton/genetics , Zooplankton/classification
4.
Microb Ecol ; 87(1): 89, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955821

ABSTRACT

We investigated the food-dependent growth and thermal response of the freshwater ciliate Colpidium kleini using numerical response (NR) experiments. This bacterivorous ciliate occurs in lotic water and the pelagial of lakes and ponds. The C. kleini strain used in this work was isolated from a small alpine lake and identified by combining detailed morphological inspections with molecular phylogeny. Specific growth rates (rmax) were measured from 5 to 21 °C. The ciliate did not survive at 22 °C. The threshold bacterial food levels (0.3 - 2.2 × 106 bacterial cells mL-1) matched the bacterial abundance in the alpine lake from which C. kleini was isolated. The food threshold was notably lower than previously reported for C. kleini and two other Colpidium species. The threshold was similar to levels reported for oligotrich and choreotrich ciliates if expressed in terms of bacterial biomass (0.05 - 0.43 mg C L-1). From the NR results, we calculated physiological mortality rates at zero food concentration. The mean mortality (0.55 ± 0.17 d-1) of C. kleini was close to the mean estimate obtained for other planktonic ciliates that do not encyst. We used the data obtained by the NR experiments to fit a thermal performance curve (TPC). The TPC yielded a temperature optimum at 17.3 °C for C. kleini, a maximum upper thermal tolerance limit of 21.9 °C, and a thermal safety margin of 4.6 °C. We demonstrated that combining NR with TPC analysis is a powerful tool to predict better a species' fitness in response to temperature and food.


Subject(s)
Ciliophora , Ciliophora/physiology , Ciliophora/growth & development , Ciliophora/classification , Ciliophora/isolation & purification , Lakes/microbiology , Lakes/parasitology , Temperature , Phylogeny , Extinction, Biological , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics
5.
Parasitol Res ; 123(7): 284, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046515

ABSTRACT

Fish parasitology contributes to our understanding of the potential risks posed by diverse groups of parasitic organisms on fish stocks in either wild and culture systems. This study was conducted in May 2023 and aimed at assessing the diversity of endohelminths in the invasive North African catfish Clarias gariepinus (Burchell, 1822) obtained from two freshwater lakes, Naivasha and Ol'Bolossat, in Kenya. Parasitological examination of 66 and 35 fish samples collected from the two lakes respectively was achieved using light and scanning electron microscopy methods. Results revealed endohelminth diversity broadly classified as four digeneans, two nematodes, and one cestode. Seven taxa of endohelminths were found in C. gariepinus samples, but only four of these taxa could be identified up to the species level. Six of the taxa (Diplostomum sp., Tylodelphys mashonense, Plagiorchioidea sp., Paracamallanus cyathopharynx, Contracaecum sp., and Tetracampos ciliotheca) were common in samples from the two lakes. Glossidium pedatum only occurred in samples from Lake Ol'Bolossat. Parasite prevalence ranged from 8.6 (T. mashonense) to 100% (Diplostomum sp., T. ciliotheca, and Contracaecum sp.) and mean intensity from 1.4 (T. mashonense) to 16.9 (Diplostomum sp.). The diversity and richness indices were comparatively higher in fish samples from Lake Ol'Bolossat and attributed to the occurrence of G. pedatum in the Ol'Bolossat. However, parasitic infestation of fish samples from the two lakes depicted close similarity, both in diversity and prevalence. These findings form an important baseline data for further follow-up studies, and they suggest the need for further molecular analyses to fully describe three of the taxa only identified up to the genus level.


Subject(s)
Catfishes , Fish Diseases , Lakes , Animals , Kenya/epidemiology , Lakes/parasitology , Catfishes/parasitology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Helminths/classification , Helminths/isolation & purification , Microscopy , Biodiversity , Microscopy, Electron, Scanning , Helminthiasis, Animal/parasitology , Helminthiasis, Animal/epidemiology
6.
PeerJ ; 12: e17598, 2024.
Article in English | MEDLINE | ID: mdl-39011383

