Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12826, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834813

ABSTRACT

Lamin A/C gene (LMNA) mutations contribute to severe striated muscle laminopathies, affecting cardiac and skeletal muscles, with limited treatment options. In this study, we delve into the investigations of five distinct LMNA mutations, including three novel variants and two pathogenic variants identified in patients with muscular laminopathy. Our approach employs zebrafish models to comprehensively study these variants. Transgenic zebrafish expressing wild-type LMNA and each mutation undergo extensive morphological profiling, swimming behavior assessments, muscle endurance evaluations, heartbeat measurement, and histopathological analysis of skeletal muscles. Additionally, these models serve as platform for focused drug screening. We explore the transcriptomic landscape through qPCR and RNAseq to unveil altered gene expression profiles in muscle tissues. Larvae of LMNA(L35P), LMNA(E358K), and LMNA(R453W) transgenic fish exhibit reduced swim speed compared to LMNA(WT) measured by DanioVision. All LMNA transgenic adult fish exhibit reduced swim speed compared to LMNA(WT) in T-maze. Moreover, all LMNA transgenic adult fish, except LMNA(E358K), display weaker muscle endurance than LMNA(WT) measured by swimming tunnel. Histochemical staining reveals decreased fiber size in all LMNA mutations transgenic fish, excluding LMNA(WT) fish. Interestingly, LMNA(A539V) and LMNA(E358K) exhibited elevated heartbeats. We recognize potential limitations with transgene overexpression and conducted association calculations to explore its effects on zebrafish phenotypes. Our results suggest lamin A/C overexpression may not directly impact mutant phenotypes, such as impaired swim speed, increased heart rates, or decreased muscle fiber diameter. Utilizing LMNA zebrafish models for drug screening, we identify L-carnitine treatment rescuing muscle endurance in LMNA(L35P) and creatine treatment reversing muscle endurance in LMNA(R453W) zebrafish models. Creatine activates AMPK and mTOR pathways, improving muscle endurance and swim speed in LMNA(R453W) fish. Transcriptomic profiling reveals upstream regulators and affected genes contributing to motor dysfunction, cardiac anomalies, and ion flux dysregulation in LMNA mutant transgenic fish. These findings faithfully mimic clinical manifestations of muscular laminopathies, including dysmorphism, early mortality, decreased fiber size, and muscle dysfunction in zebrafish. Furthermore, our drug screening results suggest L-carnitine and creatine treatments as potential rescuers of muscle endurance in LMNA(L35P) and LMNA(R453W) zebrafish models. Our study offers valuable insights into the future development of potential treatments for LMNA-related muscular laminopathy.


Subject(s)
Animals, Genetically Modified , Carnitine , Creatine , Lamin Type A , Muscle, Skeletal , Mutation , Zebrafish , Animals , Lamin Type A/genetics , Lamin Type A/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Creatine/metabolism , Carnitine/metabolism , Disease Models, Animal , Laminopathies/genetics , Laminopathies/metabolism , Swimming , Transcriptome , Humans
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166943, 2024 02.
Article in English | MEDLINE | ID: mdl-37951507

ABSTRACT

LMNA-related muscular dystrophy is a major disease phenotype causing mortality and morbidity in laminopathies, but its pathogenesis is still unclear. To explore the molecular pathogenesis, a knock-in mouse harbouring the Lmna-W520R mutation was modelled. Morphological and motor functional analyses showed that homozygous mutant mice revealed severe muscular atrophy, profound motor dysfunction, and shortened lifespan, while heterozygotes showed a variant arrangement of muscle bundles and mildly reduced motor capacity. Mechanistically, the FOXO1/GADD45A pathway involving muscle atrophy processes was found to be altered in vitro and in vivo assays. The expression levels of FOXO1 and its downstream regulatory molecule GADD45A significantly increased in atrophic muscle tissue. The elevated expression of FOXO1 was associated with decreased H3K27me3 in its gene promotor region. Overexpression of GADD45A induced apoptosis and cell cycle arrest of myoblasts in vitro, and it could be partially restored by the FOXO1 inhibitor AS1842856, which also slowed the muscle atrophy process with improved motor function and prolonged survival time of homozygous mutant mice in vivo. Notably, the inhibitor also partly rescued the apoptosis and cell cycle arrest of hiPSC-derived myoblasts harbouring the LMNA-W520R mutation. Together, these data suggest that the activation of the FOXO1/GADD45A pathway contributes to the pathogenesis of LMNA-related muscle atrophy, and it might serve as a potential therapeutic target for laminopathies.


