Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 213
Filter
1.
Int J Biol Macromol ; 268(Pt 1): 131778, 2024 May.
Article in English | MEDLINE | ID: mdl-38657929

ABSTRACT

Ticks have harmful impacts on both human and animal health and cause considerable economic losses. Leucine aminopeptidase enzymes (LAP) play important roles during tick infestation to liberate vital amino acids necessary for growth. The aim of the current study is to identify, express and characterize the LAP from the hard tick Hyalomma dromedarii and elucidate its biochemical characteristics. We cloned an open reading frame of 1560 bp encoding a protein of 519 amino acids. The LAP full-length was expressed in Escherichia coli BL21 (DE3) and purified. The recombinant enzyme (H.d rLAP- 6×His) had a predicted molecular mass of approximately 55 kDa. Purification and the enzymatic characteristics of H.d rLAP- 6×His were studied. The purified enzyme showed maximum activity at 37 °C and pH 8.0-8.5 using Leu-p-nitroanilide as a substrate. The activity of H.d rLAP- 6×His was sensitive to ß-mercaptoethanol, dl-dithiothreitol, 1,10- phenanthroline, bestatin HCl, and EDTA and completely abolished by 0.05 % SDS. In parallel, the enzymatic activity was enhanced by Ni2+, Mn2+ and Mg2+, partially inhibited by Na+, Cu2+, Ca2+ and completely inhibited by Zn2+.


Subject(s)
Amino Acid Sequence , Cloning, Molecular , Leucyl Aminopeptidase , Leucyl Aminopeptidase/chemistry , Leucyl Aminopeptidase/metabolism , Leucyl Aminopeptidase/genetics , Animals , Substrate Specificity , Hydrogen-Ion Concentration , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Kinetics , Enzyme Stability , Temperature , Phylogeny , Ixodidae/enzymology , Ixodidae/genetics
2.
Plant Cell Rep ; 43(4): 92, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466441

ABSTRACT

KEY MESSAGE: Pepper fruits contain two leucine aminopeptidase (LAP) genes which are differentially modulated during ripening and by nitric oxide. The LAP activity increases during ripening but is negatively modulated by nitration. Leucine aminopeptidase (LAP) is an essential metalloenzyme that cleaves N-terminal leucine residues from proteins but also metabolizes dipeptides and tripeptides. LAPs play a fundamental role in cell protein turnover and participate in physiological processes such as defense mechanisms against biotic and abiotic stresses, but little is known about their involvement in fruit physiology. This study aims to identify and characterize genes encoding LAP and evaluate their role during the ripening of pepper (Capsicum annuum L.) fruits and under a nitric oxide (NO)-enriched environment. Using a data-mining approach of the pepper plant genome and fruit transcriptome (RNA-seq), two LAP genes, designated CaLAP1 and CaLAP2, were identified. The time course expression analysis of these genes during different fruit ripening stages showed that whereas CaLAP1 decreased, CaLAP2 was upregulated. However, under an exogenous NO treatment of fruits, both genes were downregulated. On the contrary, it was shown that during fruit ripening LAP activity increased by 81%. An in vitro assay of the LAP activity in the presence of different modulating compounds including peroxynitrite (ONOO-), NO donors (S-nitrosoglutathione and nitrosocyteine), reducing agents such as reduced glutathione (GSH), L-cysteine (L-Cys), and cyanide triggered a differential response. Thus, peroxynitrite and reducing compounds provoked around 50% inhibition of the LAP activity in green immature fruits, whereas cyanide upregulated it 1.5 folds. To our knowledge, this is the first characterization of LAP in pepper fruits as well as of its regulation by diverse modulating compounds. Based on the capacity of LAP to metabolize dipeptides and tripeptides, it could be hypothesized that the LAP might be involved in the GSH recycling during the ripening process.


Subject(s)
Capsicum , Nitric Oxide , Nitric Oxide/metabolism , Fruit/metabolism , Capsicum/genetics , Capsicum/metabolism , Leucine/metabolism , Leucyl Aminopeptidase/genetics , Leucyl Aminopeptidase/metabolism , Peroxynitrous Acid/metabolism , Cyanides/metabolism , Dipeptides/metabolism
3.
J Biol Chem ; 299(12): 105386, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37898401

ABSTRACT

Aggregation behavior provides bacteria protection from harsh environments and threats to survival. Two uncharacterized proteases, LapX and Lap, are important for Vibrio cholerae liquid-based aggregation. Here, we determined that LapX is a serine protease with a preference for cleavage after glutamate and glutamine residues in the P1 position, which processes a physiologically based peptide substrate with a catalytic efficiency of 180 ± 80 M-1s-1. The activity with a LapX substrate identified by a multiplex substrate profiling by mass spectrometry screen was 590 ± 20 M-1s-1. Lap shares high sequence identity with an aminopeptidase (termed VpAP) from Vibrio proteolyticus and contains an inhibitory bacterial prepeptidase C-terminal domain that, when eliminated, increases catalytic efficiency on leucine p-nitroanilide nearly four-fold from 5.4 ± 4.1 × 104 M-1s-1 to 20.3 ± 4.3 × 104 M-1s-1. We demonstrate that LapX processes Lap to its mature form and thus amplifies Lap activity. The increase is approximately eighteen-fold for full-length Lap (95.7 ± 5.6 × 104 M-1s-1) and six-fold for Lap lacking the prepeptidase C-terminal domain (11.3 ± 1.9 × 105 M-1s-1). In addition, substrate profiling reveals preferences for these two proteases that could inform in vivo function. Furthermore, purified LapX and Lap restore the timing of the V. cholerae aggregation program to a mutant lacking the lapX and lap genes. Both proteases must be present to restore WT timing, and thus they appear to act sequentially: LapX acts on Lap, and Lap acts on the substrate involved in aggregation.


