Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 805
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 1-7, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39097902

ABSTRACT

Improving crop plants using biotechnological implications is a promising and modern approach compared to traditional methods. High-temperature exposure to the reproductive stage induces flower abortion and declines grain filling performance, leading to smaller grain production and low yield in lentil and other legumes. Thus, cloning effective candidate genes and their implication in temperature stress tolerance in lentil (Lens culinaris Medik.) using biotechnological tools is highly demandable. The 12-oxophytodienoic acid reductases (OPRs) are flavin mononucleotide-dependent oxidoreductases with vital roles in plants. They are members of the old yellow enzyme (OYE) family. These enzymes are involved in the octadecanoid pathway, which contributes to jasmonic acid biosynthesis and is essential in plant stress responses. Lentil is one of the vital legume crops affected by the temperature fluctuations caused by global warming. Therefore, in this study, the LcOPR1 gene was successfully cloned and isolated from lentils using RT-PCR to evaluate its functional responses in lentil under heat stress. The bioinformatics analysis revealed that the full-length cDNA of LcOPR1 was 1303 bp, containing an 1134 bp open reading frames (ORFs), encoding 377 amino acids with a predicted molecular weight of 41.63 and a theoretical isoelectric point of 5.61. Bioinformatics analyses revealed that the deduced LcOPR1 possesses considerable homology with other plant 12-oxophytodienoic acid reductases (OPRs). Phylogenetic tree analysis showed that LcOPR1 has an evolutionary relationship with other OPRs in different plant species of subgroup I, containing enzymes that are not required for jasmonic acid biosynthesis. The expression analysis of LcOPR1 indicated that this gene is upregulated in response to the heat-stress condition and during recovery in lentil. This study finding might be helpful to plant breeders and biotechnologists in LcOPR1 engineering and/or plant breeding programs in revealing the biological functions of LcOPR1 in lentils and the possibility of enhancing heat stress tolerance by overexpressing LcOPR1 in lentil and other legume plants under high temperature.


Subject(s)
Cloning, Molecular , Gene Expression Regulation, Plant , Lens Plant , Phylogeny , Lens Plant/genetics , Lens Plant/enzymology , Cloning, Molecular/methods , Gene Expression Regulation, Plant/genetics , Oxidoreductases/genetics , Oxidoreductases/metabolism , Amino Acid Sequence , Plant Proteins/genetics , Plant Proteins/metabolism , Hot Temperature , Genes, Plant , Heat-Shock Response/genetics , Oxylipins/metabolism , Oxidoreductases Acting on CH-CH Group Donors
2.
Meat Sci ; 216: 109589, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38970934

ABSTRACT

High internal phase emulsions (HIPEs) are promising techniques that can replace saturated fat in food without reducing the product's texture, sensory attributes, water-holding capacity, and cooking loss. In the current investigation, 100% pork back fat was replaced by HIPEs formed with lentil protein isolate (LPI) in Bologna sausages. HIPEs were prepared by 25% LPI dispersion (2, 4, 6, and 8%, w/w) and 75% (w/w) soybean oil. HIPEs with higher LPI concentration (4, 6, and 8%, w/w) showed lower droplet size, firmer appearance, and better rheology behavior than 2% LPI. The concentrations LPI (2%, 4%, 6%, and 8%, w/w) led to increased moisture in sausages (FH2, FH4, FH6, and FH8, respectively) compared to the FC. These LPI levels resulted in sausage values for pressed juice similar to the FC and lower energy values than sausages with soybean oil (FO) and pork back fat (FC). Besides, these LPI concentrations (4%, 6%, and 8%, w/w) resulted in a lower oil oxidation level in sausages with HIPEs (FH4, FH6, and FH8, respectively) compared to the control sausage formulation with pork back fat (FC). Bologna sausages elaborated with HIPEs showed emulsion stability values higher than 97%, without significance difference between them. The texture and sensory properties of sausages made with HIPEs were comparable to those made with pork back fat. HIPEs may improve the oxidation stability of the Bologna sausages. These results highlight the effectiveness of HIPEs structured with lentil protein in successfully substituting pork back fat in Bologna sausages with a better nutritional appeal.


Subject(s)
Emulsions , Lens Plant , Meat Products , Meat Products/analysis , Emulsions/chemistry , Lens Plant/chemistry , Animals , Swine , Humans , Food Handling/methods , Plant Proteins , Dietary Fats/analysis , Cooking , Male , Female , Adult , Rheology , Soybean Oil/chemistry , Taste
3.
Food Res Int ; 191: 114732, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059925

ABSTRACT

Soaking pulses in water is a traditional practice widely used both by many households and by the food industry, and depending on the specific conditions used, can effectively reduce α-galactosides. Monitoring changes in α-galactoside content in pulses under different steeping conditions can provide insights into the degradation mechanisms and help overcome the barrier to consumption caused by digestive problems. In this study, we analyzed the impact of steeping at different temperatures (30, 45, 60, 75, and 90 °C) and at different pH (4.0, 5.0, and 6.0) on α-galactosides content in chickpeas, lentils, and beans. Our results showed that the lower the pH, the faster the α-galactosides were reduced. Moreover, steeping at lower temperatures (30 °C and 45 °C) favored hydrolysis of α-galactosides, whereas steeping at higher temperatures (60, 75, and 90 °C) favored diffusion. Soaking at 45 °C at a pH of 4.0 for 3 h resulted in acceptable levels of α-galactosides (less than 1 g/100 g), i.e. a reduction of up to 65 % in chickpeas, 85 % in lentils, and 52 % in beans.


Subject(s)
Cicer , Lens Plant , Oligosaccharides , Raffinose , Temperature , Hydrogen-Ion Concentration , Hydrolysis , Raffinose/chemistry , Raffinose/analysis , Oligosaccharides/chemistry , Oligosaccharides/analysis , Lens Plant/chemistry , Cicer/chemistry , Food Handling/methods , Galactosides/chemistry , Diffusion
4.
Sensors (Basel) ; 24(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39001010

ABSTRACT

Carbohydrates are the main components of lentils, accounting for more than 60% of their composition. Their content is influenced by genetic factors, with different contents depending on the variety. These compounds have not only been linked to interesting health benefits, but they also have a significant influence on the techno-functional properties of lentil-derived products. In this study, the use of near-infrared spectroscopy (NIRS) to predict the concentration of total carbohydrate, fibre, starch, total sugars, fructose, sucrose and raffinose was investigated. For this purpose, six different cultivars of macrosperm (n = 37) and microsperm (n = 43) lentils have been analysed, the samples were recorded whole and ground and the suitability of both recording methods were compared. Different spectral and mathematical pre-treatments were evaluated before developing the calibration models using the Modified Partial Least Squares regression method, with a cross-validation and an external validation. The predictive models developed show excellent coefficients of determination (RSQ > 0.9) for the total sugars and fructose, sucrose, and raffinose. The recording of ground samples allowed for obtaining better models for the calibration of starch content (R > 0.8), total sugars and sucrose (R > 0.93), and raffinose (R > 0.91). The results obtained confirm that there is sufficient information in the NIRS spectral region for the development of predictive models for the quantification of the carbohydrate content in lentils.


Subject(s)
Carbohydrates , Lens Plant , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Carbohydrates/analysis , Carbohydrates/chemistry , Lens Plant/chemistry , Starch/analysis , Starch/chemistry , Sucrose/analysis , Least-Squares Analysis , Fructose/analysis , Calibration
5.
Molecules ; 29(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38999116

ABSTRACT

The present article describes the synthesis of an isonicotinate-derived meso-arylporphyrin, that has been fully characterized by spectroscopic methods (including fluorescence spectroscopy), as well as elemental analysis and HR-MS. The structure of an n-hexane monosolvate has been determined by single-crystal X-ray diffraction analysis. The radical scavenging activity of this new porphyrin against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical has been measured. Its antifungal activity against three yeast strains (C. albicans ATCC 90028, C. glabrata ATCC 64677, and C. tropicalis ATCC 64677) has been tested using the disk diffusion and microdilution methods. Whereas the measured antioxidant activity was low, the porphyrin showed moderate but encouraging antifungal activity. Finally, a study of its effect on the germination of lentil seeds revealed interesting allelopathic properties.


Subject(s)
Antifungal Agents , Antioxidants , Porphyrins , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Porphyrins/chemistry , Porphyrins/pharmacology , Porphyrins/chemical synthesis , Isonicotinic Acids/chemistry , Isonicotinic Acids/pharmacology , Isonicotinic Acids/chemical synthesis , Molecular Structure , Biphenyl Compounds/chemistry , Picrates/chemistry , Picrates/antagonists & inhibitors , Candida albicans/drug effects , Candida albicans/growth & development , Crystallography, X-Ray , Microbial Sensitivity Tests , Lens Plant/chemistry , Germination/drug effects , Allelopathy
6.
Food Res Int ; 189: 114569, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876597

ABSTRACT

Lentil (Lens culinaris) is a protein-rich legume consumed worldwide and it also has the potential to become an alternative source of protein ingredient for human nutrition. The aim of this study was to determine the best processing parameters for the whole grain protein wet extraction, as well as to analyze the techno-functional properties, and physical characteristics of the protein concentrate and its flour. It was also evaluated the application of the concentrate into a fish-like croquette. The processing route was carried out by alkaline extraction and acid precipitation of the proteins where the pH, stirring time and solute:solvent ratio were evaluated. The final dried protein concentrate presented 85% protein on dry basis and a mass yield of 14%. The results were reproducible when tested on a first scaling up test. For the techno-functional properties, solubility, water and oil retention capacities, emulsification and foaming capacities and stability, and gelling capacity were tested. As for the food application into fish-like croquettes, the lentil protein showed similar scores for sensory acceptance, flavor and texture when compared to a commercial clean-taste concentrate. The results observed in this study were compatible to other alternative pulse-protein ingredients on the market, positioning lentil protein as a promising alternative protein source to produce ingredients for the plant-based market.


Subject(s)
Food Handling , Lens Plant , Lens Plant/chemistry , Food Handling/methods , Plant Proteins , Humans , Solubility , Taste , Hydrogen-Ion Concentration
7.
BMC Plant Biol ; 24(1): 502, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840053

ABSTRACT

BACKGROUND: Lentil is a significant legume that are consumed as a staple food and have a significant economic impact around the world. The purpose of the present research on lentil was to assess the hydrothermal time model's capacity to explain the dynamics of Lens culinaris L. var. Markaz-09 seed germination, as well as to ascertain the germination responses at various sub-optimal temperatures (T) and water potentials (Ψ). In order to study lentil seed germination (SG) behavior at variable water potentials (Ψs) and temperatures (Ts). A lab experiment employing the hydrothermal time model was created. Seeds were germinated at six distinct temperatures: 15 0С, 20 0С, 25 0С, 30 0С, 35 0С, and 40 0С, with five Ψs of 0, -0.3, -0.6, -0.9, and - 1.2 MPa in a PEG-6000 (Polyethylene glycol 6000) solution. RESULTS: The results indicated that the agronomic parameters like Germination index (GI), Germination energy (GE), Timson germination index (TGI), were maximum in 25 0C at (-0.9 MPa) and lowest at 40 0C in 0 MPa. On other hand, mean germination time (MGT) value was highest at 15 0C in -1.2 MPa and minimum at 40 0C in (-0.6 MPa) while Mean germination rate (MGR) was maximum at 40 0C in (0 MPa) and minimum at 15 0C in (-0.6 MPa). CONCLUSIONS: The HTT model eventually defined the germination response of Lens culinaris L. var. Markaz-09 (Lentil) for all Ts and Ψs, allowing it to be employed as a predictive tool in Lens culinaris L. var. Markaz-09 (Lentil) seed germination simulation models.


Subject(s)
Germination , Lens Plant , Seeds , Temperature , Germination/physiology , Seeds/physiology , Seeds/growth & development , Lens Plant/physiology , Lens Plant/growth & development , Water/metabolism , Models, Biological , Osmotic Pressure
8.
Food Chem ; 455: 139820, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38917656

ABSTRACT

The emulsification potential of plant-based emulsifiers, that is, pea (PPI) and lentil (LPI) proteins (4%), corn arabinoxylans (CAX, 1%), and legume protein-arabinoxylan mixtures (4% proteins + 0.15 or 0.9% CAX), was evaluated by assessing: the surface tension and potential of emulsifiers, emulsifier antinutritional contents, emulsion droplet size, emulsion physical stability, and vitamin E bioaccessibility from 10% oil-in-water emulsions. Tween 80 (2%) was used as a control. All emulsions presented small droplet sizes, both fresh and upon storage, except 4% LPI + 0.9% CAX emulsion that exhibited bigger droplet sizes (d(4,3) of approximately 18.76 µm vs 0.59 µm for the control) because of droplet bridging. Vitamin E bioaccessibility from emulsions stabilized with the combination of 4% PPI and either 0.15% or 0.9% CAX (28 ± 4.48% and 28.42 ± 3.87%, respectively) was not significantly different from that of emulsions stabilized with Tween 80 (43.56 ± 3.71%), whereas vitamin E bioaccessibility from emulsions stabilized with individual emulsifiers was significantly lower.


Subject(s)
Digestion , Emulsifying Agents , Emulsions , Vitamin E , Xylans , Emulsifying Agents/chemistry , Vitamin E/chemistry , Emulsions/chemistry , Xylans/chemistry , Plant Proteins/chemistry , Biological Availability , Humans , Fabaceae/chemistry , Lens Plant/chemistry , Models, Biological
9.
Food Res Int ; 183: 114212, 2024 May.
Article in English | MEDLINE | ID: mdl-38760140

ABSTRACT

This study evaluated the effect of ultrasound treatment combined or not with heat treatment applied to lentil protein isolate (LPI) aiming to enhance its ability to stabilize high internal phase emulsions (HIPE). LPI dispersion (2%, w/w) was ultrasound-treated at 60% (UA) and 70% (UB) amplitude for 7 min; these samples were subjected to and then heat treatments at 70 °C (UAT70 and UBT70, respectively) or 80 °C (UAT80 and UBT80, respectively) for 20 min. HIPEs were produced with 25% untreated and treated LPI dispersions and 75% soybean oil using a rotor-stator (15,500 rpm/1 min). The LPI dispersions were evaluated for particle size, solubility, differential scanning calorimetry, electrophoresis, secondary structure estimation (circular dichroism and FT-IR), intrinsic fluorescence, surface hydrophobicity, and free sulfhydryl groups content. The HIPEs were evaluated for droplet size, morphology, rheology, centrifugal stability, and the Turbiscan test. Ultrasound treatment decreased LPI dispersions' particle size (∼80%) and increased solubility (∼90%). Intrinsic fluorescence and surface hydrophobicity confirmed LPI modification due to the exposure to hydrophobic patches. The combination of ultrasound and heat treatments resulted in a reduction in the free sulfhydryl group content of LPI. HIPEs produced with ultrasound-heat-treated LPI had a lower droplet size distribution mode, greater oil retention values in the HIPE structure (> 98%), lower Turbiscan stability index (< 2), and a firmer and more homogeneous appearance compared to HIPE produced with untreated LPI, indicating higher stability for the HIPEs stabilized by treated LPI. Therefore, combining ultrasound and heat treatments could be an effective method for the functional modification of lentil proteins, allowing their application as HIPE emulsifiers.


Subject(s)
Emulsions , Hot Temperature , Lens Plant , Particle Size , Plant Proteins , Lens Plant/chemistry , Emulsions/chemistry , Plant Proteins/chemistry , Solubility , Hydrophobic and Hydrophilic Interactions , Food Handling/methods , Calorimetry, Differential Scanning , Spectroscopy, Fourier Transform Infrared , Circular Dichroism , Rheology , Ultrasonics/methods , Sonication/methods
10.
Sci Rep ; 14(1): 10215, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702403

ABSTRACT

Weeds pose a major constraint in lentil cultivation, leading to decrease farmers' revenues by reducing the yield and increasing the management costs. The development of herbicide tolerant cultivars is essential to increase lentil yield. Even though herbicide tolerant lines have been identified in lentils, breeding efforts are still limited and lack proper validation. Marker assisted selection (MAS) can increase selection accuracy at early generations. Total 292 lentil accessions were evaluated under different dosages of two herbicides, metribuzin and imazethapyr, during two seasons at Marchouch, Morocco and Terbol, Lebanon. Highly significant differences among accessions were observed for days to flowering (DF) and maturity (DM), plant height (PH), biological yield (BY), seed yield (SY), number of pods per plant (NP), as well as the reduction indices (RI) for PH, BY, SY and NP. A total of 10,271 SNPs markers uniformly distributed along the lentil genome were assayed using Multispecies Pulse SNP chip developed at Agriculture Victoria, Melbourne. Meta-GWAS analysis was used to detect marker-trait associations, which detected 125 SNPs markers associated with different traits and clustered in 85 unique quantitative trait loci. These findings provide valuable insights for initiating MAS programs aiming to enhance herbicide tolerance in lentil crop.


Subject(s)
Herbicide Resistance , Herbicides , Lens Plant , Polymorphism, Single Nucleotide , Lens Plant/genetics , Lens Plant/drug effects , Lens Plant/growth & development , Herbicides/pharmacology , Herbicides/toxicity , Herbicide Resistance/genetics , Genome-Wide Association Study , Genes, Plant , Quantitative Trait Loci
11.
PLoS One ; 19(5): e0302870, 2024.
Article in English | MEDLINE | ID: mdl-38776345

ABSTRACT

The systematic identification of insertion/deletion (InDel) length polymorphisms from the entire lentil genome can be used to map the quantitative trait loci (QTL) and also for the marker-assisted selection (MAS) for various linked traits. The InDels were identified by comparing the whole-genome resequencing (WGRS) data of two extreme bulks (early- and late-flowering bulk) and a parental genotype (Globe Mutant) of lentil. The bulks were made by pooling 20 extreme recombinant inbred lines (RILs) each, derived by crossing Globe Mutant (late flowering parent) with L4775 (early flowering parent). Finally, 734,716 novel InDels were identified, which is nearly one InDel per 5,096 bp of lentil genome. Furthermore, 74.94% of InDels were within the intergenic region and 99.45% displayed modifier effects. Of these, 15,732 had insertions or deletions of 20 bp or more, making them amenable to the development of PCR-based markers. An InDel marker I-SP-356.6 (chr. 3; position 356,687,623; positioned 174.5 Kb from the LcFRI gene) was identified as having a phenotypic variance explained (PVE) value of 47.7% for earliness when validated in a RIL population. Thus, I-SP-356.6 marker can be deployed in MAS to facilitate the transfer of the earliness trait to other elite late-maturing cultivars. Two InDel markers viz., I-SP-356.6 and I-SP-383.9 (chr. 3; linked to LcELF3a gene) when tested in 9 lentil genotypes differing for maturity duration, clearly distinguished three early (L4775, ILL7663, Precoz) and four late genotypes (Globe Mutant, MFX, L4602, L830). However, these InDels could not be validated in two genotypes (L4717, L4727), suggesting either absence of polymorphism and/or presence of other loci causing earliness. The identified InDel markers can act as valuable tools for MAS for the development of early maturing lentil varieties.


Subject(s)
Genome, Plant , Genotype , INDEL Mutation , Lens Plant , Quantitative Trait Loci , Lens Plant/genetics , Lens Plant/growth & development , Genetic Markers , Polymerase Chain Reaction/methods , Chromosome Mapping/methods
12.
Plant Physiol Biochem ; 211: 108710, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735154

ABSTRACT

Adenosine triphosphate-binding cassette transporters (ABC transporters) are involved in regulating plant growth, development and tolerance to environmental stresses. In this study, a total of 138 ABC transporter genes were identified in the lentil genome that were classified into eight subfamilies. Four lentil ABC transporters from subfamily B and I were clustered together with the previously characterized ABC transporter proteins related to aluminium (Al) detoxification. Lentil ABC transporter genes were distributed across the chromosomes. Tandem duplication was the main driving force for expansion of the ABC gene family. Collinearity of lentil with soybean indicated that ABC gene family is closely linked to Glycine max. ABC genes in the same subfamily showed similar gene structure and conserved motifs. The ABC promoter regions harboured a large number of plant hormones and multiple stress responsive cis-regulatory elements. The qRT-PCR showed that ABC genes had varied expression in roots of lentil at different time points under Al stress. This is the first report on genome wide identification and expression analyses of genes encoding ABC transporter genes in lentil which has provided in-depth insight for future research on evolution and elucidation of molecular mechanisms for aluminium tolerance.


Subject(s)
ATP-Binding Cassette Transporters , Aluminum , Gene Expression Regulation, Plant , Lens Plant , Plant Proteins , Stress, Physiological , Lens Plant/genetics , Lens Plant/metabolism , Lens Plant/drug effects , Aluminum/toxicity , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/genetics , Stress, Physiological/drug effects , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Multigene Family , Gene Expression Profiling , Phylogeny , Promoter Regions, Genetic/genetics
13.
Sci Rep ; 14(1): 12257, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806538

ABSTRACT

Evaluate the impact of extracts from the Lens culinaris plant on a number of physiological and biochemical parameters in squash leaves infected with ZYMV in this work. Compared to the untreated leaves, ZYMV infected leaves showed a range of symptoms, such as severe mosaic, size reduction, stunting, and deformation. Analysis of physiological data revealed that L. culinaris extract lectin therapies and viral infections had an impact on metabolism. Protein, carbohydrate, and pigment levels were all lowered by viral infection. However, phenolic compounds, total protein, total carbohydrates, total amino acids, proline, total chlorophyll and peroxidases levels are considerably elevated with all extract therapies. The other biochemical parameters also displayed a variety of changes. Moreover shoot length, number of leaves and number of flowers was significantly increased compared to viral control in all treatments. The L. culinaris extract treatment increases the plant's ZYMV resistance. This is detectable through reduction of the plants treated with lentil lectin pre and post virus inoculation, reduction in disease severity and viral concentration, and percentage of the infected plants has a virus. All findings demonstrate significant metabolic alterations brought by viral infections or L. culinaris extract treatments, and they also suggest that exogenous extract treatments is essential for activating the body's defences against ZYMV infection.


Subject(s)
Lens Plant , Plant Diseases , Plant Extracts , Plant Leaves , Plant Extracts/pharmacology , Lens Plant/chemistry , Plant Diseases/virology , Plant Diseases/prevention & control , Plant Leaves/chemistry , Plant Leaves/virology , Plant Leaves/metabolism , Cucurbita/chemistry , Cucurbita/virology , Mosaic Viruses/drug effects , Mosaic Viruses/physiology , Chlorophyll/metabolism , Disease Resistance/drug effects
14.
Plant Genome ; 17(2): e20455, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747009

ABSTRACT

Plant breeders are generally reluctant to cross elite crop cultivars with their wild relatives to introgress novel desirable traits due to associated negative traits such as pod shattering. This results in a genetic bottleneck that could be reduced through better understanding of the genomic locations of the gene(s) controlling this trait. We integrated information on parental genomes, pod shattering data from multiple environments, and high-density genetic linkage maps to identify pod shattering quantitative trait loci (QTLs) in three lentil interspecific recombinant inbred line populations. The broad-sense heritability on a multi-environment basis varied from 0.46 (in LR-70, Lens culinaris × Lens odemensis) to 0.77 (in LR-68, Lens orientalis × L. culinaris). Genetic linkage maps of the interspecific populations revealed reciprocal translocations of chromosomal segments that differed among the populations, and which were associated with reduced recombination. LR-68 had a 2-5 translocation, LR-70 had 1-5, 2-6, and 2-7 translocations, and LR-86 had a 2-7 translocation in one parent relative to the other. Segregation distortion was also observed for clusters of single nucleotide polymorphisms on multiple chromosomes per population, further affecting introgression. Two major QTL, on chromosomes 4 and 7, were repeatedly detected in the three populations and contain several candidate genes. These findings will be of significant value for lentil breeders to strategically access novel superior alleles while minimizing the genetic impact of pod shattering from wild parents.


Subject(s)
Chromosome Mapping , Genome, Plant , Lens Plant , Plant Breeding , Quantitative Trait Loci , Lens Plant/genetics , Genetic Linkage , Seeds/genetics
15.
Braz J Microbiol ; 55(2): 1897-1911, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38727923

ABSTRACT

Plant growth promoting rhizobacteria (PGPR) are also known to colonize in the soil rhizosphere and prevent the development of other soil borne pathogens residing in the root surface. These microorganisms play a vital role in growth and development of the plant and also enhances the soil fertility by enriching the soil with different beneficial nutrients. This study was aimed at isolation of different rhizobacteria and their molecular characterization in search of efficient bacterial strains with multiple growth regulating activities. A total 36 bacteria were isolated from lentil root nodule as well as soil from different lentil growing fields with a view to screen/evaluate their plant growth promoting potential. Morphological characterization of isolated rhizobacterial candidates were done by observing the colonies on YEMA and nutrient agar media. Determination of CFU, Congo red test and gram staining tests were done to further screen them according to their morphology. All the isolates were then undergone molecular phylogenetic analysis using the partial sequences of the 16 S rDNA. Based upon the Gram staining test, all the isolates were negative in gram reaction except six Bacillus isolates, PSB2 and AB3. Results of Ribosomal Database Project (RDP) and Basic Local Alignment Search Tool for Nucleotide Sequences (BLASTn) from 16 S rDNA gene sequences showed that these isolates are genetically diverse. A total of 15 isolates of Rhizobium, 6 isolates of Bacillus, 3 isolates of Pseudomonas, 2 isolates of Phosphate Solubilizing Bacteria, 4 isolates of actinomycetes were identified by molecular sequencing of their 16 S rDNA region and comparing them with the other isolates enlisted in the database of NCBI for the similarity percentage, query coverage. The purpose of the present study was to select native rhizosphere bacteria from the lentil nodule and soil of Lentil field and to evaluate their plant growth promoting potential as an alternative of chemical fertilizer for sustainable, environment friendly agriculture and assessment of their phylogenetic characterization.


Subject(s)
Bacteria , DNA, Bacterial , Lens Plant , Phylogeny , RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , Lens Plant/microbiology , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Plant Roots/microbiology , India , DNA, Ribosomal/genetics
16.
J Food Sci ; 89(6): 3412-3429, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767939

ABSTRACT

Fermentation of pulses as a clean processing technique has been reported to have a favorable impact on the functional and nutritional quality of the starting materials. Compared to commonly fermented pulses such as peas and chickpeas, limited information is available on the effect of fermentation on lentils, especially when using a high protein isolate (>80% protein) as compared to seeds or flours. Therefore, in the present work, lentil protein isolate was used as a feedstock for submerged fermentation with Aspergillus niger, Aspergillus oryzae, or Lactobacillus plantarum. After 48 h, the samples showed increased protein content with enhanced solubility and oil-holding capacity. Controlled fermentation, as opposed to spontaneous fermentation, maintained the high foaming capacity; however, all fermented samples had lower foam and emulsion stabilizing properties and reduced water-holding capacity compared to the control. The fermented proteins were also less digestible, possibly due to an increase in phenolics and saponins. New volatile compounds were identified in fermented samples that show promise for improved sensory attributes. Significant differences were observed in specific quality attributes depending on the microbial strain used. Further research is required to better understand the fermentative metabolism of microbial communities when provided high-protein lentil ingredients as growth substrates. PRACTICAL APPLICATION: Fermented lentil protein isolate has promising flavor profiles that may improve its sensory properties for food application.


Subject(s)
Aspergillus niger , Fermentation , Lactobacillus plantarum , Lens Plant , Nutritive Value , Volatile Organic Compounds , Lens Plant/microbiology , Lens Plant/chemistry , Lactobacillus plantarum/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Aspergillus niger/metabolism , Plant Proteins/metabolism , Aspergillus oryzae/metabolism , Seeds/chemistry , Seeds/microbiology , Taste , Food Handling/methods
17.
Food Chem ; 454: 139762, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38805919

ABSTRACT

Different quantification methods for in vitro amylolysis were compared for individual chickpea and lentil cotyledon cells (ICC) as a relevant case study. For the first time, much-applied spectrophotometric methods relying on the quantification of certain functional groups (i.e., DNS, GOPOD) were compared to chromatographic quantification of starch metabolites (HPLC-ELSD). The estimated rate constant and linked initial rates of amylolysis were highly correlated for DNS, GOPOD, and HPLC-ELSD. However, absolute amylolysis levels depended on the applied method and sample-specific metabolite formation patterns. Multiresponse modelling was employed to further investigate HPLC-ELSD metabolite formation patterns. This delivered insight into the relative importance of different amylolysis reactions during in vitro digestion of pulse ICC, proving that maltotriose and maltose formation determined the overall amylolysis rate in this case. Multiresponse reaction rate constants of maltotriose and maltose formation were highly correlated to single response amylolysis rate constants (and initial rates) obtained for all three quantification methods.


Subject(s)
Cicer , Cotyledon , Digestion , Lens Plant , Starch , Starch/metabolism , Starch/chemistry , Cotyledon/chemistry , Cotyledon/metabolism , Lens Plant/chemistry , Lens Plant/metabolism , Cicer/chemistry , Cicer/metabolism , Chromatography, High Pressure Liquid , Kinetics , Models, Biological , Trisaccharides
18.
Int J Biol Macromol ; 267(Pt 1): 131468, 2024 May.
Article in English | MEDLINE | ID: mdl-38599432

ABSTRACT

In this work, the changes in the composition of the flours and in the morphological, structural, thermal, vibrational, rheological, and functional properties of the isolated lentil starch during the germination process were investigated. The fiber, fat, and ash content of the flours decreased and the protein content increased, while the apparent amylose content of the starch granules remained constant. Using scanning electron microscopy (SEM), the starch granules remained intact during germination, and no enzymatic activity of α- and ß-amylases was observed. X-ray diffraction shows that the starch has nanocrystals with hexagonal structure which predominate over the nanocrystals with orthorhombic structure and are classified as C-type starch. The most important result is that these nanocrystals do not play an important role during germination. As the germination time progresses, differential scanning calorimetry (DSC) shows a decrease in the gelatinization temperature (Tp) of the starch, ranging from 70.34 ± 0.25 °C for the native lentil starch to values of 67.16 ± 0.37 °C for the starch on the fourth day of germination (ILS4), this transition being related to the solvation of the nanocrystals. On the other hand, the pasting profiles show no significant changes during germination, indicating that no significant changes in starch content occur during germination. Starch degradation is essential for the production of malt for fermented beverages. This fact makes sprouted lentils not a candidate for the short-term fermentation required in the beverage industry.


Subject(s)
Germination , Lens Plant , Starch , Lens Plant/chemistry , Starch/chemistry , Starch/metabolism , Chemical Phenomena , Amylose/chemistry , Temperature , Rheology
19.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612611

ABSTRACT

Natural compounds like flavonoids preserve intestinal mucosal integrity through their antioxidant, anti-inflammatory, and antimicrobial properties. Additionally, some flavonoids show prebiotic abilities, promoting the growth and activity of beneficial gut bacteria. This study investigates the protective impact of Lens culinaris extract (LE), which is abundant in flavonoids, on intestinal mucosal integrity during LPS-induced inflammation. Using Caco-2 cells as a model for the intestinal barrier, the study found that LE did not affect cell viability but played a cytoprotective role in the presence of LPS. LE improved transepithelial electrical resistance (TEER) and tight junction (TJ) protein levels, which are crucial for barrier integrity. It also countered the upregulation of pro-inflammatory genes TRPA1 and TRPV1 induced by LPS and reduced pro-inflammatory markers like TNF-α, NF-κB, IL-1ß, and IL-8. Moreover, LE reversed the LPS-induced upregulation of AQP8 and TLR-4 expression. These findings emphasize the potential of natural compounds like LE to regulate the intestinal barrier and reduce inflammation's harmful effects on intestinal cells. More research is required to understand their mechanisms and explore therapeutic applications, especially for gastrointestinal inflammatory conditions.


Subject(s)
Lens Plant , Humans , Caco-2 Cells , Lipopolysaccharides/toxicity , Acetonitriles , Flavonoids , Inflammation/drug therapy
20.
Physiol Plant ; 176(3): e14298, 2024.
Article in English | MEDLINE | ID: mdl-38685770

ABSTRACT

Aluminium (Al) toxicity causes major plant distress, affecting root growth, nutrient uptake and, ultimately, agricultural productivity. Lentil, which is a cheap source of vegetarian protein, is recognized to be sensitive to Al toxicity. Therefore, it is important to dissect the physiological and molecular mechanisms of Al tolerance in lentil. To understand the physiological system and proteome composition underlying Al tolerance, two genotypes [L-4602 (Al-tolerant) and BM-4 (Al-sensitive)] were studied at the seedling stage. L-4602 maintained a significantly higher root tolerance index and malate secretion with reduced Al accumulation than BM-4. Also, label-free proteomic analysis using ultra-performance liquid chromatography-tandem mass spectrometer exhibited significant regulation of Al-responsive proteins associated with antioxidants, signal transduction, calcium homeostasis, and regulation of glycolysis in L-4602 as compared to BM-4. Functional annotation suggested that transporter proteins (transmembrane protein, adenosine triphosphate-binding cassette transport-related protein and multi drug resistance protein), antioxidants associated proteins (nicotinamide adenine dinucleotide dependent oxidoreductase, oxidoreductase molybdopterin binding protein & peroxidases), kinases (calmodulin-domain kinase & protein kinase), and carbohydrate metabolism associated proteins (dihydrolipoamide acetyltransferase) were found to be abundant in tolerant genotype providing protection against Al toxicity. Overall, the root proteome uncovered in this study at seedling stage, along with the physiological parameters measured, allow a greater understanding of Al tolerance mechanism in lentil, thereby assisting in future crop improvement programmes.


Subject(s)
Aluminum , Lens Plant , Plant Proteins , Plant Roots , Proteomics , Lens Plant/drug effects , Lens Plant/physiology , Lens Plant/genetics , Lens Plant/metabolism , Aluminum/toxicity , Proteomics/methods , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/genetics , Genotype , Seedlings/drug effects , Seedlings/physiology , Seedlings/genetics , Seedlings/metabolism , Gene Expression Regulation, Plant/drug effects , Proteome/metabolism , Antioxidants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL