Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 384
Filter
2.
Eur J Med Res ; 29(1): 181, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494502

ABSTRACT

BACKGROUND: Metachromatic leukodystrophy (MLD; OMIM 250100 and 249900) is a rare lysosomal storage disease caused by deficient arylsulfatase A activity, leading to accumulation of sulfatides in the nervous system. This systematic literature review aimed to explore the effect of MLD on the lives of patients. METHODS: The Ovid platform was used to search Embase, MEDLINE, and the Cochrane Library for articles related to the natural history, clinical outcomes, and burden of illness of MLD; congress and hand searches were performed using 'metachromatic leukodystrophy' as a keyword. Of the 531 publications identified, 120 were included for data extraction following screening. A subset of findings from studies relating to MLD natural history and burden of illness (n = 108) are presented here. RESULTS: The mean age at symptom onset was generally 16-18 months for late-infantile MLD and 6-10 years for juvenile MLD. Age at diagnosis and time to diagnosis varied widely. Typically, patients with late-infantile MLD presented predominantly with motor symptoms and developmental delay; patients with juvenile MLD presented with motor, cognitive, and behavioral symptoms; and patients with adult MLD presented with cognitive symptoms and psychiatric and mood disorders. Patients with late-infantile MLD had more rapid decline of motor function over time and lower survival than patients with juvenile MLD. Commonly reported comorbidities/complications included ataxia, epilepsy, gallbladder abnormalities, incontinence, neuropathy, and seizures. CONCLUSIONS: Epidemiology of MLD by geographic regions, quantitative cognitive data, data on the differences between early- and late-juvenile MLD, and humanistic or economic outcomes were limited. Further studies on clinical, humanistic (i.e., quality of life), and economic outcomes are needed to help inform healthcare decisions for patients with MLD.


Subject(s)
Leukodystrophy, Metachromatic , Adult , Humans , Leukodystrophy, Metachromatic/epidemiology , Leukodystrophy, Metachromatic/complications , Leukodystrophy, Metachromatic/diagnosis , Quality of Life , Cost of Illness
3.
Mol Genet Metab ; 142(1): 108349, 2024 May.
Article in English | MEDLINE | ID: mdl-38458124

ABSTRACT

Metachromatic leukodystrophy (MLD) is a devastating rare neurodegenerative disease. Typically, loss of motor and cognitive skills precedes early death. The disease is characterised by deficient lysosomal arylsulphatase A (ARSA) activity and an accumulation of undegraded sulphatide due to pathogenic variants in the ARSA gene. Atidarsagene autotemcel (arsa-cel), an ex vivo haematopoietic stem cell gene therapy was approved for use in the UK in 2021 to treat early-onset forms of pre- or early-symptomatic MLD. Optimal outcomes require early diagnosis, but in the absence of family history this is difficult to achieve without newborn screening (NBS). A pre-pilot MLD NBS study was conducted as a feasibility study in Manchester UK using a two-tiered screening test algorithm. Pre-established cutoff values (COV) for the first-tier C16:0 sulphatide (C16:0-S) and the second-tier ARSA tests were evaluated. Before the pre-pilot study, initial test validation using non­neonatal diagnostic bloodspots demonstrated ARSA pseudodeficiency status was associated with normal C16:0-S results for age (n = 43) and hence not expected to cause false positive results in this first-tier test. Instability of ARSA in bloodspot required transfer of NBS bloodspots from ambient temperature to -20°C storage within 7-8 days after heel prick, the earliest possible in this UK pre-pilot study. Eleven of 3687 de-identified NBS samples in the pre-pilot were positive for C16:0-S based on the pre-established COV of ≥170 nmol/l or ≥ 1.8 multiples of median (MoM). All 11 samples were subsequently tested negative determined by the ARSA COV of <20% mean of negative controls. However, two of 20 NBS samples from MLD patients would be missed by this C16:0-S COV. A further suspected false negative case that displayed 4% mean ARSA activity by single ARSA analysis for the initial test validation was confirmed by genotyping of this NBS bloodspot, a severe late infantile MLD phenotype was predicted. This led to urgent assessment of this child by authority approval and timely commencement of arsa-cel gene therapy at 11 months old. Secondary C16:0-S analysis of this NBS bloodspot was 150 nmol/l or 1.67 MoM. This was the lowest result reported thus far, a new COV of 1.65 MoM is recommended for future pilot studies. Furthermore, preliminary data of this study showed C16:1-OH sulphatide is more specific for MLD than C16:0-S. In conclusion, this pre-pilot study adds to the international evidence that recommends newborn screening for MLD, making it possible for patients to benefit fully from treatment through early diagnosis.