Subject(s)
Laminopathies , Muscular Dystrophies , Animals , Mice , Apoptosis/genetics , Cell Proliferation , Laminopathies/metabolism , Laminopathies/pathology , Muscular Atrophy/pathology , Muscular Dystrophies/pathology , Myoblasts/metabolism
3.
Curr Opin Cell Biol ; 86: 102290, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38048657

ABSTRACT

The nuclear envelope separates the genome from the cytoplasmic environment. However, the nuclear envelope is also physically associated with the genome and exerts influence on gene expression and genome modification. The nucleus is dynamic, changing shape and responding to cell movement, disassembling and assembling during cell division, and undergoing rupture and repair. These dynamics can be impacted by genetic disease, leading to a family of diseases called laminopathies. Their disparate phenotypes suggest that multiple processes are affected. We highlight three such processes here, which we believe can be used to classify most of the laminopathies. While much still needs to be learned, some commonalities between these processes, such as proteins involved in nuclear envelope formation and rupture repair, may drive a variety of laminopathies. Here we review the latest information regarding nuclear dynamics and its role in laminopathies related to mutations in the nuclear lamina and linker of nucleoskeleton and cytoskeleton complex (LINC) proteins.


Subject(s)
Laminopathies , Nuclear Envelope , Humans , Nuclear Envelope/metabolism , Cytoskeleton/metabolism , Microtubules/metabolism , Laminopathies/metabolism , Phenotype , Cell Nucleus/metabolism
4.
FASEB J ; 37(8): e23116, 2023 08.
Article in English | MEDLINE | ID: mdl-37498235

ABSTRACT

Laminopathies are a group of rare genetic disorders with heterogeneous clinical phenotypes such as premature aging, cardiomyopathy, lipodystrophy, muscular dystrophy, microcephaly, epilepsy, and so on. The cellular phenomena associated with laminopathy invariably show disruption of nucleoskeleton of lamina due to deregulated expression, localization, function, and interaction of mutant lamin proteins. Impaired spatial and temporal tethering of lamin proteins to the lamina or nucleoplasmic aggregation of lamins are the primary molecular events that can trigger nuclear proteotoxicity by modulating differential protein-protein interactions, sequestering quality control proteins, and initiating a cascade of abnormal post-translational modifications. Clearly, laminopathic cells exhibit moderate to high nuclear proteotoxicity, raising the question of whether an imbalance in nuclear proteostasis is involved in laminopathic diseases, particularly in diseases of early aging such as HGPS and laminopathy-associated premature aging. Here, we review nuclear proteostasis and its deregulation in the context of lamin proteins and laminopathies.


Subject(s)
Aging, Premature , Laminopathies , Humans , Aging, Premature/genetics , Aging, Premature/metabolism , Proteostasis , Cell Nucleus/metabolism , Lamins/genetics , Lamins/metabolism , Laminopathies/metabolism , Lamin Type A/genetics , Lamin Type A/metabolism , Mutation , Nuclear Lamina/genetics , Nuclear Lamina/metabolism
5.
Cells ; 12(9)2023 04 25.
Article in English | MEDLINE | ID: mdl-37174634

ABSTRACT

Oxidative stress is a physiological condition that arises when there is an imbalance between the production of reactive oxygen species (ROS) and the ability of cells to neutralize them. ROS can damage cellular macromolecules, including lipids, proteins, and DNA, leading to cellular senescence and physiological aging. The nuclear lamina (NL) is a meshwork of intermediate filaments that provides structural support to the nucleus and plays crucial roles in various nuclear functions, such as DNA replication and transcription. Emerging evidence suggests that oxidative stress disrupts the integrity and function of the NL, leading to dysregulation of gene expression, DNA damage, and cellular senescence. This review highlights the current understanding of the interplay between oxidative stress and the NL, along with its implications for human health. Specifically, elucidation of the mechanisms underlying the interplay between oxidative stress and the NL is essential for the development of effective treatments for laminopathies and age-related diseases.