Subject(s)
Bacterial Proteins , Leucyl Aminopeptidase , Serine Proteases , Vibrio cholerae , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Leucyl Aminopeptidase/chemistry , Leucyl Aminopeptidase/genetics , Leucyl Aminopeptidase/physiology , Peptides , Serine Proteases/chemistry , Serine Proteases/genetics , Serine Proteases/physiology , Substrate Specificity , Vibrio cholerae/enzymology , Vibrio cholerae/genetics , Vibrio cholerae/physiology , Catalysis
4.
Genes (Basel) ; 13(8)2022 08 12.
Article in English | MEDLINE | ID: mdl-36011349

ABSTRACT

Previous genome-wide association studies (GWAS) have found that LAP3 may have the potential function to impact sheep muscle development. In order to further explore whether LAP3 expression has an important role in the development of sheep embryonic myoblasts, we conducted the spatiotemporal expression profile analysis of LAP3 at the tissue and cellular level. Then we used small interfering RNA and eukaryotic recombinant vectors to perform gain/loss-of-function analysis of LAP3. CCK-8 detection, EdU staining, and flow cytometry were used to investigate the impact of LAP3 knockdown or overexpression on the proliferation of embryonic myoblasts. In addition, cell phenotype observation, MyHC indirect immunofluorescence, and quantitative detection of the expression changes of myogenic regulatory factors (MRFs) were used to explore the effect of LAP3 on myogenic differentiation. The results showed that the LAP3 expression level in muscle tissue of fetuses was significantly higher than that in newborn lambs and adult sheep, and its expression level on day 3 of differentiation was also significantly higher than that in the proliferation phase and other differentiation time points. LAP3 silencing could significantly increase cell viability and EdU-positive cells, as well as prolonging the length of S phase of myoblasts to promote proliferation, while the results were reversed when LAP3 was overexpressed. Moreover, LAP3 silencing significantly hindered myotube formation and down-regulated the expression levels of MRFs from day 5 to day 7 of terminal differentiation, while the results were reversed when LAP3 was highly expressed. Overall, our results suggested that the expression of LAP3 impacts on the development of sheep embryonic myoblasts which provides an important theoretical basis for molecular breeding of meat production in sheep.


Subject(s)
Genome-Wide Association Study , Leucyl Aminopeptidase , Animals , Cell Proliferation , Leucyl Aminopeptidase/genetics , Muscle Development/genetics , Myoblasts/metabolism , Myogenic Regulatory Factors/genetics , Sheep/genetics
5.
Aging (Albany NY) ; 14(7): 3259-3275, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35404840

ABSTRACT

OBJECTIVES: Leucine aminopeptidase 3 (LAP3), an M1 member of leucine aminopeptidase, was reported to be significantly upregulated in serum of nonalcoholic fatty liver disease (NAFLD) patients. However, the underlying mechanisms of LAP3 in NAFLD pathogenesis are still unknown. We aim to investigate the role of LAP3 in NAFLD pathogenesis and explore whether LAP3 has the potential to be a candidate biomarker in serum for NAFLD diagnosis. METHODS: Liver tissues and serum from NASH rats, serum from patients with NAFLD were obtained to evaluate the LAP3 expression. Detection of GSSG/GSH, intracellular reactive oxygen species (ROS), and LC3 expression by elevation/ reduction of LAP3 expression to determine the role of LAP3 in NAFLD pathogenesis. Finally, the correlation analysis was conducted to evaluate the association between LAP3 expression and clinical indexes of NAFLD. RESULTS: LAP3 expression was upregulated in hepatocytes and serum in E3 rats with NASH after 6-month HFD feeding. Cholesterol (CHO) dramatically upregulated LAP3 in LO2 cells, and then lead to negative regulation of autophagy. Moreover, LAP3 levels were also significantly increased in NAFLD patients compared to healthy controls. Correlation analysis revealed that serum LAP3 levels were positively correlated with TG, γ-glutamyltranspeptidase (GGT), and fasting blood glucose levels, while there was a negative correlation with HDL levels. CONCLUSIONS: The cholesterol-dependent upregulation of LAP3 in hepatocytes plays a critical role in the pathogenesis of NAFLD via inhibiting autophagy. Moreover, LAP3 could serve as a potential novel candidate biomarker for the diagnosis of NAFLD.