Subject(s)
Cerebroside-Sulfatase , Leukodystrophy, Metachromatic , Neonatal Screening , Humans , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/therapy , Leukodystrophy, Metachromatic/genetics , Neonatal Screening/methods , Infant, Newborn , Pilot Projects , Cerebroside-Sulfatase/genetics , Female , Male , Sulfoglycosphingolipids , Infant , Genetic Therapy
4.
Mol Genet Metab ; 142(1): 108436, 2024 May.
Article in English | MEDLINE | ID: mdl-38552449

ABSTRACT

Newborn screening (NBS) for metachromatic leukodystrophy (MLD) is based on first-tier measurement of sulfatides in dried blood spots (DBS) followed by second-tier measurement of arylsulfatase A in the same DBS. This approach is very precise with 0-1 false positives per ∼30,000 newborns tested. Recent data reported here shows that the sulfatide molecular species with an α-hydroxyl, 16­carbon, mono-unsaturated fatty acyl group (16:1-OH-sulfatide) is superior to the original biomarker 16:0-sulfatide in reducing the number of first-tier false positives. This result is consistent across 4 MLD NBS centers. By measuring 16:1-OH-sulfatide alone or together with 16:0-sulfatide, the estimated false positive rate is 0.048% and is reduced essentially to zero with second-tier arylsulfatase A activity assay. The false negative rate is predicted to be extremely low based on the demonstration that 40 out of 40 newborn DBS from clinically-confirmed MLD patients are detected with these methods. The work shows that NBS for MLD is extremely precise and ready for deployment. Furthermore, it can be multiplexed with several other inborn errors of metabolism already tested in NBS centers worldwide.


Subject(s)
Cerebroside-Sulfatase , Dried Blood Spot Testing , Leukodystrophy, Metachromatic , Neonatal Screening , Sulfoglycosphingolipids , Humans , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/blood , Infant, Newborn , Sulfoglycosphingolipids/blood , Neonatal Screening/methods , Cerebroside-Sulfatase/blood , Cerebroside-Sulfatase/genetics , Dried Blood Spot Testing/methods , False Positive Reactions , Biomarkers/blood
5.
Eur J Paediatr Neurol ; 49: 141-154, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38554683

ABSTRACT

INTRODUCTION: Metachromatic leukodystrophy (MLD) is a rare autosomal recessive lysosomal storage disorder resulting from arylsulfatase A enzyme deficiency, leading to toxic sulfatide accumulation. As a result affected individuals exhibit progressive neurodegeneration. Treatments such as hematopoietic stem cell transplantation (HSCT) and gene therapy are effective when administered pre-symptomatically. Newborn screening (NBS) for MLD has recently been shown to be technically feasible and is indicated because of available treatment options. However, there is a lack of guidance on how to monitor and manage identified cases. This study aims to establish consensus among international experts in MLD and patient advocates on clinical management for NBS-identified MLD cases. METHODS: A real-time Delphi procedure using eDELPHI software with 22 experts in MLD was performed. Questions, based on a literature review and workshops, were answered during a seven-week period. Three levels of consensus were defined: A) 100%, B) 75-99%, and C) 50-74% or >75% but >25% neutral votes. Recommendations were categorized by agreement level, from strongly recommended to suggested. Patient advocates participated in discussions and were involved in the final consensus. RESULTS: The study presents 57 statements guiding clinical management of NBS-identified MLD patients. Key recommendations include timely communication by MLD experts with identified families, treating early-onset MLD with gene therapy and late-onset MLD with HSCT, as well as pre-treatment monitoring schemes. Specific knowledge gaps were identified, urging prioritized research for future evidence-based guidelines. DISCUSSION: Consensus-based recommendations for NBS in MLD will enhance harmonized management and facilitate integration in national screening programs. Structured data collection and monitoring of screening programs are crucial for evidence generation and future guideline development. Involving patient representatives in the development of recommendations seems essential for NBS programs.