Subject(s)
Laminopathies , Nuclear Lamina , Humans , Nuclear Lamina/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress , Aging , Laminopathies/metabolism
6.
Gene ; 870: 147423, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37044185

ABSTRACT

Lamin B2 (LMNB2), on the inner side of the nuclear envelope, constitutes the nuclear skeleton by connecting with other nuclear proteins. LMNB2 is involved in a wide range of nuclear functions, including DNA replication and stability, regulation of chromatin, and nuclear stiffness. Moreover, LMNB2 regulates several cellular processes, such as tissue development, cell cycle, cellular proliferation and apoptosis, chromatin localization and stability, and DNA methylation. Besides, the influence of abnormal expression and mutations of LMNB2 has been gradually discovered in cancers and laminopathies. Therefore, this review summarizes the recent advances of LMNB2-associated biological roles in physiological or pathological conditions, with a particular emphasis on cancers and laminopathies, as well as the potential mechanism of LMNB2 in related cancers.


Subject(s)
Lamin Type B , Laminopathies , Neoplasms , Nuclear Proteins , Humans , Cell Nucleus/metabolism , Chromatin/genetics , Chromatin/metabolism , Lamin Type A/genetics , Lamin Type A/metabolism , Lamin Type B/genetics , Lamin Type B/metabolism , Nuclear Envelope/genetics , Nuclear Envelope/metabolism , Nuclear Proteins/genetics , Laminopathies/metabolism , Neoplasms/metabolism
7.
Hum Mol Genet ; 32(2): 177-191, 2023 01 06.
Article in English | MEDLINE | ID: mdl-35925868

ABSTRACT

Mutations in LMNA, the gene encoding A-type lamins, cause laminopathies-diseases of striated muscle and other tissues. The aetiology of laminopathies has been attributed to perturbation of chromatin organization or structural weakening of the nuclear envelope (NE) such that the nucleus becomes more prone to mechanical damage. The latter model requires a conduit for force transmission to the nucleus. NE-associated Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes are one such pathway. Using clustered regularly interspaced short palindromic repeats to disrupt the Nesprin-1 KASH (Klarsicht, ANC-1, Syne Homology) domain, we identified this LINC complex protein as the predominant NE anchor for microtubule cytoskeleton components, including nucleation activities and motor complexes, in mouse cardiomyocytes. Loss of Nesprin-1 LINC complexes resulted in loss of microtubule cytoskeleton proteins at the nucleus and changes in nuclear morphology and positioning in striated muscle cells, but with no overt physiological defects. Disrupting the KASH domain of Nesprin-1 suppresses Lmna-linked cardiac pathology, likely by reducing microtubule cytoskeleton activities at the nucleus. Nesprin-1 LINC complexes thus represent a potential therapeutic target for striated muscle laminopathies.


Subject(s)
Laminopathies , Muscle, Striated , Animals , Mice , Microtubule Proteins/metabolism , Nuclear Proteins/metabolism , Membrane Proteins/genetics , Cytoskeleton/genetics , Cytoskeleton/metabolism , Nuclear Matrix/genetics , Microtubules/metabolism , Nuclear Envelope/genetics , Nuclear Envelope/metabolism , Intermediate Filament Proteins/metabolism , Muscle, Striated/metabolism , Laminopathies/metabolism
8.
Cell Mol Life Sci ; 79(2): 126, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35132494

ABSTRACT

B-type lamins are fundamental components of the nuclear lamina, a complex structure that acts as a scaffold for organization and function of the nucleus. Lamin B1 and B2, the most represented isoforms, are encoded by LMNB1 and LMNB2 gene, respectively. All B-type lamins are synthesized as precursors and undergo sequential post-translational modifications to generate the mature protein. B-type lamins are involved in a wide range of nuclear functions, including DNA replication and repair, regulation of chromatin and nuclear stiffness. Moreover, lamins B1 and B2 regulate several cellular processes, such as tissue development, cell cycle, cellular proliferation, senescence, and DNA damage response. During embryogenesis, B-type lamins are essential for organogenesis, in particular for brain development. As expected from the numerous and pivotal functions of B-type lamins, mutations in their genes or fluctuations in their expression levels are critical for the onset of several diseases. Indeed, a growing range of human disorders have been linked to lamin B1 or B2, increasing the complexity of the group of diseases collectively known as laminopathies. This review highlights the recent findings on the biological role of B-type lamins under physiological or pathological conditions, with a particular emphasis on brain disorders and cancer.