Subject(s)
Autophagy , Cholesterol , Leucyl Aminopeptidase , Non-alcoholic Fatty Liver Disease , Animals , Biomarkers , Humans , Leucyl Aminopeptidase/genetics , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Rats , Up-Regulation
6.
Article in English | MEDLINE | ID: mdl-34461292

ABSTRACT

Cadmium (Cd) presence in terrestrial ecosystems is a serious threat that requires continuous development of biomonitoring tools. Ideally, a suitable biomarker of exposure should respond to the toxicant consistently in different populations regardless of previous exposure to pollution. Here we considered the activities and isoform patterns of certain proteases and acid phosphatases (ACP) in the midgut of Lymantria dispar larvae as well as the integrated biomarker response (IBR) for application in Cd biomonitoring. We compared the responses of caterpillars originating from unpolluted and polluted localities after they had been chronically subjected to dietary Cd (50 and 100 µg Cd/g dry food). The population inhabiting the unpolluted forest was far more sensitive to Cd exposure as the activities of total proteases, trypsin (TRY) and leucine aminopeptidase (LAP) were mostly reduced while the activities of total and non-lysosomal ACP were increased. Non-lysosomal ACP activity was elevated in larvae from the contaminated site in response to the higher Cd concentration. Exposure to the metal resulted in numerous alterations in the pattern of enzyme isoforms, but the responses of the two populations were similar except that larvae from the polluted locality were more tolerant to the lower Cd concentration. Non-lysosomal ACP activity and the appearance of ACP isoforms 4 and 5 together with the IBR index are the most promising indicators of Cd presence, potentially applicable even in populations with a history of exposure to pollution. TRY and total ACP activities could be used to monitor populations at uncontaminated localities.


Subject(s)
Cadmium/toxicity , Moths/drug effects , Acid Phosphatase/genetics , Acid Phosphatase/metabolism , Animals , Digestive System/drug effects , Digestive System/enzymology , Environmental Pollutants/toxicity , Larva , Leucyl Aminopeptidase/genetics , Leucyl Aminopeptidase/metabolism , Moths/embryology , Trypsin/genetics , Trypsin/metabolism
7.
Cancer Genomics Proteomics ; 18(3): 307-316, 2021.
Article in English | MEDLINE | ID: mdl-33893083

ABSTRACT

BACKGROUND/AIM: Cancer is the most fatal disease worldwide whose most lethal characteristics are invasion and metastasis. Hepatocellular carcinoma (HCC) is one of the most fatal cancers worldwide. HCC often shows encapsulation, which is related to better prognosis. In this study, proteomic analysis of HCC tissues with and without encapsulation was performed, in order to elucidate the factors which play important roles in encapsulation. MATERIALS AND METHODS: Five HCC tissues surrounded by a capsule and five HCC tissues which broke the capsule were obtained from patients diagnosed with HCC who underwent surgical liver resection. Protein samples from these tissues were separated by two-dimensional gel electrophoresis (2-DE), and the protein spots whose expression was different between encapsulated and non-encapsulated HCC tissues were identified through gel imaging analysis software. The selected protein spots were analyzed and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: Two-DE analysis showed 14 spots whose expression was different between encapsulated and non-encapsulated HCC tissues. Of these, 9 were up-regulated and 5 were down-regulated in HCC tissues without encapsulation. The validation by Western blot confirmed that leucine aminopeptidase 3 (LAP3) and phosphoenolpyruvate carboxykinase mitochondrial (PCK2) were up-regulated significantly in HCC tissues with a capsule, compared to HCC tissues that broke the capsule. CONCLUSION: These findings suggest that LAP3 and PCK2 could be factors responsible for the maintenance of encapsulation in HCC tissues.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Leucyl Aminopeptidase/metabolism , Liver Neoplasms/metabolism , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Female , Humans , Leucyl Aminopeptidase/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Prognosis , Proteomics , Up-Regulation
8.
Cancer Med ; 9(18): 6726-6738, 2020 09.
Article in English | MEDLINE | ID: mdl-32717133