Subject(s)
Leukodystrophy, Metachromatic , Neonatal Screening , Humans , Leukodystrophy, Metachromatic/therapy , Leukodystrophy, Metachromatic/diagnosis , Infant, Newborn , Neonatal Screening/methods , Neonatal Screening/standards , Delphi Technique , Europe , Consensus
6.
Neuromolecular Med ; 25(4): 563-572, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37682448

ABSTRACT

Metachromatic leukodystrophy (MLD) is a rare leukoencephalopathy caused by pathogenic mutations in the ARSA gene. It manifests as severe motor symptoms, mental problems, and sometimes, seizures. We aimed to investigate the phenotypic manifestations and genetic causes of MLD in an Iranian family. We present the case of a 3-year-old girl who presented with hypotonia, muscular atrophy, and seizures. Neurological and neuromuscular examinations were performed to evaluate clinical characteristics. Whole exome sequencing (WES) was used to detect disease-causing variants. In silico analysis was performed to predict the pathogenicity of this variant. GROMACS software was utilized for molecular dynamic simulation (MDS). Neurological studies revealed marked slowing of motor conduction velocities and an increased motor unit action potential duration. Brain MRI scan revealed white matter abnormalities. By applying WES, we identified a novel homozygous missense variant (NM_000487.6, c.938G > C, p.R313P) in ARSA. Direct sequencing identified this homozygous variant in her asymptomatic younger sister, whereas both parents carried a heterozygous variant. This mutation has not been reported in genetic databases or in literature. In silico analysis predicted that any variation in this DNA position would cause disease, as it is highly conserved. The c.938G > C variant was classified as a pathogenic variant according to ACMG/AMP guidelines. MDS analysis indicated that c.938G > C had a significant impact on both the structure and stabilization of ARSA, ultimately resulting in impaired protein function. The identification of this variant expands the spectrum of ARSA gene mutations associated with MLD and highlights the importance of genetic testing for the diagnosis of MLD.


Subject(s)
Leukodystrophy, Metachromatic , Humans , Female , Child, Preschool , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/genetics , Leukodystrophy, Metachromatic/pathology , Cerebroside-Sulfatase/genetics , Cerebroside-Sulfatase/chemistry , Cerebroside-Sulfatase/metabolism , Iran , Mutation , Seizures
8.
Genome Biol ; 24(1): 172, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37480112

ABSTRACT

BACKGROUND: Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder caused by mutations in the arylsulfatase A gene (ARSA) and categorized into three subtypes according to age of onset. The functional effect of most ARSA mutants remains unknown; better understanding of the genotype-phenotype relationship is required to support newborn screening (NBS) and guide treatment. RESULTS: We collected a patient data set from the literature that relates disease severity to ARSA genotype in 489 individuals with MLD. Patient-based data were used to develop a phenotype matrix that predicts MLD phenotype given ARSA alleles in a patient's genotype with 76% accuracy. We then employed a high-throughput enzyme activity assay using mass spectrometry to explore the function of ARSA variants from the curated patient data set and the Genome Aggregation Database (gnomAD). We observed evidence that 36% of variants of unknown significance (VUS) in ARSA may be pathogenic. By classifying functional effects for 251 VUS from gnomAD, we reduced the incidence of genotypes of unknown significance (GUS) by over 98.5% in the overall population. CONCLUSIONS: These results provide an additional tool for clinicians to anticipate the disease course in MLD patients, identifying individuals at high risk of severe disease to support treatment access. Our results suggest that more than 1 in 3 VUS in ARSA may be pathogenic. We show that combining genetic and biochemical information increases diagnostic yield. Our strategy may apply to other recessive diseases, providing a tool to address the challenge of interpreting VUS within genotype-phenotype relationships and NBS.


Subject(s)
Leukodystrophy, Metachromatic , Humans , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/genetics , Phenotype , Genotype , Alleles , Patient Acuity
10.
JBI Evid Synth ; 21(5): 1027-1033, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36458855

ABSTRACT

OBJECTIVE: The objective of this review is to synthesize the experiences of patients with metachromatic leukodystrophy (MLD), adrenoleukodystrophy (ALD), and Krabbe disease and the experiences of their family members. INTRODUCTION: MLD, ALD, and Krabbe disease are rare disorders that are classified as lysosomal storage or peroxisomal disorders, with similar presentations as leukodystrophy. As these diseases cause cognitive and neurological decline due to the progression of leukodystrophy associated with demyelination, they have significant impact on the lives of patients and their families. It is important to identify the impact and challenges of these diseases on patients' lives and on their families, as well as to synthesize qualitative studies regarding their experiences. INCLUSION CRITERIA: We will consider studies including patients with MLD, ALD, or Krabbe disease and their family members. These experiences will include the challenges, dissatisfactions, and frustrations with symptoms and treatments; complications of hematopoietic stem cell transplantation; and the increased caregiver burden with disease progression. This is important since the impacts of disease progression are experienced in a variety of settings beyond the hospital, such as in the community and at home. METHODS: The search strategy will follow JBI methodology and be conducted in 3 steps: an initial limited search, a comprehensive database search, and a reference search of the included articles. MEDLINE, CINAHL Plus, PsycINFO, and Scopus will be searched with no restriction on language or publication dates. The study selection, critical appraisal, data extraction, and data synthesis will be performed according to JBI guidelines for systematic reviews of qualitative research. Final syntheses will be assessed using the ConQual approach. SYSTEMATIC REVIEW REGISTRATION NUMBER: PROSPERO CRD42022318805.


Subject(s)
Adrenoleukodystrophy , Leukodystrophy, Globoid Cell , Leukodystrophy, Metachromatic , Humans , Leukodystrophy, Metachromatic/therapy , Leukodystrophy, Metachromatic/complications , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Globoid Cell/complications , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/therapy , Adrenoleukodystrophy/complications , Systematic Reviews as Topic , Family , Disease Progression , Review Literature as Topic
11.
Curr Probl Pediatr Adolesc Health Care ; 52(12): 101311, 2022 12.
Article in English | MEDLINE | ID: mdl-36470810

ABSTRACT

Leukodystrophies are defined as differences in normal myelin development and maintenance in the central nervous system. They typically present as white matter imaging abnormalities in young children with delayed developmental milestones. As the scientific community begins to better understand and research the mechanisms underlying leukodystrophies, clinical trials and approved therapies for specific disorders are becoming available. These interventions, ranging from repurposing of existing small molecules to recently approved gene therapies, are highly dependent on early diagnosis. It is essential for pediatricians to identify affected individuals promptly, but they face challenges including lack of awareness of the disorders and nonspecific symptom presentation (e.g., cognitive or motor developmental delay). This review provides five hypothetical clinical presentations and describes the disease mechanisms, typical symptoms, and treatments currently available for common leukodystrophies: Krabbe Disease, Aicardi Goutières Syndrome (AGS), Metachromatic leukodystrophy (MLD), Alexander Disease (AxD), Pelizaeus-Merzbacher Disease (PMD), and X-Linked Adrenoleukodystrophy (X-ALD.) This review educates pediatricians to recognize the presentation of leukodystrophies in affected children. These clinical vignettes can serve as a framework for pediatricians to identify potentially treatable rare disorders among their patients.


Subject(s)
Adrenoleukodystrophy , Autoimmune Diseases of the Nervous System , Leukodystrophy, Globoid Cell , Leukodystrophy, Metachromatic , Nervous System Malformations , Child , Humans , Child, Preschool , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/genetics , Leukodystrophy, Globoid Cell/diagnosis , Leukodystrophy, Globoid Cell/genetics , Adrenoleukodystrophy/diagnosis , Adrenoleukodystrophy/genetics
12.
Orphanet J Rare Dis ; 17(1): 403, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329444

ABSTRACT

Metachromatic Leukodystrophy (MLD) is a rare, autosomal recessive lysosomal storage disorder caused by a deficiency of the enzyme arylsulfatase A (ARSA). MLD causes progressive loss of motor function and severe decline in cognitive function, leading to premature death. Early diagnosis of MLD provides the opportunity to begin treatment before the disease progresses and causes severe disability. MLD is not currently included in newborn screening (NBS) in the UK.This study consisted of an online survey, and follow-up semi-structured interviews open to MLD patients or caregivers, aged 18 years and over. The aims of the study were to understand the importance of early diagnosis and to establish the views of families and caregivers of patients with MLD on NBS.A total of 24 patients took part in the survey, representing 20 families (two families had two children with MLD, one family had three children with MLD). Following on from the survey, six parents participated in the interviews. Our data showed diagnostic delay from first symptoms was between 0 and 3 years, with a median of 1 year (n = 18); during this time deterioration was rapid, especially in earlier onset MLD. In patients with late infantile MLD (n = 10), 50% were wheelchair dependent, 30% were unable to speak, and 50% were tube fed when a diagnosis of MLD was confirmed. In patients with early juvenile MLD (n = 5), over half used a wheelchair some of the time, had uncontrollable crying, and difficulty speaking (all 60%) before or at the time of diagnosis. A high degree of support was expressed for NBS among caregivers, 95% described it as very or extremely important and 86% believed detection of MLD at birth would have changed their child's future. One parent expressed their gratitude for an early diagnosis as a result of familial MLD screening offered at birth and how it had changed their child's future: "It did and it absolutely has I will be forever grateful for his early diagnosis thanks to his older sister."The rapid rate of deterioration in MLD makes it an essential candidate for NBS, particularly now the first gene therapy (Libmeldy™) has been approved by the European Medicines Agency. Libmeldy™ has also been recommended as a treatment option in England and Wales by the National Institute for Health and Care Excellence (NICE) and is being made available to patients in Scotland via the Scottish Medicines Consortium's ultra-orphan pathway.


Subject(s)
Leukodystrophy, Metachromatic , Child , Infant, Newborn , Humans , Adolescent , Adult , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/genetics , Caregivers , Neonatal Screening , Ireland , Delayed Diagnosis , Early Diagnosis , United Kingdom
13.
Mol Genet Metab ; 137(3): 273-282, 2022 11.
Article in English | MEDLINE | ID: mdl-36240581

ABSTRACT

OBJECTIVES: Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal storage disease caused by deficiency of arylsulfatase A (ARSA). Subsequent accumulation of sulfatides leads to demyelination and neurodegeneration in the central and peripheral nervous system. To date MLD is classified based on the age at onset, however, especially for late onset forms this classification provides only limited projection regarding the clinical disease course. Moreover, evolving newborn screening approaches raise the need to predict the disease onset and course in pre-symptomatic individuals. Here, we correlate the ARSA activity and the ARSA-genotype with clinical parameters in a large cohort of 96 affected individuals. MATERIALS AND METHODS: Clinical data of 96 affected individuals with genetically and/or biochemically confirmed MLD were collected from a national database. Leukocyte samples from 69 affected individuals were re-analyzed for the ARSA activity using p-nitrocatecholsulfate as substrate with a refined ARSA assay towards the lower limit of detection. For 84 individuals genetic sequencing was conducted by Sanger or next generation sequencing (NGS). RESULTS: The adapted ARSA assay revealed the discriminatory power to differentiate MLD subtypes as the residual enzyme activity was low in late infantile and early juvenile forms, and clearly higher in late juvenile and adult MLD (p < 0.001). A residual enzyme activity below 1% compared to controls predicted an early onset (late-infantile or early-juvenile) and rapid disease progression. A firm genotype-phenotype correlation was proven as reliable for bi-allelic protein-truncating variants in the ARSA gene resulting in minimal residual ARSA activity, an early onset of the disease and initial decline of motor functions. Although the impact of missense variants was equivocal, few variants with a recognizable clinical spectrum were identified. DISCUSSION: ARSA activity in leukocytes as well as the ARSA genotype can predict the age of disease onset and the dynamic of disease progression for most of the early onset forms. This knowledge is relevant for patient counseling and to guide treatment decisions, especially when identifying pre-symptomatic individuals, e.g., in newborn screening. However, due to the high cumulative frequency of rare disease-causing missense variants in the ARSA gene that lead to highly variable residual enzyme activity, reiterated biochemical and genetic studies are needed to improve disease course prediction.


Subject(s)
Cerebroside-Sulfatase , Leukodystrophy, Metachromatic , Humans , Cerebroside-Sulfatase/genetics , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/genetics , Genotype , Phenotype , Disease Progression
14.
Orphanet J Rare Dis ; 17(1): 370, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36195888

ABSTRACT

BACKGROUND: Metachromatic leukodystrophy (MLD), a relentlessly progressive and ultimately fatal condition, is a rare autosomal recessive lysosomal storage disorder caused by a deficiency of the enzyme arylsulfatase A (ARSA). Historically management has been palliative or supportive care. Hematopoietic stem cell transplantation is poorly effective in early-onset MLD and benefit in late-onset MLD remains controversial. Hematopoietic stem cell gene therapy, Libmeldy (atidarsagene autotemcel), was recently approved by the European Medicines Agency for early-onset MLD. Treatment benefit is mainly observed at an early disease stage, indicating the need for early diagnosis and intervention. This study contributes insights into the caregiver language used to describe initial MLD symptomatology, and thereby aims to improve communication between clinicians and families impacted by this condition and promote a faster path to diagnosis. RESULTS: Data was collected through a moderator-assisted online 60-min survey and 30-min semi-structured follow-up telephone interview with 31 MLD caregivers in the United States (n = 10), France (n = 10), the United Kingdom (n = 5), and Germany (n = 6). All respondents were primary caregivers of a person with late infantile (n = 20), juvenile (n = 11) or borderline late infantile/juvenile (n = 1) MLD (one caregiver reported for 2 children leading to a sample of 32 individuals with MLD). Caregivers were asked questions related to their child's initial signs and symptoms, time to diagnosis and interactions with healthcare providers. These results highlight the caregiver language used to describe the most common initial symptoms of MLD and provide added context to help elevate the index of suspicion of disease. Distinctions between caregiver descriptions of late infantile and juvenile MLD in symptom onset and disease course were also identified. CONCLUSIONS: This study captures the caregiver description of the physical, behavioral, and cognitive signs of MLD prior to diagnosis. The understanding of the caregiver language at symptom onset sheds light on a critical window of often missed opportunity for earlier diagnosis and therapeutic intervention in MLD.


Subject(s)
Leukodystrophy, Metachromatic , Lysosomal Storage Diseases , Caregivers , Cerebroside-Sulfatase/genetics , Child , Disease Progression , Humans , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/therapy
15.
Neurology ; 99(22): 997-1003, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36100438

ABSTRACT

Metachromatic leukodystrophy (MLD) is a rare inherited lysosomal disorder. The condition progresses relentlessly, with severe disability typically established within 6-14 years of symptom onset. There is no cure, and limited treatment options are available to slow disease progression. We describe the case of a 23-year-old woman with forgetfulness, unsteady gait, and falls. Neurologic examination revealed intermittent dystonic posturing of the right upper and lower limb when walking. The Addenbrooke's Cognitive Examination (ACE) score was 70/100. MRI sequences demonstrated frontal-predominant atrophy and extensive white matter hyperintensity. Differential diagnoses such as autoimmune, inflammatory, and neoplastic diseases were excluded, and a genetic diagnosis was considered. Lysosomal enzyme testing showed low arylsulfatase with elevated urinary sulfatides, and genetic testing revealed a homozygous pathogenic mutation in the ARSA gene securing a diagnosis of adult-onset MLD. A male sibling also had early cognitive impairment and was found to have the same mutation. Hematopoietic stem cell transplantation (HSCT) was offered after discussion with experts. The male sibling died of multiple complications after HSCT. The index patient is now 24 months after HSCT, and disease progression has halted. This case highlights the challenges in the accurate diagnosis of adult-onset leukoencephalopathies and explores potential treatment strategies. A stepwise approach to the differential diagnosis of white matter diseases is demonstrated. HSCT may be an effective treatment, but the significant complication rate needs to be carefully considered.


Subject(s)
Cognitive Dysfunction , Leukodystrophy, Metachromatic , Leukoencephalopathies , Adult , Female , Humans , Male , Young Adult , Clinical Reasoning , Leukodystrophy, Metachromatic/complications , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/therapy , Leukoencephalopathies/complications , Cognitive Dysfunction/etiology , Cognitive Dysfunction/complications , Disease Progression , Gait
16.
Eur J Paediatr Neurol ; 37: 87-93, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35152000

ABSTRACT

OBJECTIVES: Metachromatic leukodystrophy (MLD) is a fatal lysosomal storage disease characterized by progressive demyelination within the central and peripheral nervous system. Rapid diagnosis is crucial in view of evolving therapeutic options. Strabismus has anecdotally been described as a feature in children with MLD. Our first aim was to examine the prevalence of strabismus as an early or even presenting sign of MLD in two nationwide cohorts. Second, we aimed to investigate the temporal relation between the onset of strabismus and gross motor deterioration, other early onset eye movement disorders and brain white matter abnormalities. METHODS: Clinical records of 204 MLD patients at the University Children's Hospital Tubingen and Amsterdam University Medical Center were reviewed on the presence of strabismus and other eye movement disorders. Gross motor deterioration and white matter abnormalities on brain MRI were evaluated by using the Gross Motor Function Classification in MLD and MLD LOES score, respectively. RESULTS: We identified strabismus as an early sign in MLD patients with the late-infantile form, with a prevalence of 27% (N = 17). The onset of strabismus preceded gross motor symptoms and brain white matter abnormalities in 71% and 46% respectively of the cases. Important characteristics were an acute-onset paralytic esotropia, partly accompanied by other eye movement abnormalities, and gadolinium enhancement of the cranial nerves. CONCLUSIONS: Acute-onset paralytic strabismus in toddlers should be considered a potential early sign of late-infantile MLD and might result from early cranial nerve involvement. Brain MRI with gadolinium contrast may facilitate early diagnosis.


Subject(s)
Leukodystrophy, Metachromatic , Strabismus , Contrast Media/therapeutic use , Gadolinium/therapeutic use , Humans , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/diagnostic imaging , Magnetic Resonance Imaging , Strabismus/diagnosis , Strabismus/etiology
17.
Semin Pediatr Neurol ; 37: 100876, 2021 04.
Article in English | MEDLINE | ID: mdl-33892849

ABSTRACT

Leukodystrophies and genetic leukoencephalopathies comprise a growing group of inherited white matter disorders. Diagnostic rates have improved with increased utilization of next generation sequencing. As treatment options continue to advance for leukodystrophies, so will candidacy for inclusion in the United States' newborn Recommended Universal Screening Panel as was achieved for X-linked adrenoleukodystrophy. Stem cell therapies have become standard of care for selected leukodystrophies. However, transplantation-related risks remain high and outcomes are not fully satisfactory. Transduction of autologous hematopoietic stem cells with lentiviral vectors, referred to as ex vivo gene therapy, circumvents some, but not all, of the risks of traditional transplantation and has recently been demonstrated to be safe and efficective in clinical studies of X-linked adrenoleukodystrophy and metachromatic leukodystrophy. Gene therapy, through direct infusion of adeno-associated virus vectors, has emerged as a safer alternative for many monogenetic pediatric neurological disorders. Numerous preclinical studies have shown safety and efficacy of adeno-associated virus gene therapy in leukodystrophies allowing expanded access treatment for Canavan disease prior to initiation of a clinical trial. For inherited white matter disorders resulting from overexpression of a protein, such as Pelizaeus-Merzbacher disease, emerging RNA therapies have shown success in preclinical studies and promise for rapid translation to the clinic. Lastly, small molecule and protein therapies remain a long-term treatment option for a number of leukodystrophies, including intrathecal enzyme replacement therapy for metachromatic leukodystrophy. Herein we review recent advances in diagnosis and treatment of inherited white matter disorders.


Subject(s)
Demyelinating Diseases , Leukodystrophy, Metachromatic , Leukoencephalopathies , Neurodegenerative Diseases , Child , Genetic Therapy , Humans , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/genetics , Leukodystrophy, Metachromatic/therapy , Leukoencephalopathies/therapy
18.
J Inherit Metab Dis ; 44(5): 1151-1164, 2021 09.
Article in English | MEDLINE | ID: mdl-33855715

ABSTRACT

In this study, we characterize the natural course of metachromatic leukodystrophy (MLD), explore intra/inter group differences, and identify biomarkers to monitor disease progression. This is a longitudinal observational study. Genotype and characteristics at disease onset were recorded. Time-to-event analyses were performed to assess time to major disease-related milestones in different subgroups. Longitudinal trajectories of nerve conduction velocities (NCV), brain MRI score, and brainstem auditory evoked responses (BAERs) were described. We recruited 22 late-infantile, 14 early-juvenile, 5 late-juvenile, and 4 adult MLD patients. Thirty-four were prospectively evaluated (median FU time 43 months). In late-infantile patients, the attainment of independent walking was associated with a later age at dysphagia. In early-juvenile, the presence of isolated cognitive impairment at onset was not a favorable prognostic factor. Late-infantile and early-juvenile subjects showed similar rapid loss of ambulation and onset of seizures, but late-infantile displayed earlier loss of trunk control, dysphagia, and death. We found significant differences in all major disease-related milestones (except death) between early-juvenile and late-juvenile patients. Late-juvenile and adult patients both presented with a predominant cognitive impairment, mild/no peripheral neuropathy, lower brain MRI score at plateau compared to LI/EJ, and later cerebellar involvement. NCV and BAER were consistently severely abnormal in late-infantile but not in older subjects, in whom both NCV and BAER were variably affected, with no deterioration over time in some cases. This study clarifies intra/inter group differences between MLD subtypes and provides additional indications regarding reliable clinical and instrumental tools to monitor disease progression and to serve as areference to evaluate the efficacy of future therapeutic interventions inthe different MLD variants.


Subject(s)
Brain/pathology , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/pathology , Adolescent , Child , Child, Preschool , Disease Progression , Female , Humans , Infant , Italy , Longitudinal Studies , Lysosomal Storage Diseases/diagnosis , Lysosomal Storage Diseases/pathology , Magnetic Resonance Imaging , Male
20.
Neurology ; 96(2): e255-e266, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33046606

ABSTRACT

OBJECTIVE: To compare disease progression between different onset forms of metachromatic leukodystrophy (MLD) and to investigate the influence of the type of first symptoms on the natural course and dynamic of disease progression. METHODS: Clinical, genetic, and biochemical parameters were analyzed within a nationwide study of patients with late-infantile (LI; onset age ≤2.5 years), early-juvenile (EJ; onset age 2.6 to <6 years), late-juvenile (LJ; onset age 6 to <16 years), and adult (onset age ≥16 years) forms of MLD. First symptoms were categorized as motor symptoms only, cognitive symptoms only, or both. Standardized clinical endpoints included loss of motor and language functions, as well as dysphagia/tube feeding. RESULTS: Ninety-seven patients with MLD were enrolled. Patients with LI (n = 35) and EJ (n = 18) MLD exhibited similarly rapid disease progression, all starting with motor symptoms (with or without additional cognitive symptoms). In LJ (n = 38) and adult-onset (n = 6) patients, the course of the disease was as rapid as in the early-onset forms, when motor symptoms were present at disease onset, while patients with only cognitive symptoms at disease onset exhibited significantly milder disease progression, independently of their age at onset. A certain genotype-phenotype correlation was observed. CONCLUSIONS: In addition to age at onset, the type of first symptoms predicts the rate of disease progression in MLD. These findings are important for counseling and therapy. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that in patients with MLD, age at onset and the type of first symptoms predict the rate of disease progression.


Subject(s)
Disease Progression , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/epidemiology , Adolescent , Adult , Age of Onset , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...