ABSTRACT

Background: In Europe, avian schistosomes of the genus Trichobilharzia are the most common etiological agents involved in human cercarial dermatitis (swimmer's itch). Manifested by a skin rash, the condition is caused by an allergic reaction to cercariae of nonhuman schistosomes. Humans are an accidental host in this parasite's life cycle, while water snails are the intermediate, and waterfowl are the final hosts. The study aimed to conduct a molecular and phylogenetic analysis of Trichobilharzia species occurring in recreational waters in North-Eastern Poland. Methodology: The study area covered three water bodies (Lake Skanda, Lake Ukiel, and Lake Tyrsko) over the summer of 2021. In total, 747 pulmonate freshwater snails (Radix spp., Lymnaea stagnalis) were collected. Each snail was subjected to 1-2 h of light stimulation to induce cercarial expulsion. The phylogenetic analyses of furcocercariae were based on the partial sequence of the ITS region (ITS1, 5.8S rDNA, ITS2 and 28SrDNA). For Radix spp. phylogenetic analyses were based on the ITS-2 region. Results: The prevalence of the Trichobilharzia species infection in snails was 0.5%. Two out of 478 (0.4%) L. stagnaliswere found to be infected with Trichobilharzia szidati. Moreover, two out of 269 (0.7%) snails of the genus Radix were positive for schistosome cercariae. Both snails were identified as Radix auricularia. One of them was infected with Trichobilharzia franki and the other with Trichobilharzia sp. Conclusions: Molecular identification of avian schistosome species, both at the intermediate and definitive hosts level, constitutes an important source of information on a potential threat and prognosis of local swimmer's itch occurrence, and helps to determine species diversity in a particular area.


Subject(s)
Phylogeny , Schistosomatidae , Animals , Schistosomatidae/genetics , Poland/epidemiology , Snails/parasitology , Lakes/parasitology , Humans , Trematode Infections/parasitology , Trematode Infections/veterinary , Trematode Infections/epidemiology , DNA, Helminth/genetics
7.
Parasit Vectors ; 17(1): 272, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937778

ABSTRACT

BACKGROUND: Along the southern shoreline of Lake Malawi, the incidence of schistosomiasis is increasing with snails of the genera Bulinus and Biomphalaria transmitting urogenital and intestinal schistosomiasis, respectively. Since the underlying distribution of snails is partially known, often being focal, developing pragmatic spatial models that interpolate snail information across under-sampled regions is required to understand and assess current and future risk of schistosomiasis. METHODS: A secondary geospatial analysis of recently collected malacological and environmental survey data was undertaken. Using a Bayesian Poisson latent Gaussian process model, abundance data were fitted for Bulinus and Biomphalaria. Interpolating the abundance of snails along the shoreline (given their relative distance along the shoreline) was achieved by smoothing, using extracted environmental rainfall, land surface temperature (LST), evapotranspiration, normalised difference vegetation index (NDVI) and soil type covariate data for all predicted locations. Our adopted model used a combination of two-dimensional (2D) and one dimensional (1D) mapping. RESULTS: A significant association between normalised difference vegetation index (NDVI) and abundance of Bulinus spp. was detected (log risk ratio - 0.83, 95% CrI - 1.57, - 0.09). A qualitatively similar association was found between NDVI and Biomphalaria sp. but was not statistically significant (log risk ratio - 1.42, 95% CrI - 3.09, 0.10). Analyses of all other environmental data were considered non-significant. CONCLUSIONS: The spatial range in which interpolation of snail distributions is possible appears < 10km owing to fine-scale biotic and abiotic heterogeneities. The forthcoming challenge is to refine geospatial sampling frameworks with future opportunities to map schistosomiasis within actual or predicted snail distributions. In so doing, this would better reveal local environmental transmission possibilities.


Subject(s)
Biomphalaria , Bulinus , Lakes , Schistosomiasis , Animals , Malawi/epidemiology , Lakes/parasitology , Biomphalaria/parasitology , Bulinus/parasitology , Schistosomiasis/epidemiology , Schistosomiasis/transmission , Schistosomiasis/parasitology , Spatial Analysis , Humans , Bayes Theorem , Snails/parasitology , Disease Vectors
8.
J Parasitol ; 110(3): 232-238, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38897605

ABSTRACT

Among-deme asynchrony has the potential to influence community richness and diversity by increasing the likelihood of regional persistence for a species. Parasites of Lepomis spp. collected from 4 localities at J. Strom Thurmond Lake, South Carolina over a 1-yr period were used to evaluate patterns of parasite population synchrony. Localities were separated by approximately 5 km to increase the likelihood that the parasites sampled represented different demes. Tylodelphys scheuringi and Crinicleidus longus, exhibited negative covariation between synchrony and among-locality distances. The degree of synchrony exhibited by Neoechinorhynchus cylindratis, Crepidostomum cornutum, and Clavunculus bifurcatus was associated with the degree of similarity in habitat structure between localities. Patterns of synchrony for Posthodiplostomum minimum and Spinitectus sp. were not associated with any of the habitat variables examined. The influence of habitat structure on parasite population synchrony, possibly through the refraction of large-scale environmental drivers, has the potential to produce asynchronous dynamics that are independent of the distance between demes, thereby promoting regional persistence by increasing the likelihood of rescue effects.


Subject(s)
Ecosystem , Fish Diseases , Lakes , Animals , South Carolina , Lakes/parasitology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Population Dynamics
9.
J Parasitol ; 110(3): 221-231, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38897603

ABSTRACT

Environmental DNA (eDNA) surveys promise to be a sensitive and powerful tool for the detection of trematodes. This can contribute to the limited studies on trematode ecology, specifically in aquatic ecosystems. Here, we developed species-specific primer and probe sets for Moliniella anceps, Opisthioglyphe ranae, and Plagiorchis multiglandularis cercariae and applied a novel eDNA qPCR assay to detect larval trematodes quantitatively. We evaluated the effectiveness of the assays using filtered lake water samples collected from different sites of Lake Fadikha and Kargat River Estuary in Lake Chany, Russia, showing high species specificity and sensitivity in all 3 assays. Further, all 3 assays had high efficiencies ranging from 94.9 to 105.8%. Moliniella anceps, O. ranae, and P. multiglandularis were detected in the environmental water samples through real-time PCR. Thus, we anticipate that our approach will be beneficial for biomonitoring, measuring, and managing ecological systems.


Subject(s)
DNA, Environmental , DNA, Helminth , Lakes , Real-Time Polymerase Chain Reaction , Trematoda , Animals , Lakes/parasitology , Real-Time Polymerase Chain Reaction/standards , Trematoda/genetics , Trematoda/classification , Trematoda/isolation & purification , DNA, Helminth/isolation & purification , DNA, Helminth/analysis , Russia , DNA, Environmental/isolation & purification , DNA, Environmental/analysis , Species Specificity , Trematode Infections/parasitology , Trematode Infections/diagnosis , Trematode Infections/veterinary , Sensitivity and Specificity , DNA Primers , Snails/parasitology
10.
PeerJ ; 12: e17348, 2024.
Article in English | MEDLINE | ID: mdl-38770098

ABSTRACT

Lake Baikal is one of the largest and oldest freshwater reservoirs on the planet with a huge endemic diversity of amphipods (Amphipoda, Crustacea). These crustaceans have various symbiotic relationships, including the rarely described phenomenon of leech parasitism on amphipods. It is known that leeches feeding on hemolymph of crustacean hosts can influence their physiology, especially under stressful conditions. Here we show that leeches Baicalobdella torquata (Grube, 1871) found on gills of Eulimnogammarus verrucosus (Gerstfeldt, 1858), one of the most abundant amphipods in the Baikal littoral zone, indeed feed on the hemolymph of their host. However, the leech infection had no effect on immune parameters such as hemocyte concentration or phenoloxidase activity and also did not affect glycogen content. The intensity of hemocyte reaction to foreign bodies in a primary culture was identical between leech-free and leech-infected animals. Artificial infection with leeches also had only a subtle effect on the course of a model microbial infection in terms of hemocyte concentration and composition. Despite we cannot fully exclude deleterious effects of the parasites, our study indicates a low influence of a few leeches on E. verrucosus and shows that leech-infected amphipods can be used at least for some types of ecophysiological experiments.