Subject(s)
Brain Diseases/metabolism , Lamin Type B/physiology , Laminopathies/metabolism , Neoplasms/metabolism , Animals , Humans
9.
Int J Mol Sci ; 22(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34681887

ABSTRACT

Mutations in the LMNA gene cause diseases called laminopathies. LMNA encodes lamins A and C, intermediate filaments with multiple roles at the nuclear envelope. LMNA mutations are frequently single base changes that cause diverse disease phenotypes affecting muscles, nerves, and fat. Disease-associated amino acid substitutions were mapped in silico onto three-dimensional structures of lamin A/C, revealing no apparent genotype-phenotype connections. In silico analyses revealed that seven of nine predicted partner protein binding pockets in the Ig-like fold domain correspond to sites of disease-associated amino acid substitutions. Different amino acid substitutions at the same position within lamin A/C cause distinct diseases, raising the question of whether the nature of the amino acid replacement or genetic background differences contribute to disease phenotypes. Substitutions at R249 in the rod domain cause muscular dystrophies with varying severity. To address this variability, we modeled R249Q and R249W in Drosophila Lamin C, an orthologue of LMNA. Larval body wall muscles expressing mutant Lamin C caused abnormal nuclear morphology and premature death. When expressed in indirect flight muscles, R249W caused a greater number of adults with wing posturing defects than R249Q, consistent with observations that R249W and R249Q cause distinct muscular dystrophies, with R249W more severe. In this case, the nature of the amino acid replacement appears to dictate muscle disease severity. Together, our findings illustrate the utility of Drosophila for predicting muscle disease severity and pathogenicity of variants of unknown significance.


Subject(s)
Computer Simulation , Drosophila melanogaster/metabolism , Lamin Type A/metabolism , Laminopathies/pathology , Muscular Dystrophies/pathology , Mutation , Amino Acid Substitution , Animals , Child, Preschool , Drosophila melanogaster/genetics , Female , Humans , Infant , Lamin Type A/genetics , Laminopathies/genetics , Laminopathies/metabolism , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Nuclear Envelope/genetics , Nuclear Envelope/metabolism , Nuclear Envelope/pathology , Phenotype
10.
Cell Rep ; 36(8): 109601, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34433058

ABSTRACT

Cofilins are important for the regulation of the actin cytoskeleton, sarcomere organization, and force production. The role of cofilin-1, the non-muscle-specific isoform, in muscle function remains unclear. Mutations in LMNA encoding A-type lamins, intermediate filament proteins of the nuclear envelope, cause autosomal Emery-Dreifuss muscular dystrophy (EDMD). Here, we report increased cofilin-1 expression in LMNA mutant muscle cells caused by the inability of proteasome degradation, suggesting a protective role by ERK1/2. It is known that phosphorylated ERK1/2 directly binds to and catalyzes phosphorylation of the actin-depolymerizing factor cofilin-1 on Thr25. In vivo ectopic expression of cofilin-1, as well as its phosphorylated form on Thr25, impairs sarcomere structure and force generation. These findings present a mechanism that provides insight into the molecular pathogenesis of muscular dystrophies caused by LMNA mutations.


Subject(s)
Actin Cytoskeleton/metabolism , Cofilin 1/metabolism , Destrin/metabolism , Lamin Type A/metabolism , Laminopathies/metabolism , Muscle, Striated/metabolism , Sarcomeres/metabolism , Adolescent , Adult , Animals , Cell Line , Child , Humans , Lamin Type A/genetics , Laminopathies/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Muscle, Striated/pathology , Muscular Dystrophy, Emery-Dreifuss/genetics , Muscular Dystrophy, Emery-Dreifuss/metabolism , Mutation , Phosphorylation , Signal Transduction , Young Adult
11.
Cell Mol Life Sci ; 78(1): 351-372, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32280996

ABSTRACT

The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the RAB7A gene cause the autosomal dominant Charcot-Marie-Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B.


Subject(s)
Charcot-Marie-Tooth Disease/pathology , Laminopathies/pathology , rab GTP-Binding Proteins/genetics , Cathepsins/metabolism , Cell Movement , Cells, Cultured , Cellular Reprogramming , Charcot-Marie-Tooth Disease/metabolism , Endocytosis , ErbB Receptors/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Laminopathies/metabolism , Lysosomes/metabolism , Matrix Metalloproteinase 2/metabolism , Polymorphism, Single Nucleotide , Proteolysis , RNA Interference , RNA, Small Interfering/metabolism , Sensory Receptor Cells/metabolism , rab GTP-Binding Proteins/antagonists & inhibitors , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins , rac1 GTP-Binding Protein/metabolism
12.
Cells ; 9(11)2020 10 31.
Article in English | MEDLINE | ID: mdl-33142761

ABSTRACT

Striated muscle laminopathies are cardiac and skeletal muscle conditions caused by mutations in the lamin A/C gene (LMNA). LMNA codes for the A-type lamins, which are nuclear intermediate filaments that maintain the nuclear structure and nuclear processes such as gene expression. Protein kinase C alpha (PKC-α) interacts with lamin A/C and with several lamin A/C partners involved in striated muscle laminopathies. To determine PKC-α's involvement in muscular laminopathies, PKC-α's localization, activation, and interactions with the A-type lamins were examined in various cell types expressing pathogenic lamin A/C mutations. The results showed aberrant nuclear PKC-α cellular distribution in mutant cells compared to WT. PKC-α activation (phos-PKC-α) was decreased or unchanged in the studied cells expressing LMNA mutations, and the activation of its downstream targets, ERK 1/2, paralleled PKC-α activation alteration. Furthermore, the phos-PKC-α-lamin A/C proximity was altered. Overall, the data showed that PKC-α localization, activation, and proximity with lamin A/C were affected by certain pathogenic LMNA mutations, suggesting PKC-α involvement in striated muscle laminopathies.


Subject(s)
Lamin Type A/genetics , Lamin Type A/metabolism , Laminopathies/genetics , Laminopathies/metabolism , Protein Kinase C-alpha/metabolism , Amino Acid Sequence , Animals , Cell Line , Humans , MAP Kinase Signaling System , Mice , Muscle, Striated/pathology , Muscular Diseases/genetics , Muscular Diseases/pathology , Mutation , Myoblasts/metabolism , Rats , Signal Transduction
13.
Cells ; 9(10)2020 10 07.
Article in English | MEDLINE | ID: mdl-33036437

ABSTRACT

Laminopathies are a heterogeneous group of rare diseases caused by genetic mutations in the LMNA gene, encoding A-type lamins. A-type lamins are nuclear envelope proteins which associate with B-type lamins to form the nuclear lamina, a meshwork underlying the inner nuclear envelope of differentiated cells. The laminopathies include lipodystrophies, progeroid phenotypes and striated muscle diseases. Research on striated muscle laminopathies in the recent years has provided novel perspectives on the role of the nuclear lamina and has shed light on the pathological consequences of altered nuclear lamina. The role of altered nicotinamide adenine dinucleotide (NAD+) in the physiopathology of striated muscle laminopathies has been recently highlighted. Here, we have summarized these findings and reviewed the current knowledge about NAD+ alteration in striated muscle laminopathies, providing potential therapeutic approaches.


Subject(s)
Laminopathies/metabolism , Muscle, Striated/metabolism , NAD/metabolism , Animals , Disease Models, Animal , Humans , Lamin Type A/genetics , Lamin Type A/metabolism , Laminopathies/genetics , Laminopathies/physiopathology , Muscle, Skeletal/metabolism , Muscular Diseases/pathology , Muscular Dystrophy, Emery-Dreifuss/pathology , NAD/physiology , Nuclear Lamina/metabolism , Nuclear Lamina/physiology
14.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(12): 158805, 2020 12.
Article in English | MEDLINE | ID: mdl-32829064

ABSTRACT

Charcot-Marie Tooth type 2B (CMT2B) is a rare inherited peripheral neuropathy caused by five missense mutations in the RAB7A gene, which encodes a small GTPase of the RAB family. Currently, no cure is available for this disease. In this study, we approached the disease by comparing the lipid metabolism of CMT2B-derived fibroblasts to that of healthy controls. We found that CMT2B cells showed increased monounsaturated fatty acid level and increased expression of key enzymes of monounsaturated and polyunsaturated fatty acid synthesis. Moreover, in CMT2B cells a higher expression of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), key enzymes of de novo fatty acid synthesis, with a concomitantly increased [1-14C]acetate incorporation into fatty acids, was observed. The expression of diacylglycerol acyltransferase 2, a rate-limiting enzyme in triacylglycerol synthesis, as well as triacylglycerol levels were increased in CMT2B compared to control cells. In addition, as RAB7A controls lipid droplet breakdown and lipid droplet dynamics have been linked to diseases, we analyzed these organelles and showed that in CMT2B cells there is a strong accumulation of lipid droplets compared to control cells, thus reinforcing our data on abnormal lipid metabolism in CMT2B. Furthermore, we demonstrated that ACC and FAS expression levels changed upon RAB7 silencing or overexpression in HeLa cells, thus suggesting that metabolic modifications observed in CMT2B-derived fibroblasts can be, at least in part, related to RAB7 mutations.


Subject(s)
Charcot-Marie-Tooth Disease/metabolism , Laminopathies/metabolism , Lipid Metabolism , Cells, Cultured , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Laminopathies/genetics , Laminopathies/pathology , Lipid Droplets/metabolism , Lipid Droplets/pathology , Mutation, Missense , Triglycerides/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
15.
Nucleus ; 11(1): 205-218, 2020 12.
Article in English | MEDLINE | ID: mdl-32835589

ABSTRACT

The nuclear envelope compartmentalizes chromatin in eukaryotic cells. The main nuclear envelope components are lamins that associate with a panoply of factors, including the LEM domain proteins. The nuclear envelope of mammalian cells opens up during cell division. It is reassembled and associated with chromatin at the end of mitosis when telomeres tether to the nuclear periphery. Lamins, LEM domain proteins, and DNA binding factors, as BAF, contribute to the reorganization of chromatin. In this context, an emerging role is that of the ESCRT complex, a machinery operating in multiple membrane assembly pathways, including nuclear envelope reformation. Research in this area is unraveling how, mechanistically, ESCRTs link to nuclear envelope associated factors as LEM domain proteins. Importantly, ESCRTs work also during interphase for repairing nuclear envelope ruptures. Altogether the advances in this field are giving new clues for the interpretation of diseases implicating nuclear envelope fragility, as laminopathies and cancer. ABBREVIATIONS: na, not analyzed; ko, knockout; kd, knockdown; NE, nuclear envelope; LEM, LAP2-emerin-MAN1 (LEM)-domain containing proteins; LINC, linker of nucleoskeleton and cytoskeleton complexes; Cyt, cytoplasm; Chr, chromatin; MB, midbody; End, endosomes; Tel, telomeres; INM, inner nuclear membrane; NP, nucleoplasm; NPC, Nuclear Pore Complex; ER, Endoplasmic Reticulum; SPB, spindle pole body.


Subject(s)
Chromatin/metabolism , Laminopathies/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Nuclear Envelope/metabolism , Animals , Chromatin/genetics , Chromatin/pathology , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Humans , Interphase , Laminopathies/genetics , Laminopathies/pathology , Lamins/genetics , Lamins/metabolism , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , Nuclear Envelope/genetics , Nuclear Envelope/pathology
16.
Biochem Genet ; 58(6): 966-980, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32705401

ABSTRACT

LMNA-related muscular dystrophies are caused by mutations of the LMNA gene. Inflammatory changes and cellular apoptosis are significant pathological findings in the muscle cells of these patients. We aimed to investigate the roles of nuclear factor-κB (NF-κB) mediated inflammation as a molecular mechanism for the pathogenesis of LMNA-related muscular dystrophies. Muscle specimen of a patient with LMNA gene mutation (c.1117A>G, p.I373V, reported in our previous work) showed significant inflammatory changes. The ultrastructure of muscle cells showed severe nuclear abnormalities compared with the control. Therefore, we used this mutation to establish mutant cell line for in vitro studies. Transfected human embryonic kidney 293 (HEK293) cells containing a mutant construct from this patient showed irregular nuclear morphology. Mass spectrometry analysis suggested genomic instability and augmented expression of apoptosis-related genes. We detected activation of NF-κB pathway in LMNA mutant cells which promoted the expression of downstream inflammatory factors. The LMNA mutation also activated the molecular pathway of apoptosis in LMNA mutant cells. These are important molecular mechanisms underlying the pathogenesis of LMNA-related muscular dystrophies. Our research provides crucial evidence for future pathogenetic studies and possible treatment strategies for LMNA-related muscular dystrophies.


Subject(s)
Lamin Type A/metabolism , Laminopathies/metabolism , Muscular Dystrophies/metabolism , Mutation, Missense , NF-kappa B/metabolism , Signal Transduction , Amino Acid Substitution , HEK293 Cells , Humans , Lamin Type A/genetics , Laminopathies/genetics , Laminopathies/pathology , Muscular Dystrophies/genetics , NF-kappa B/genetics
17.
FASEB J ; 34(7): 9051-9073, 2020 07.
Article in English | MEDLINE | ID: mdl-32413188

ABSTRACT

Laminopathies are rare diseases associated with mutations in LMNA, which encodes nuclear lamin A/C. LMNA variants lead to diverse tissue-specific phenotypes including cardiomyopathy, lipodystrophy, myopathy, neuropathy, progeria, bone/skin disorders, and overlap syndromes. The mechanisms underlying these heterogeneous phenotypes remain poorly understood, although post-translational modifications, including phosphorylation, are postulated as regulators of lamin function. We catalogued all known lamin A/C human mutations and their associated phenotypes, and systematically examined the putative role of phosphorylation in laminopathies. In silico prediction of specific LMNA mutant-driven changes to lamin A phosphorylation and protein structure was performed using machine learning methods. Some of the predictions we generated were validated via assessment of ectopically expressed wild-type and mutant LMNA. Our findings indicate phenotype- and mutant-specific alterations in lamin phosphorylation, and that some changes in phosphorylation may occur independently of predicted changes in lamin protein structure. Therefore, therapeutic targeting of phosphorylation in the context of laminopathies will likely require mutant- and kinase-specific approaches.


Subject(s)
Genetic Association Studies , Genotype , Lamin Type A/genetics , Laminopathies/pathology , Mutation , Phenotype , Female , Humans , Lamin Type A/metabolism , Laminopathies/classification , Laminopathies/genetics , Laminopathies/metabolism , Male , Phosphorylation
18.
Cells ; 9(5)2020 05 24.
Article in English | MEDLINE | ID: mdl-32456328

ABSTRACT

Mechanotransduction translates forces into biological responses and regulates cell functionalities. It is implicated in several diseases, including laminopathies which are pathologies associated with mutations in lamins and lamin-associated proteins. These pathologies affect muscle, adipose, bone, nerve, and skin cells and range from muscular dystrophies to accelerated aging. Although the exact mechanisms governing laminopathies and gene expression are still not clear, a strong correlation has been found between cell functionality and nuclear behavior. New theories base on the direct effect of external force on the genome, which is indeed sensitive to the force transduced by the nuclear lamina. Nuclear lamina performs two essential functions in mechanotransduction pathway modulating the nuclear stiffness and governing the chromatin remodeling. Indeed, A-type lamin mutation and deregulation has been found to affect the nuclear response, altering several downstream cellular processes such as mitosis, chromatin organization, DNA replication-transcription, and nuclear structural integrity. In this review, we summarize the recent findings on the molecular composition and architecture of the nuclear lamina, its role in healthy cells and disease regulation. We focus on A-type lamins since this protein family is the most involved in mechanotransduction and laminopathies.


Subject(s)
Lamin Type A/metabolism , Laminopathies/metabolism , Laminopathies/pathology , Mechanotransduction, Cellular , Animals , Humans , Lamin Type A/chemistry , Lamin Type A/genetics , Laminopathies/genetics , Mutation/genetics , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...