ABSTRACT

Melphalan flufenamide (hereinafter referred to as "melflufen") is a peptide-conjugated drug currently in phase 3 trials for the treatment of relapsed or refractory multiple myeloma. Due to its lipophilic nature, it readily enters cells, where it is converted to the known alkylator melphalan leading to enrichment of hydrophilic alkylator payloads. Here, we have analysed in vitro and in vivo the efficacy of melflufen on normal and cancerous breast epithelial lines. D492 is a normal-derived nontumorigenic epithelial progenitor cell line whereas D492HER2 is a tumorigenic version of D492, overexpressing the HER2 oncogene. In addition we used triple negative breast cancer cell line MDA-MB231. The tumorigenic D492HER2 and MDA-MB231 cells were more sensitive than normal-derived D492 cells when treated with melflufen. Compared to the commonly used anti-cancer drug doxorubicin, melflufen was significantly more effective in reducing cell viability in vitro while it showed comparable effects in vivo. However, melflufen was more efficient in inhibiting metastasis of MDA-MB231 cells. Melflufen induced DNA damage was confirmed by the expression of the DNA damage proteins Æ´H2Ax and 53BP1. The effect of melflufen on D492HER2 was attenuated if cells were pretreated with the aminopeptidase inhibitor bestatin, which is consistent with previous reports demonstrating the importance of aminopeptidase CD13 in facilitating melflufen cleavage. Moreover, analysis of CD13high and CD13low subpopulations of D492HER2 cells and knockdown of CD13 showed that melflufen efficacy is mediated at least in part by CD13. Knockdown of LAP3 and DPP7 aminopeptidases led to similar efficacy reduction, suggesting that also other aminopeptidases may facilitate melflufen conversion. In summary, we have shown that melflufen is a highly efficient anti-neoplastic agent in breast cancer cell lines and its efficacy is facilitated by aminopeptidases.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Breast Neoplasms/drug therapy , Melphalan/analogs & derivatives , Phenylalanine/analogs & derivatives , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , CD13 Antigens/genetics , CD13 Antigens/metabolism , Cell Line, Tumor , Chick Embryo , DNA Damage , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Female , Gene Expression Regulation, Neoplastic , Histones/metabolism , Humans , Leucyl Aminopeptidase/genetics , Leucyl Aminopeptidase/metabolism , Melphalan/pharmacology , Phenylalanine/pharmacology , Signal Transduction , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
9.
SLAS Discov ; 25(9): 1064-1071, 2020 10.
Article in English | MEDLINE | ID: mdl-32400260

ABSTRACT

Leucyl aminopeptidases (LAPs) are involved in multiple cellular functions, which, in the case of infectious diseases, includes participation in the pathogen-host cell interface and pathogenesis. Thus, LAPs are considered good candidate drug targets, and the major M17-LAP from Trypanosoma cruzi (LAPTc) in particular is a promising target for Chagas disease. To exploit LAPTc as a potential target, it is essential to develop potent and selective inhibitors. To achieve this, we report a high-throughput screening method for LAPTc. Two methods were developed and optimized: a Leu-7-amido-4-methylcoumarin-based fluorogenic assay and a RapidFire mass spectrometry (RapidFire MS)-based assay using the LSTVIVR peptide as substrate. Compared with a fluorescence assay, the major advantages of the RapidFire MS assay are a greater signal-to-noise ratio as well as decreased consumption of enzyme. RapidFire MS was validated with the broad-spectrum LAP inhibitors bestatin (IC50 = 0.35 µM) and arphamenine A (IC50 = 15.75 µM). We suggest that RapidFire MS is highly suitable for screening for specific LAPTc inhibitors.


Subject(s)
Chagas Disease/diagnosis , High-Throughput Screening Assays , Leucyl Aminopeptidase/isolation & purification , Trypanosoma cruzi/isolation & purification , Amino Acid Sequence/genetics , Animals , Chagas Disease/enzymology , Chagas Disease/parasitology , Humans , Kinetics , Leucyl Aminopeptidase/genetics , Mass Spectrometry , Substrate Specificity , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/pathogenicity
10.
Microbiol Res ; 232: 126349, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31816594

ABSTRACT

As an important marine fish pathogen, Edwardsiella piscicida infects a broad range of fish species and causes substantial economic losses. The EsrA-EsrB two-component system is essential for the expression of type III and type VI secretion systems (T3/T6SSs), the key virulence determinants in the bacterium. In this study, a pull-down assay with the esrB promoter as bait was performed to identify the upstream regulators of esrB. As a result, PepA, a leucyl aminopeptidase, was identified as a repressor of EsrB and T3/T6SS expression. PepA bound to the esrB promoter region and negatively regulated the production of T3/T6SS proteins in early stages. Moreover, PepA was found to affect the in vivo colonization of E. piscicida in turbot livers through the regulation of EsrB expression. Collectively, our results enhance the understanding of the virulence regulatory network and in vivo colonization mechanism of E. piscicida. One sentence summary: PepA regulates EsrB expression in Edwardsiella piscicida.


Subject(s)
Bacterial Proteins/metabolism , Edwardsiella/metabolism , Enterobacteriaceae Infections/veterinary , Virulence Factors/genetics , Animals , Bacterial Proteins/genetics , Edwardsiella/genetics , Electrophoretic Mobility Shift Assay/veterinary , Enterobacteriaceae Infections/microbiology , Fish Diseases/microbiology , Gene Expression Regulation, Bacterial , Leucyl Aminopeptidase/genetics , Leucyl Aminopeptidase/metabolism , Promoter Regions, Genetic , Reactive Oxygen Species , Type III Secretion Systems/metabolism , Type VI Secretion Systems/metabolism , Virulence/genetics , Virulence Factors/metabolism
11.
Mol Biol Rep ; 47(2): 1257-1264, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31853767

ABSTRACT

Leucine aminopeptidase 3 (LAP3) is an important proteolytic enzyme that catalyzes the hydrolysis of leucine residues from the amino termini of protein or peptide substrates and plays a critical role in protein metabolism and growth. In the present study, we investigated the full-length cDNA sequence of the LAP3 gene in Sinonovacula constricta (ScLAP3) using expressed sequence tags and rapid amplification of cDNA ends. The full-length ScLAP3 cDNA was 2885 bp, with a 1560 bp open reading frame encoding 519 amino acids. Sequence analysis revealed that ScLAP3 shared 70.9% identity with LAP3 from the blood clam Tegillarca granosa and 62.0-68.0% with other species. ScLAP3 was expressed in all six tested tissues, with significantly higher expression levels in the foot compared with mantle, adductor muscle, liver, gills, and siphon tissues in adults (P < 0.01). In the eight developmental stages, ScLAP3 expression gradually increased, with significantly higher levels in D-shaped larvae compared with other developmental stages (P < 0.01), suggesting that it may be involved in the formation of certain organs during early development. Association analysis identified three shared single nucleotide polymorphisms (SNPs), c.1073A > G, c.1139C > T and c.1154A > G in exons of ScLAP3 gene from 177 individuals of two groups, one selective strain and one wild population, which had significant effects on growth traits of S. constricta. The results provided candidate genetic markers to assist selective breeding of razor clams toward improved growth.


Subject(s)
Bivalvia/genetics , Leucyl Aminopeptidase/genetics , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Alleles , Amino Acid Sequence , Animals , Bivalvia/classification , Cloning, Molecular , DNA, Complementary , Exons , Gene Expression , Gene Frequency , Genotype , Phylogeny , Sequence Analysis, DNA
12.
Eur Eat Disord Rev ; 27(5): 481-494, 2019 09.
Article in English | MEDLINE | ID: mdl-31385420

ABSTRACT

OBJECTIVE: The empirical literature describes the role of the oxytocinergic system in emotion perception (EP). Variants in the oxytocin (OXT) and oxytocin receptor genes have been associated with mental disorders, including anorexia nervosa (AN), that are characterized by difficulties in socioemotional functioning. Our study aimed to examine whether variability within the genes related to OXT pathways may play a role in facial EP in inpatients with AN. METHOD: Single nucleotide polymorphisms (SNPs) of the following genes: oxytocin receptor (rs2254298, rs53576), OXT (rs6133010), OXT-arginine-vasopressin (rs2740204), CD38 (rs6449197, rs3796863), and human leucyl/cystinylaminopeptidase (rs4869317) were genotyped in 60 AN female inpatients and 60 healthy control females (HCs). Associations between genetic polymorphisms and EP as well as clinical symptoms were examined. RESULTS: The AN group showed decreased EP abilities compared with HCs. SNPs of rs2740204, rs6133010, and rs53576 were associated with differences in EP in women with AN and in HCs. The SNP of rs4869317 was associated with the level of eating disorders symptoms in HCs. CONCLUSIONS: The OXT system may be involved in EP difficulties in AN. SNPs within genes related to OXT pathways may influence EP abilities. The leucyl/cystinylaminopeptidase rs4869317 SNP may be involved in the development of eating disorders psychopathology.


Subject(s)
Anorexia Nervosa/genetics , Emotions/physiology , Inpatients/psychology , Oxytocin/genetics , Polymorphism, Single Nucleotide , Signal Transduction/genetics , ADP-ribosyl Cyclase 1/genetics , Adolescent , Adult , Anorexia Nervosa/therapy , Arginine Vasopressin/genetics , Female , Genotype , Humans , Inpatients/statistics & numerical data , Leucyl Aminopeptidase/genetics , Membrane Glycoproteins/genetics , Receptors, Oxytocin/genetics , Young Adult
13.
Genes (Basel) ; 10(8)2019 08 14.
Article in English | MEDLINE | ID: mdl-31416156

ABSTRACT

The SPP1, LAP3, and LCORL are located on chromosome 6 of sheep and a domain of 36.15-38.56 Mb, which plays an essential role in tissue and embryonic growth. In this study, we cloned the complete coding sequences of SPP1 and partial coding regions of LAP3 and LCORL from Hu sheep (Gansu Province, China) and analyzed their genomic structures. The RT-qPCR showed that the three genes were expressed widely in the different tissues of Hu sheep. The SPP1 expression was significantly higher in the kidney (p < 0.01) and LAP3 expression was significantly higher in the spleen, lung, kidney, and duodenum than in the other tissues (heart, liver, rumen, muscle, fat, and ovary; p < 0.05). The LCORL was preferentially expressed in the spleen, duodenum, and lung (p < 0.05). In addition, the nucleotide substitution NM_001009224.1:c.132A>C was found in SPP1; an association analysis showed that it was associated with birth weight and yearling weight (p < 0.05), and NM_001009224.1:c.132C was the dominant allele. Two mutations XM_012179698.3:c.232C>G and XM_012179698.3:c.1154C>T were identified in LAP3. The nucleotide substitution XM_012179698.3:c.232C>G was confirmed to be associated with birth weight, 1-month weight, 3-month weight (p < 0.05), and 2-month weight (p < 0.01). The nucleotide substitution XM_012179698.3:c.1154C>T was associated with birth weight (p < 0.01), 1-month weight, and 2-month weight (p < 0.05). The LAP3 gene XM_012179698.3:c.232C>G mutation with the C allele has higher body weight than other sheep, and CC genotype individuals show higher birth weight, 1-month weight, and weaning weight than the GG genotype individuals (p < 0.05). Our results support the conclusion that the mutations on ovine SPP1 and LAP3 successfully track functional alleles that affect growth in sheep, and these genes could be used as candidate genes for improving the growth traits of sheep during breeding.


Subject(s)
Body Weight/genetics , Leucyl Aminopeptidase/genetics , Osteopontin/genetics , Quantitative Trait, Heritable , Repressor Proteins/genetics , Sheep/genetics , Animals , Leucyl Aminopeptidase/metabolism , Osteopontin/metabolism , Quantitative Trait Loci , Repressor Proteins/metabolism , Sheep/growth & development
14.
J Microbiol ; 57(10): 874-883, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31250400

ABSTRACT

Aspergillus sojae is a koji (starter) mold that has been applied for food fermentation in Asia. The whole genome of A. sojae SMF 134, which was isolated from meju (Korean soybean fermented brick), was analyzed at the genomic level to evaluate its potential as a starter for soybean fermentation. The genome size was 40.1 Mbp, which was expected to be composed of eight chromosomes with 13,748 ORFs. Strain SMF 134 had a total of 151 protease genes, among which two more leucine aminopeptidase (lap) genes were found in addition to the previously known lap 1, and three γ-glutamyltranspeptidase (ggt) genes were newly identified. Such genomic characteristics of SMF 134 with many protease and flavor-related (lap and ggt) genes support its merits as a starter for soybean fermentation. In addition, this first complete genome of A. sojae will allow for further genetic studies to better understand the production of various enzymes, including proteases, LAPs, and GGTs, as well as other characteristics as a starter mold for soybean fermentation.


Subject(s)
Aspergillus/genetics , Aspergillus/metabolism , Genome, Fungal , Glycine max/microbiology , Aspergillus/isolation & purification , Fermentation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Leucyl Aminopeptidase/genetics , Leucyl Aminopeptidase/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Glycine max/metabolism
15.
Vaccine ; 37(24): 3234-3240, 2019 05 27.
Article in English | MEDLINE | ID: mdl-31036453

ABSTRACT

Leucine aminopeptidase (FhLAP) and cathepsin L1 (FhCL1) of Fasciola hepatica play a critical role in parasite feeding, migration through host tissue, and immune evasion. These antigens have been tested for immune protection as single components with variable degrees of success. The chimeric-protein approach could improve protection levels against fasciolosis. Previously, we reported the design and construction of a chimeric protein composed of antigenic sequences of FhLAP and FhCL1 of F. hepatica. The goal of the present study was to express and evaluate the immune-protective capacity of this chimeric protein (rFhLAP-CL1) in sheep. Animals were randomly allocated into five groups with five animals in each group. Groups 1, 2 and 3 were immunized twice with 100 µg, 200 µg and 400 µg of rFhLAP-CL1 emulsified with Quil A adjuvant, whereas groups 4 and 5 were the adjuvant control and infection control groups, respectively. The animals were then challenged with 200 metacercariae two weeks after the rFhLAP-CL1 booster. The fluke burden was reduced by 25.5%, 30.7% (p < 0.05) and 46.5% (p < 0.01) in sheep immunized with 100 µg, 200 µg and 400 µg of chimeric protein, respectively, in comparison to the infection control group. There was a reduction of 22.7% (p < 0.05) and 24.4% (p < 0.01) in fecal egg count in groups 2 and 3, respectively, compared to the infection control group. Sheep immunized with chimeric protein produced F. hepatica excretion-secretion product-specific total IgG antibody, which were increased after challenge. Moreover, the levels of rFhLAP-CL1-specific IgG1 and IgG2 isotypes in immunized sheep increased rapidly two weeks after the first immunization and were significantly more elevated than those of the control groups, indicating a mixed Th1/Th2 response. This is a preliminary evaluation of the chimeric protein rFhLAP-CL1 as a possible immunogen against F. hepatica infection in sheep.


Subject(s)
Antibodies, Helminth/blood , Cathepsin L/immunology , Fascioliasis/veterinary , Leucyl Aminopeptidase/immunology , Sheep Diseases/prevention & control , Adjuvants, Immunologic/administration & dosage , Animals , Cathepsin L/genetics , Fasciola hepatica/immunology , Fascioliasis/prevention & control , Feces , Immunization, Secondary , Immunoglobulin G/blood , Leucyl Aminopeptidase/genetics , Male , Parasite Egg Count , Quillaja Saponins/administration & dosage , Recombinant Fusion Proteins/immunology , Sheep , Sheep Diseases/parasitology , Th1 Cells/immunology , Th2 Cells/immunology
16.
Drug Discov Ther ; 13(1): 17-21, 2019.
Article in English | MEDLINE | ID: mdl-30880317

ABSTRACT

The expression of leucine aminopeptidase 3 (LAP3) is associated with the prognosis for and malignant transformation of many types of tumors. Therefore, a LAP3 inhibitor may represent a new strategy for cancer therapy. Evaluating the suppression of enzyme activity by an LAP3 inhibitor is essential. Right now, leucine aminopeptidases (LAPs) purified from the porcine kidneys are the only enzymes that can be used to evaluate the suppression of enzyme activity by an LAP3 inhibitor. This approach cannot accurately reflect the suppression of human LAP3 by an inhibitor. The current study developed a new method with which to evaluate the suppression of enzyme activity by an LAP3 inhibitor. Total protein from K562 cells seldom catalyzed the LAP3 substrate. A lentivirus was used to induce K562 cells to overexpress LAP3 (K562-LAP3). After puromycin screening, flow cytometry data indicated that 98.8% of cells expressed green fluorescent protein. The expression of LAP3 in K562-LAP3 cells was also assessed using Western blotting. K562-LAP3 cells were lysed with ultrasonication. Total protein was used as an enzyme source and L-leucine p-nitroaniline hydrochloride was used as a substrate to measure enzyme activity. Total protein from K562-LAP3 cells catalyzed the substrate more than that from K562 cells did. The LAP3 inhibitor ubenimex was used as a positive control to evaluate the suppression of LAP3 enzyme activity. Results indicated that ubenimex significantly inhibited the enzyme activity of LAP3. This approach provides a convenient and accurate way to evaluate the suppression of enzyme activity by an LAP3 inhibitor.


Subject(s)
Leucine/analogs & derivatives , Leucyl Aminopeptidase/antagonists & inhibitors , Leucyl Aminopeptidase/biosynthesis , Protease Inhibitors/pharmacology , A549 Cells , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Humans , K562 Cells , Lentivirus/genetics , Lentivirus/metabolism , Leucine/pharmacology , Leucyl Aminopeptidase/genetics , MCF-7 Cells
17.
PLoS Genet ; 15(2): e1007987, 2019 02.
Article in English | MEDLINE | ID: mdl-30802236

ABSTRACT

Drosophila melanogaster sperm reach an extraordinary long size, 1.8 mm, by the end of spermatogenesis. The mitochondrial derivatives run along the entire flagellum and provide structural rigidity for flagellar movement, but its precise function and organization is incompletely understood. The two mitochondrial derivatives differentiate and by the end of spermatogenesis the minor one reduces its size and the major one accumulates paracrystalline material inside it. The molecular constituents and precise function of the paracrystalline material have not yet been revealed. Here we purified the paracrystalline material from mature sperm and identified by mass spectrometry Sperm-Leucylaminopeptidase (S-Lap) family members as important constituents of it. To study the function of S-Lap proteins we show the characterization of classical mutants and RNAi lines affecting of the S-Lap genes and the analysis of their mutant phenotypes. We show that the male sterile phenotype of the S-Lap mutants is caused by defects in paracrystalline material accumulation and abnormal structure of the elongated major mitochondrial derivatives. Our work shows that S-Lap proteins localize and accumulate in the paracrystalline material of the major mitochondrial derivative. Therefore, we propose that S-Lap proteins are important constituents of the paracrystalline material of Drosophila melanogaster sperm.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Leucyl Aminopeptidase/metabolism , Spermatozoa/enzymology , Animals , Animals, Genetically Modified , Crystallization , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Fertility/genetics , Fertility/physiology , Genes, Insect , Infertility, Male/enzymology , Infertility, Male/genetics , Leucyl Aminopeptidase/chemistry , Leucyl Aminopeptidase/genetics , Male , Microscopy, Electron, Transmission , Mitochondria/chemistry , Mitochondria/enzymology , Mitochondria/ultrastructure , Mutation , RNA Interference , Spermatogenesis/genetics , Spermatogenesis/physiology , Spermatozoa/physiology , Spermatozoa/ultrastructure
18.
J Cell Biochem ; 120(3): 3611-3620, 2019 03.
Article in English | MEDLINE | ID: mdl-30417585

ABSTRACT

Overexpression of leucine aminopeptidase 3 (LAP3) is involved in proliferation, migration, and invasion of several tumor cells and plays a crucial role in tumor metastasis. However, the related mechanism remains unknown. In this study, we used MDA-MB-231 and MCF7 breast cancer cell lines to explore the role of LAP3 in the regulation of cancer cell migration and invasion by employing the natural LAP3 inhibitor bestatin and a lentivirus vector that overexpresses or knocks down LAP3. Bestatin inhibited tumor cell migration and invasion in a dose-dependent manner. Western blot assay showed that bestatin and knockdown of LAP3 upregulated phosphorylation of Hsp27 and downregulated expression of fascin. Phosphorylation of Akt and expression of matrix metalloproteinase-2/9 can also be downregulated. LAP3 overexpression showed the opposite results. Immunohistochemistry analysis was conducted to detect expression levels of LAP3 in breast cancer tissues. High LAP3 expression was correlated with the grade of malignancy. Findings of this study uncovered the molecular mechanism of LAP3 on breast cancer metastasis and indicated that LAP3 may act as a potential antimetastasis therapeutic target.


Subject(s)
Breast Neoplasms/metabolism , Carrier Proteins/blood , Cell Movement , Gene Expression Regulation, Neoplastic , Leucyl Aminopeptidase/metabolism , Matrix Metalloproteinase 2/biosynthesis , Matrix Metalloproteinase 9/biosynthesis , Microfilament Proteins/blood , Neoplasm Proteins/metabolism , Up-Regulation , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carrier Proteins/genetics , Female , Humans , Leucyl Aminopeptidase/genetics , MCF-7 Cells , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Microfilament Proteins/genetics , Neoplasm Invasiveness , Neoplasm Proteins/genetics
19.
PLoS One ; 13(10): e0203490, 2018.
Article in English | MEDLINE | ID: mdl-30281608

ABSTRACT

Diagnosis of fascioliasis with high sensitivity and specificity antigens play a vital role in the management of the disease. Majority of commercial serological tests use F. hepatica native antigens and indicate wide diversities in test accuracy. Nowadays, recombinant antigens have been introduced as diagnostic reagents offer better test standardization. A combination of highly pure recombinant antigens associated with correct folding will leads to improve specificity and sensitivity of ELISA for diagnosis of Fascioliasis. In this article, Fasciola hepatica saposin-like protein 2 (SAP-2), ferritin protein (Ftn-1) and leucine aminopeptidase (LAP) recombinant antigens were considered as tools for the detection of F. hepatica immunoglobulin G antibodies in persons with chronic human fasciolasis. The recombinant antigens were obtained as fusion proteins, expressed in Escherichia coli and purified by immobilized metal affinity chromatography (IMAC). The refolding processes of denatured recombinant proteins were performed using dialysis method in the presence of chemical additives, and reduced/oxidized glutathione (in vitro). The immunoreactivity of the recombinant antigens was assessed individually and in a combination compared with excretory/secretory antigen (E/S) in an enzyme-linked immunosorbent assay (ELISA) test. The experiments were optimized using 213 serum samples from humans, including patients with chronic fascioliasis, patients with other parasitic diseases, and healthy subjects. The results indicated 95% sensitivity and 98% specificity for rtFhSAP-2, 96% sensitivity and 91% specificity for E/S, 80% and 83.3% for rtFhFtn-1, 84% and 88% for FhLAP, and also, 96% and 95% for combination of recombinant antigens, respectively. In conclusion, the results of this investigation showed that rtFhSAP-2 with the highest specificity and acceptable sensitivity has a considerable superiority compared to mentioned antigens and even in combination with these antigens in serodiagnosis of human fascioliasis.


Subject(s)
Fascioliasis/diagnosis , Helminth Proteins/blood , Recombinant Proteins/blood , Serologic Tests , Animals , Antigens, Helminth/blood , Antigens, Helminth/immunology , Enzyme-Linked Immunosorbent Assay , Escherichia coli , Fasciola hepatica/immunology , Fasciola hepatica/pathogenicity , Fascioliasis/blood , Fascioliasis/immunology , Fascioliasis/parasitology , Ferritins/genetics , Helminth Proteins/genetics , Helminth Proteins/immunology , Humans , Leucyl Aminopeptidase/genetics , Leucyl Aminopeptidase/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Saposins/genetics
20.
Int J Mol Sci ; 19(4)2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29614002

ABSTRACT

Echinococcus granulosus is the causative agent of cystic echinococcosis (CE), a widespread parasitic zoonosis. Leucine aminopeptidases (LAPs) of the M17 peptidase family have important functions in regulating the balance of catabolism and anabolism, cell maintenance, growth and defense. In this study, we presented a bioinformatic characterization and experimentally determined the tissue distribution characteristics of E. granulosus LAP (Eg-LAP), and explored its potential value for diagnosis of CE in sheep based on indirect ELISA. Through fluorescence immunohistochemistry, we found that Eg-LAP was present in the tegument and hooks of PSCs, the whole germinal layer and adult worm parenchymatous tissue. Western blotting results revealed that the recombinant protein could be identified using E. granulosus-infected sheep serum. The diagnostic value of this recombinant protein was assessed by indirect ELISA, and compared with indirect ELISA based on hydatid fluid antigen. The sensitivity and specificity rEgLAP-ELISA were 95.8% (23/24) and 79.09% (87/110), respectively, while using hydatid fluid as antigen showed the values 41.7% (10/24) and 65.45% (72/110). This is the first report concerning leucine aminopeptidase from E. granulosus, and the results showed that Eg-LAP belong to M17 peptidase families, and that it is involved in important biological function of E. granulosus. Furthermore, rEg-LAP is appropriate for diagnosing and monitoring CE in sheep in field. Development of a rapid test using rEg-LAP to diagnose sheep CE deserves further study.


Subject(s)
Echinococcosis/blood , Echinococcus granulosus/enzymology , Leucyl Aminopeptidase/metabolism , Animals , Antibodies/blood , Antibodies, Helminth/blood , Echinococcus granulosus/immunology , Leucyl Aminopeptidase/genetics , Leucyl Aminopeptidase/immunology , Rabbits , Serologic Tests , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...