Subject(s)
Amphipoda , Hemocytes , Hemolymph , Lakes , Leeches , Animals , Amphipoda/immunology , Amphipoda/parasitology , Hemolymph/immunology , Hemolymph/parasitology , Leeches/immunology , Lakes/parasitology , Hemocytes/immunology , Immunity, Cellular , Siberia , Host-Parasite Interactions/immunology
11.
Vet Parasitol Reg Stud Reports ; 51: 101034, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772644

ABSTRACT

Koi carp are globally known for their colors and cultural significance. The introduction of these fish to new environments poses a threat to local biodiversity, in addition to releasing parasites, such as argulid ectoparasites. This study presents a record of Argulus japonicus infecting carp in an artificial lake in Southern Brazil using morphological and molecular methods, with a 100% prevalence (n = 3) and a mean intensity of 21.6 parasites per host, distributed over the body surface. The invasion history of hosts in the study locality indicates that the introduction of A. japonicus occurred decades before its first formal record in Brazil.


Subject(s)
Arguloida , Carps , Fish Diseases , Animals , Carps/parasitology , Fish Diseases/parasitology , Brazil/epidemiology , Prevalence , Lakes/parasitology , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/parasitology , Lice Infestations/veterinary , Lice Infestations/parasitology
12.
Parasitol Int ; 101: 102893, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38588816

ABSTRACT

Three new species of Gyrodactylus are described from three species of bitterling in Donghu Lake, China: Gyrodactylus ocellorhodei n. sp. from Rhodeus ocellatus; G. sinenorhodei n. sp. from Rhodeus sinensis; and G. acheilorhodei n. sp. from Acheilognathus macropterus. All the three new species showed similar opisthaptor morphology, especially the marginal hooks: all had a slender and perpendicular sickle shaft, and flat sickle base with distinct heel and inner arch which was different from the G. rhodei-group species parasitic on bitterling. Multivariate analyses based on hamulus and marginal hooks suggested that these three new species cannot be completely distinguished, despite some morphology divergence observed in certain less reliable morphometric features, such as hamulus root length, ventral bar total length and process shape. These three new species shared an identical 18S ribosomal RNA gene sequence, while the variation in the Internal Transcribed Spacers (ITS1-ITS2) sequence among them (8.4-11.2%, K2P) far exceeded the 1% ITS sequence difference that had been suggested as a threshold for species delimitation of Gyrodactylus. Phylogenetic analysis based on ITS1-ITS2 showed that all these sequenced Gyrodactylus spp. parasitic on the subfamily Acheilognathinae host formed a monophyletic group. However, a clear differentiation (18.9-20.9%, K2P of ITS1-ITS2) could be found between the subgroup from China (G. ocellorhodei n. sp., G. sinenorhodei n. sp. and G. acheilorhodei n. sp.) and that from Europe (G. rhodei).


Subject(s)
Fish Diseases , Phylogeny , Trematoda , Trematode Infections , Animals , Fish Diseases/parasitology , China , Trematode Infections/parasitology , Trematode Infections/veterinary , Trematoda/classification , Trematoda/anatomy & histology , Trematoda/genetics , Trematoda/isolation & purification , RNA, Ribosomal, 18S/analysis , Cyprinidae/parasitology , DNA, Ribosomal Spacer/analysis , DNA, Helminth/analysis , Lakes/parasitology , Platyhelminths/classification , Platyhelminths/anatomy & histology , Platyhelminths/isolation & purification , Platyhelminths/genetics
13.
Parasitology ; 151(5): 495-505, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38465379

ABSTRACT

Avian schistosomes are snail-borne trematode parasites (Trichobilharzia spp.) that can cause a nasty skin rash in humans when their cercariae mistake us for their normal bird hosts. We sought to investigate drivers of the spatial distribution of Trichobilharzia cercaria abundance throughout Northern Michigan lakes. For 38 sites on 16 lakes, we assessed several dozen potential environmental predictors that we hypothesized might have direct or indirect effects on overall cercaria abundance, based on known relationships between abiotic and biotic factors in wetland ecosystems. We included variables quantifying local densities of intermediate hosts, temperature, periphyton growth rates, human land use and hydrology. We also measured daily abundance of schistosome cercariae in the water over a 5-week period, supported by community scientists who collected and preserved filtered water samples for qPCR. The strongest predictor of cercaria abundance was Lymnaea host snail density. Lymnaea density was higher in deeper lakes and at sites with more deciduous tree cover, consistent with their association with cool temperature habitats. Contrary to past studies of human schistosomes, we also found a significant negative relationship between cercaria abundance and submerged aquatic vegetation, possibly due to vegetation blocking cercaria movement from offshore snail beds. If future work shows that these effects are indeed causal, then these results suggest possible new approaches to managing swimmer's itch risk in northern MI lakes, such as modifying tree cover and shallow-water vegetation at local sites.


Subject(s)
Bird Diseases , Birds , Lakes , Schistosomatidae , Snails , Animals , Lakes/parasitology , Michigan , Schistosomatidae/isolation & purification , Schistosomatidae/genetics , Schistosomatidae/physiology , Birds/parasitology , Snails/parasitology , Bird Diseases/parasitology , Bird Diseases/epidemiology , Ecosystem , Trematode Infections/parasitology , Trematode Infections/veterinary , Trematode Infections/epidemiology , Temperature , Cercaria/physiology , Wetlands
14.
J Vet Diagn Invest ; 36(3): 368-379, 2024 May.
Article in English | MEDLINE | ID: mdl-38372172

ABSTRACT

We investigated disease trends of concern for fish or public health in a 5-y (2017-2021) prospective survey of fish in Cook County, IL, inland lakes. Lesions were assessed in relation to fish species, lake type and location, season and collection year, and lake water chemistry parameters. Fish included bullheads (n = 98), common carp (n = 99), bluegill (n = 114), and largemouth bass (n = 118). Annually, fish collection and point-source water sampling were conducted in spring, summer, and fall from both seepage and impoundment lakes. Examinations included autopsy, wet-mount cytologic assessment for ectoparasites, and histopathology. No lesions of public health concern were detected. The most common abnormalities were branchitis (261 of 429; 60.8%) and endoparasitism (312 of 429; 72.7%). Branchitis was mild in most cases (189 of 261; 72.4%) and concurrent with branchial parasitism in 175 of 261 (67%) cases. Monogeneans were the most common gill parasites but did not influence branchitis severity (Kruskal-Wallis, p = 0.484). Using generalized ordered logistic regression, predictors of branchitis severity included fish species (p < 0.001), the interaction of lake or location and alkalinity (p < 0.001), and water temperature or season (p < 0.001). Endoparasites included tissue larval trematodes (metacercaria), nematodes, and cestodes (plerocercoids), enteric acanthocephalans, gastric trematodes, renal myxosporidia, biliary and gall bladder myxosporidia, enteric cestodes, and tissue microsporidia. Using generalized ordered logistic regression, variables influencing endoparasitism severity included species (p < 0.001), year (p < 0.001), chloride level (p = 0.009), and the interaction of year and chloride level (p < 0.001). Our results suggested overall good health of fish in sampled Cook County inland lakes and provide a foundation for continued monitoring of ecosystem and public health in the urban environment.


Subject(s)
Fish Diseases , Fishes , Lakes , Animals , Lakes/parasitology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Fish Diseases/pathology , Illinois/epidemiology , Fishes/parasitology , Seasons , Prospective Studies , Gills/parasitology , Gills/pathology
15.
PLoS One ; 19(2): e0288948, 2024.
Article in English | MEDLINE | ID: mdl-38359003

ABSTRACT

Swimmer's itch (SI) is a dermatitis in humans caused by cercariae of avian and mammalian schistosomes which emerge from infected snails on a daily basis. Mitigation methods for SI have long been sought with little success. Copper sulfate application to the water to kill the snail hosts is the historically employed method, but is localized, temporary, and harmful to many aquatic species. Here, we test an alternative method to control Trichobilharzia stagnicolae, a species well-known to cause SI in northern Michigan and elsewhere in North America. Summer relocation of broods of the only known vertebrate host, common merganser (Mergus merganser), greatly reduced snail infection prevalence the following year on two large, geographically separated lakes in northern Michigan. Subsequent years of host relocation achieved and maintained snail infection prevalence at ~0.05%, more than an order of magnitude lower than pre-intervention. A Before-After-Control-Intervention (BACI) study design using multiple-year snail infection data from two intervention lakes and three control lakes demonstrates that dramatic lake-wide reduction of an avian schistosome can be achieved and is not due to natural fluctuations in the parasite populations. The relevance of reducing snail infection prevalence is demonstrated by a large seven-year data set of SI incidence in swimmers at a high-use beach, which showed a substantial reduction in SI cases in two successive years after relocation began. In addition, data from another Michigan lake where vertebrate-host based intervention occurred in the 1980's are analyzed statistically and show a remarkably similar pattern of reduction in snail infection prevalence. Together, these results demonstrate a highly effective SI mitigation strategy that avoids the use of environmentally suspect chemicals and removes incentive for lethal host removal. Biologically, the results strongly suggest that T. stagnicolae is reliant on the yearly hatch of ducklings to maintain populations at high levels on a lake and that the role of migratory hosts in the spring and fall is much less significant.


Subject(s)
Dermatitis , Schistosomatidae , Schistosomiasis , Skin Diseases, Parasitic , Trematode Infections , Animals , Humans , Lakes/parasitology , Trematode Infections/parasitology , Schistosomiasis/epidemiology , Skin Diseases, Parasitic/etiology , Skin Diseases, Parasitic/parasitology , Ducks , Snails/parasitology , Mammals
16.
Int J Parasitol ; 54(1): 33-46, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37633409

ABSTRACT

Eye flukes (Diplostomidae) are diverse and abundant trematode parasites that form multi-species communities in fish with negative effects on host fitness and survival. However, the environmental factors and host-related characteristics that determine species diversity, composition, and coexistence in such communities remain poorly understood. Here, we developed a cost-effective cox1 region-specific DNA metabarcoding approach to characterize parasitic diplostomid communities in two common fish species (Eurasian perch and common roach) collected from seven temperate lakes in Estonia. We found considerable inter- and intra-lake, as well as inter-host species, variation in diplostomid communities. Sympatric host species characterization revealed that parasite communities were typically more diverse in roach than perch. Additionally, we detected five positive and two negative diplostomid species associations in roach, whereas only a single negative association was observed in perch. These results indicate that diplostomid communities in temperate lakes are complex and dynamic systems exhibiting both spatial and temporal heterogeneity. They are influenced by various environmental factors and by host-parasite and inter-parasite interactions. We expect that the described methodology facilitates ecological and biodiversity research of diplostomid parasites. It is also adaptable to other parasite groups where it could serve to improve current understanding of diversity, distribution, and interspecies interactions of other understudied taxa.


Subject(s)
Cyprinidae , Fish Diseases , Parasites , Perches , Trematoda , Animals , Lakes/parasitology , Ecosystem , DNA Barcoding, Taxonomic , Perches/parasitology , Cyprinidae/parasitology , Trematoda/genetics , Fish Diseases/parasitology
17.
Am J Trop Med Hyg ; 109(3): 626-639, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37549892

ABSTRACT

Almost all human giardiasis infections are caused by Giardia duodenalis assemblages A and B. Differentiation between human infections with these assemblages, as well as between single-assemblage (A or B) and mixed-assemblage (A and B) infections, is therefore needed to better understand the pathological impact of infection with either, or both, assemblages. We assessed the prevalence of G. duodenalis assemblages A and B using 305 fecal samples provided by school-age children situated along the southern shoreline of Lake Malawi. Concurrently, intestinal pathology data were also collected to test for association(s) between assemblage infection status and intestinal health. Prevalence of G. duodenalis infection was 39.3% by real-time polymerase chain reaction. Of all identified infections, 32% were single G. duodenalis assemblage A and 32% were single G. duodenalis assemblage B, whereas 33% were mixed-assemblage infections. Fifteen unique G. duodenalis assemblage A and 13 unique G. duodenalis assemblage B ß-giardin haplotypes were identified. There was a positive association between single infection with G. duodenalis assemblage B and both self-reporting of abdominal pain (odds ratio [OR]: 3.05, P = 0.004) and self-reporting of diarrhea (OR: 3.1, P = 0.003). No association between single infection with assemblage A and any form of intestinal pathology was found. Additionally, there was a positive association between mixed-assemblage infections and self-reporting of abdominal pain (OR: 3.1, P = 0.002). Our study highlights the importance G. duodenalis assemblage typing and reaffirms the need for improved access to water, sanitation and hygiene infrastructure in rural areas of low- and middle-income countries.


Subject(s)
Giardia lamblia , Giardiasis , Molecular Epidemiology , Giardia lamblia/classification , Giardia lamblia/genetics , Giardia lamblia/isolation & purification , Giardiasis/diagnosis , Giardiasis/epidemiology , Giardiasis/parasitology , Humans , Child , Malawi/epidemiology , Feces/parasitology , Genotyping Techniques , Prevalence , Rapid Diagnostic Tests , Molecular Diagnostic Techniques , Haplotypes , Cytoskeletal Proteins/genetics , Protozoan Proteins/genetics , Lakes/parasitology
18.
Microb Ecol ; 85(4): 1630-1633, 2023 May.
Article in English | MEDLINE | ID: mdl-35552794

ABSTRACT

Microsporidia are a large group of obligate intracellular eukaryotic parasites. Recent studies suggest that their diversity can be huge in freshwater lake ecosystems especially in the < 150-µm size fraction. However, little is known about their hosts and therefore their impact on the trophic food web functioning. In this study, single cell analysis and fluorescence microscopy were used to detect new host-parasite association within rotifer communities in lake Aydat (France). Our analysis showed the existence of a potential new species belonging to the Crispospora genus able of infecting the rotifer Kellicottia with a high prevalence (42.5%) suggesting that Microsporidia could have a great impact on the rotifer populations' regulation in lakes.


Subject(s)
Microsporidia , Microsporidia/physiology , Lakes/parasitology , Ecosystem , Food Chain , Single-Cell Analysis
19.
Sci Total Environ ; 858(Pt 2): 159866, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36328255

ABSTRACT

It is well-established that environmental variability and cyanobacterial blooms have major effects on the assembly and functioning of bacterial communities in both marine and freshwater habitats. It remains unclear, however, how the ciliate community responds to such changes over the long-term, particularly in subtropical lake and reservoir ecosystems. We analysed 9-year planktonic ciliate data series from the surface water of two subtropical reservoirs to elucidate the role of cyanobacterial bloom and environmental variabilities on the ciliate temporal dynamics. We identified five distinct periods of cyanobacterial succession in both reservoirs. Using multiple time-scale analyses, we found that the interannual variability of ciliate communities was more strongly related to cyanobacterial blooms than to other environmental variables or to seasonality. Moreover, the percentage of species turnover across cyanobacterial bloom and non-bloom periods increased significantly with time over the 9-year period. Phylogenetic analyses further indicated that 84 %-86 % of ciliate community turnover was governed by stochastic dispersal limitation or undominated processes, suggesting that the ciliate communities in subtropical reservoirs were mainly controlled by neutral processes. However, short-term blooms increased the selection pressure and drove 30 %-53 % of the ciliate community turnover. We found that the ciliate community composition was influenced by environmental conditions with nutrients, cyanobacterial biomass and microzooplankton having direct and/or indirect significant effects on the ciliate taxonomic or functional community dynamics. Our results provide new insights into the long-term temporal dynamics of planktonic ciliate communities under cyanobacterial bloom disturbance.


Subject(s)
Ciliophora , Cyanobacteria , Ecosystem , Ciliophora/classification , Ciliophora/physiology , Cyanobacteria/physiology , Eutrophication , Lakes/microbiology , Lakes/parasitology , Phylogeny , Plankton/classification , Plankton/physiology , Biodiversity , Population Dynamics
20.
Parasitology ; 149(9): 1173-1178, 2022 08.
Article in English | MEDLINE | ID: mdl-35570667

ABSTRACT

The cestode Schistocephalus solidus is a common parasite in freshwater threespine stickleback populations, imposing strong fitness costs on their hosts. Given this, it is surprising how little is known about the timing and development of infections in natural stickleback populations. Previous work showed that young-of-year stickleback can get infected shortly after hatching. We extended this observation by comparing infection prevalence of young-of-year stickleback from 3 Alaskan populations (Walby, Cornelius and Wolf lakes) over 2 successive cohorts (2018/19 and 2019/20). We observed strong variation between sampling years (2018 vs 2019 vs 2020), stickleback age groups (young-of-year vs 1-year-old) and sampling populations.


Subject(s)
Cestode Infections , Fish Diseases , Smegmamorpha , Alaska/epidemiology , Animals , Cestode Infections/epidemiology , Cestode Infections/veterinary , Fish Diseases/epidemiology , Fish Diseases/parasitology , Host-Parasite Interactions , Lakes/parasitology , Smegmamorpha/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL