Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.512
Filter
1.
Trop Anim Health Prod ; 56(4): 146, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722408

ABSTRACT

This study was planned to evaluate the impact of dichromatic lights during incubation on the hatching and post-hatch performance of broiler chickens. A total of 500 eggs of broiler breeder (Ross 308; Age 44 weeks) were evenly divided according to a completely randomized design into 4 treatments having 5 replicates and 25 eggs each. Treatments consisted of dichromatic lights Blue + Red (BR), Green + Red (GR) and Green + Blue (GB) provided at an intensity of 250 lx for 12 h a day along with a Dark (D) environment. After hatching 200 chicks (50 from each respective light group) were divided into 4 treatments with 5 replicates each having 10 chicks. Results indicated a higher embryo index (13.12%) in the GR group on the 12th day of incubation; while an ideal hatch window was observed in GR and GB (98.18% and 96.00% hatched chicks) lighting groups. In hatching traits, higher hatchability (86.15) and hatch of fertile (93.85) percentages were observed in GR lighting followed by GB, BR and Dark treatment groups; while dead-in shell embryos were lowest in the GR group. In growth performance, higher feed intake (513.20 g) and body weight (479.20 g) were observed in the GB group followed by GR, BR and dark group; and feed conversion ratio (FCR) was better in the GR group (1.06). In welfare parameters, improved physical asymmetry (0.90 mm) and tonic immobility (54.40 s) were measured in the GR group followed by GB, BR and the dark group. It was concluded that under experimental conditions when broiler breeder eggs are provided with GR lighting during incubation, it can help to improve hatchability, growth performance and welfare traits in chicks.


Subject(s)
Animal Husbandry , Chickens , Lighting , Animals , Chickens/growth & development , Chickens/physiology , Chick Embryo/growth & development , Animal Husbandry/methods , Random Allocation , Female , Light
2.
PLoS One ; 19(5): e0302492, 2024.
Article in English | MEDLINE | ID: mdl-38713661

ABSTRACT

The Perona-Malik (P-M) model exhibits deficiencies such as noise amplification, new noise introduction, and significant gradient effects when processing noisy images. To address these issues, this paper proposes an image-denoising algorithm, ACE-GPM, which integrates an Automatic Color Equalization (ACE) algorithm with a gradient-adjusted P-M model. Initially, the ACE algorithm is employed to enhance the contrast of low-light images obscured by fog and noise. Subsequently, the Otsu method, a technique to find the optimal threshold based on between-class variance, is applied for precise segmentation, enabling more accurate identification of different regions within the image. After that, distinct gradients enhance the image's foreground and background via an enhancement function that accentuates edge and detailed information. The denoising process is finalized by applying the gradient P-M model, employing a gradient descent approach to further emphasize image edges and details. Experimental evidence indicates that the proposed ACE-GPM algorithm not only elevates image contrast and eliminates noise more effectively than other denoising methods but also preserves image details and texture information, evidenced by an average increase of 0.42 in the information entropy value. Moreover, the proposed solution achieves these outcomes with reduced computational resource expenditures while maintaining high image quality.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Signal-To-Noise Ratio , Image Processing, Computer-Assisted/methods , Lighting/methods , Humans , Color , Image Enhancement/methods
3.
Arq Bras Oftalmol ; 87(3): e20230257, 2024.
Article in English | MEDLINE | ID: mdl-38716966

ABSTRACT

PURPOSE: This review emphasizes the effect of light on visual efficiency, the impact of different lighting focuses, types of lighting, and their influence on vision and productivity. Light sources and standards are intriguing subjects for ophthalmologists. Guidelines regarding the level of lighting influence on visual activities can enhance visual performance.Methods: This article was developed based on literature reviews, with a bibliographic survey conducted in databases such as PubMed, MEDLINE, Web of Science, Embase, LILACS, and SciELO. RESULTS: Provides recommendations for understanding information regarding the influence of lighting on visual performance. CONCLUSION: Proper workplace lighting is crucial for improving visual efficiency, safety, productivity, and worker health. Efficient workplace lighting should avoid light sources directed towards the worker's face, prevent harmful glare, be more intense in the work area, and uniform in the rest of the room. Ophthalmologists should be knowledgeable about and provide guidance on correct lighting to ensure patient comfort and satisfaction with visual correction.


Subject(s)
Lighting , Humans , Vision, Ocular/physiology , Visual Acuity/physiology , Workplace , Occupational Health , Glare , Light
4.
Sci Rep ; 14(1): 10183, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702452

ABSTRACT

The perception of halos and other night vision disturbances is a common complaint in clinical practice. Such visual disturbances must be assessed in order to fully characterize each patient's visual performance, which is particularly relevant when carrying out a range of daily tasks. Visual problems are usually assessed using achromatic stimuli, yet the stimuli encountered in daily life have very different chromaticities. Hence, it is important to assess the effect of the chromaticity of visual stimuli on night vision disturbances. The aim of this work is to study the influence of the chromaticity of different visual stimuli on night vision disturbances by analyzing straylight and visual discrimination under low-light conditions. For that, we assessed the monocular and binocular visual discrimination of 27 subjects under low illumination using the Halo test. The subjects' visual discrimination was assessed after exposure to different visual stimuli: achromatic, red, green, and blue, both at the monitor's maximum luminance and maintaining the same luminance value for the different visual stimuli. Monocular straylight was also measured for an achromatic, red, green, and blue stimuli. The blue stimulus had the greatest effect on halos in both monocular and binocular conditions. Visual discrimination was similar for the red, green, and achromatic stimuli, but worsened at lower luminance. The greatest influence of straylight was observed for the blue stimulus. In addition, visual discrimination correlated with straylight measurements for achromatic stimuli, wherein greater straylight values correlated with an increased perception of halos and other visual disturbances.


Subject(s)
Photic Stimulation , Humans , Male , Female , Adult , Night Vision/physiology , Young Adult , Light , Vision, Binocular/physiology , Visual Perception/physiology , Color Perception/physiology , Vision Disorders/physiopathology , Lighting , Middle Aged
5.
Biochem Biophys Res Commun ; 718: 150078, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38735140

ABSTRACT

Among the environmental factors contributing to myopia, the role of correlated color temperature (CCT) of ambient light emerges as a key element warranting in-depth investigation. The choroid, a highly vascularized and dynamic structure, often undergoes thinning during the progression of myopia, though the precise mechanism remains elusive. The retinal pigment epithelium (RPE), the outermost layer of the retina, plays a pivotal role in regulating the transport of ion and fluid between the subretinal space and the choroid. A hypothesis suggests that variations in choroidal thickness (ChT) may be modulated by transepithelial fluid movement across the RPE. Our experimental results demonstrate that high CCT illumination significantly compromised the integrity of tight junctions in the RPE and disrupted chloride ion transport. This functional impairment of the RPE may lead to a reduction in fluid transfer across the RPE, consequently resulting in choroidal thinning and potentially accelerating axial elongation. Our findings provide support for the crucial role of the RPE in regulating ChT. Furthermore, we emphasize the potential hazards posed by high CCT artificial illumination on the RPE, the choroid, and refractive development, underscoring the importance of developing eye-friendly artificial light sources to aid in the prevention and control of myopia.


Subject(s)
Chlorides , Choroid , Ion Transport , Retinal Pigment Epithelium , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/radiation effects , Retinal Pigment Epithelium/pathology , Choroid/metabolism , Choroid/radiation effects , Choroid/pathology , Animals , Ion Transport/radiation effects , Chlorides/metabolism , Lighting/methods , Temperature , Color , Tight Junctions/metabolism , Myopia/metabolism , Myopia/pathology , Myopia/etiology
7.
Luminescence ; 39(5): e4763, 2024 May.
Article in English | MEDLINE | ID: mdl-38761029

ABSTRACT

The development of optical optics for low-location road lighting is a challenging problem in providing high luminance and uniformity of illumination and meeting many other specific requirements. This study proposes an optical design method of low-location illumination based on an asymmetric double freeform surface lens. The ray emitted from the light source is refracted and reflected through the different surface types to the corresponding area of the receiving surface. In the design example, the road has dual-side mounted luminaires and a width of 6 m, and a height of 0.8 m. Simulation results indicate that, compared with conventional high-pole streetlights, the luminance uniformity had increased from 0.60 to 0.66, the illuminance uniformity had improved from 0.75 to 0.86, and the glare had been reduced.


Subject(s)
Lighting , Surface Properties , Light , Equipment Design
8.
J Vis ; 24(5): 6, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38727688

ABSTRACT

Prior research has demonstrated high levels of color constancy in real-world scenarios featuring single light sources, extensive fields of view, and prolonged adaptation periods. However, exploring the specific cues humans rely on becomes challenging, if not unfeasible, with actual objects and lighting conditions. To circumvent these obstacles, we employed virtual reality technology to craft immersive, realistic settings that can be manipulated in real time. We designed forest and office scenes illuminated by five colors. Participants selected a test object most resembling a previously shown achromatic reference. To study color constancy mechanisms, we modified scenes to neutralize three contributors: local surround (placing a uniform-colored leaf under test objects), maximum flux (keeping the brightest object constant), and spatial mean (maintaining a neutral average light reflectance), employing two methods for the latter: changing object reflectances or introducing new elements. We found that color constancy was high in conditions with all cues present, aligning with past research. However, removing individual cues led to varied impacts on constancy. Local surrounds significantly reduced performance, especially under green illumination, showing strong interaction between greenish light and rose-colored contexts. In contrast, the maximum flux mechanism barely affected performance, challenging assumptions used in white balancing algorithms. The spatial mean experiment showed disparate effects: Adding objects slightly impacted performance, while changing reflectances nearly eliminated constancy, suggesting human color constancy relies more on scene interpretation than pixel-based calculations.


Subject(s)
Color Perception , Cues , Lighting , Photic Stimulation , Virtual Reality , Humans , Color Perception/physiology , Lighting/methods , Adult , Male , Female , Photic Stimulation/methods , Young Adult
9.
World J Urol ; 42(1): 298, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709327

ABSTRACT

PURPOSE: The aim of the study was to evaluate illumination properties in an in-vitro kidney calyx model in saline. DESIGN AND METHODS: We evaluated a series of contemporary flexible ureteroscopes including the Storz Flex-Xc and Flex-X2s, Olympus V3 and P7, Pusen 7.5F and 9.2F, as well as OTU WiScope using a 3D-printed closed pink kidney calyx model, submerged in saline. A spectrometer was used for illuminance and color temperature measurements at different openings located at center (direct light), 45° (direct and indirect light) and 90°(indirect light) to the axis of the scope. RESULTS: Maximum illuminance was at the center opening for all scopes (range: 284 to 12,058 lx at 50% brightness and 454 to 11,871 lx at 100% brightness settings). The scope with the highest center illuminance (Flex-Xc) was 26 times superior to the scope with the lowest illuminance (Pusen 7.5Fr) at 100% brightness setting. For each scope, there was a peripheral illuminance drop ranging from - 43 to - 92% at 50% brightness and - 43% to - 88% at 100% brightness settings, respectively (all p < 0.01). Highest drop was for the P7 and the Pusen 9.2F. All scopes had illuminance skew, except the V3. All scopes had a warm color temperature. CONCLUSION: Illumination properties vary between ureteroscopes in an enclosed cavity in saline, and differs at center vs 45° and 90° positions within scopes. Peripheral illuminance drop can be as high as - 92%, which is undesirable. This may affect the choice of ureteroscope and light brightness settings used in surgery by urologists.


Subject(s)
Equipment Design , Kidney , Lighting , Ureteroscopes , Models, Anatomic , Humans
10.
World J Urol ; 42(1): 294, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704777

ABSTRACT

PURPOSE: To date, no study has evaluated effects of varying brightness settings on image quality from flexible ureteroscopes submerged in saline. The aim was to evaluate blackout and whiteout occurrences in an in-vitro kidney calyx model. MATERIAL AND METHODS: We evaluated a series of contemporary flexible ureteroscopes including the Storz Flex-Xc and Flex-X2s, Olympus V3 and P7, Pusen 7.5F and 9.2F, as well as OTU WiScope using a 3D-printed enclosed pink in-vitro kidney calyx model submerged in saline. Endoscopic images were captured with ureteroscope tip placed at 5 mm,10 mm and 20 mm distances. The complete range of brightness settings and video capture modes were evaluated for each scope. Distribution of brightness on a grayscale histogram of images was analyzed (scale range 0 to 255). Blackout and whiteout were defined as median histogram ranges from 0 to 35 and 220 to 255, respectively (monitor image too dark or too bright for the human eye, respectively). RESULTS: Blackout occurred with the P7, Pusen 7.5F, 9.2F and WiScope at all distances, and V3 at 20 mm - with lowest brightness settings. Whiteout occurred with Flex-X2s, V3 and P7 at 5 mm and 10 mm, as well as with V3 and P7 at 20 mm - mostly with highest brightness settings. The Flex-Xc had neither blackout nor whiteout at all settings and distances. CONCLUSION: Blackout or whiteout of images is an undesirable property that was found for several scopes, possibly impacting diagnostic and therapeutic purposes during ureteroscopy. These observations form a guide to impact a urologist's choice of instruments and settings.


Subject(s)
Ureteroscopes , Ureteroscopy , Humans , Equipment Design , Lighting , Pliability , Kidney Calices
11.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230115, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705175

ABSTRACT

Radar networks hold great promise for monitoring population trends of migrating insects. However, it is important to elucidate the nature of responses to environmental cues. We use data from a mini-network of vertical-looking entomological radars in the southern UK to investigate changes in nightly abundance, flight altitude and behaviour of insect migrants, in relation to meteorological and celestial conditions. Abundance of migrants showed positive relationships with air temperature, indicating that this is the single most important variable influencing the decision to initiate migration. In addition, there was a small but significant effect of moonlight illumination, with more insects migrating on full moon nights. While the effect of nocturnal illumination levels on abundance was relatively minor, there was a stronger effect on the insects' ability to orientate close to downwind: flight headings were more tightly clustered on nights when the moon was bright and when cloud cover was sparse. This indicates that nocturnal illumination is important for the navigational mechanisms used by nocturnal insect migrants. Further, our results clearly show that environmental conditions such as air temperature and light levels must be considered if long-term radar datasets are to be used to assess changing population trends of migrants. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Animal Migration , Flight, Animal , Insecta , Animals , Insecta/physiology , Lighting , Radar , Moon , Temperature
12.
BMC Plant Biol ; 24(1): 252, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589797

ABSTRACT

BACKGROUND: This study explores the impact of various light spectra on the photosynthetic performance of strawberry plants subjected to salinity, alkalinity, and combined salinity/alkalinity stress. We employed supplemental lighting through Light-emitting Diodes (LEDs) with specific wavelengths: monochromatic blue (460 nm), monochromatic red (660 nm), dichromatic blue/red (1:3 ratio), and white/yellow (400-700 nm), all at an intensity of 200 µmol m-2 S-1. Additionally, a control group (ambient light) without LED treatment was included in the study. The tested experimental variants were: optimal growth conditions (control), alkalinity (40 mM NaHCO3), salinity (80 mM NaCl), and a combination of salinity/alkalinity. RESULTS: The results revealed a notable decrease in photosynthetic efficiency under both salinity and alkalinity stresses, especially when these stresses were combined, in comparison to the no-stress condition. However, the application of supplemental lighting, particularly with the red and blue/red spectra, mitigated the adverse effects of stress. The imposed stress conditions had a detrimental impact on both gas exchange parameters and photosynthetic efficiency of the plants. In contrast, treatments involving blue, red, and blue/red light exhibited a beneficial effect on photosynthetic efficiency compared to other lighting conditions. Further analysis of JIP-test parameters confirmed that these specific light treatments significantly ameliorated the stress impacts. CONCLUSIONS: In summary, the utilization of blue, red, and blue/red light spectra has the potential to enhance plant resilience in the face of salinity and alkalinity stresses. This discovery presents a promising strategy for cultivating plants in anticipation of future challenging environmental conditions.


Subject(s)
Fragaria , Resilience, Psychological , Lighting/methods , Salinity , Light
13.
Lasers Med Sci ; 39(1): 104, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630175

ABSTRACT

The study aimed to explore the impact of a novel near-infrared LED (nNIR) with an extended spectrum on skin enhancement and hair growth. Various LED sources, including White and nNIRs, were compared across multiple parameters: cytotoxicity, adenosine triphosphate (ATP) synthesis, reactive oxygen species (ROS) reduction, skin thickness, collagen synthesis, collagenase expression, and hair follicle growth. Experiments were conducted on human skin cells and animal models. Cytotoxicity, ATP synthesis, and ROS reduction were evaluated in human skin cells exposed to nNIRs and Whites. LED irradiation effects were also studied on a UV-induced photoaging mouse model, analyzing skin thickness, collagen synthesis, and collagenase expression. Hair growth promotion was examined as well. Results revealed both White and nNIR were non-cytotoxic to human skin cells. nNIR enhanced ATP and collagen synthesis while reducing ROS levels, outperforming the commonly used 2chip LEDs. In the UV-induced photoaging mouse model, nNIR irradiation led to reduced skin thickness, increased collagen synthesis, and lowered collagenase expression. Additionally, nNIR irradiation stimulated hair growth, augmented skin thickness, and increased hair follicle count. In conclusion, the study highlighted positive effects of White and nNIR irradiation on skin and hair growth. However, nNIR exhibited superior outcomes compared to White. Its advancements in ATP content, collagen synthesis, collagenase inhibition, and hair growth promotion imply increased ATP synthesis activity. These findings underscore nNIR therapy's potential as an innovative and effective approach for enhancing skin and promoting hair growth.


Subject(s)
Lighting , Polyphosphates , Rejuvenation , Animals , Humans , Mice , Reactive Oxygen Species , Adenosine Triphosphate , Disease Models, Animal , Hair Follicle , Collagenases , Collagen
14.
J Vis ; 24(4): 11, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38607637

ABSTRACT

Using a novel approach to classification images (CIs), we investigated the visual expertise of surveyors for luminance and binocular disparity cues simultaneously after screening for stereoacuity. Stereoscopic aerial images of hedges and ditches were classified in 10,000 trials by six trained remote sensing surveyors and six novices. Images were heavily masked with luminance and disparity noise simultaneously. Hedge and ditch images had reversed disparity on around half the trials meaning hedges became ditch-like and vice versa. The hedge and ditch images were also flipped vertically on around half the trials, changing the direction of the light source and completing a 2 × 2 × 2 stimulus design. CIs were generated by accumulating the noise textures associated with "hedge" and "ditch" classifications, respectively, and subtracting one from the other. Typical CIs had a central peak with one or two negative side-lobes. We found clear differences in the amplitudes and shapes of perceptual templates across groups and noise-type, with experts prioritizing binocular disparity and using this more effectively. Contrariwise, novices used luminance cues more than experts meaning that task motivation alone could not explain group differences. Asymmetries in the luminance CIs revealed individual differences for lighting interpretation, with experts less prone to assume lighting from above, consistent with their training on aerial images of UK scenes lit by a southerly sun. Our results show that (i) dual noise in images can be used to produce simultaneous CI pairs, (ii) expertise for disparity cues does not depend on stereoacuity, (iii) CIs reveal the visual strategies developed by experts, (iv) top-down perceptual biases can be overcome with long-term learning effects, and (v) CIs have practical potential for directing visual training.


Subject(s)
Lighting , Vision Disparity , Humans , Cues , Individuality , Learning
15.
PLoS One ; 19(4): e0298869, 2024.
Article in English | MEDLINE | ID: mdl-38669246

ABSTRACT

Advanced nighttime light (NTL) remote sensing techniques enable the large-scope epidemiological investigations of people's exposure to outdoor artificial light at night (ALAN) and its health effects. However, multiple uncertainties remain in the measurements of people's exposure to outdoor ALAN, including the representations of outdoor ALAN, the contextual settings of exposure measurements, and measurement approaches. Non-exposed but included outdoor ALAN and causally irrelevant outdoor ALAN may manifest as contextual errors, and these uncertain contextual errors may lead to biased measurements and erroneous interpretations when modeling people's health outcomes. In this study, we systematically investigated outdoor ALAN exposure measurements in different geographic contexts using either residence-based or mobility-oriented measurements, different spatial scales, and multiple NTL data sources. Based on the GPS data collected from 208 participants in Hong Kong, outdoor ALAN exposures were measured from NTL imagery at 10 m, 130 m, and 500 m spatial resolutions using in-situ methods or 100 m, 300 m, and 500 m buffer zone averaging. Descriptive analysis, multiple t-tests, and logistic regression were employed to examine the differences between outdoor ALAN exposure measurements using various contextual settings and their effects on modeling people's overall health. Our results confirmed that different contextual settings may lead to significantly different outdoor ALAN exposure measurements. Our results also confirmed that contextual errors may lead to erroneous conclusions when using improper contextual settings to model people's overall health. Consequentially, we suggest measuring people's exposure to outdoor ALAN using the mobility-oriented approach, NTL representation with the high spatial resolution, and a very small buffer zone as a contextual unit to derive outdoor ALAN exposure. This study articulates essential methodological issues induced by uncertainties in outdoor ALAN exposure measurements and can provide essential implications and suggestions for a broad scope of studies that need accurate outdoor ALAN exposure measurements.


Subject(s)
Environmental Exposure , Humans , Environmental Exposure/analysis , Hong Kong/epidemiology , Geographic Information Systems , Lighting , Uncertainty , Male , Female , Light
16.
Sci Rep ; 14(1): 9925, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38688926

ABSTRACT

Drowsiness while driving negatively impacts road safety, especially in truck drivers. The present study investigated the feasibility and alerting effects of a daylight-supplementing in-truck lighting system (DS) providing short-wavelength enriched light before, during, and after driving. In a within-participants design, eight truck drivers drove a fully-loaded truck under wintry Scandinavian conditions (low daylight levels) with a DS or placebo system for five days. Subjective and objective measures of alertness were recorded several times daily, and evening melatonin levels were recorded three times per study condition. DS significantly increased daytime light exposure without causing negative side effects while driving. In addition, no negative carry-over effects were observed on evening melatonin and sleepiness levels or on nighttime sleep quality. Moreover, objective alertness (i.e., psychomotor vigilance) before and after driving was significantly improved by bright light exposure. This effect was accompanied by improved subjective alertness in the morning. This field study demonstrated that DS was able to increase daytime light exposure in low-daylight conditions and to improve alertness in truck drivers before and after driving (e.g., during driving rest periods). Further studies are warranted to investigate the effects of daylight-supplementing in-cabin lighting on driving performance and road safety measures.


Subject(s)
Automobile Driving , Lighting , Melatonin , Motor Vehicles , Humans , Male , Adult , Melatonin/metabolism , Seasons , Arctic Regions , Wakefulness/physiology , Wakefulness/radiation effects , Female , Middle Aged , Psychomotor Performance/radiation effects , Light , Circadian Rhythm/physiology , Truck Drivers
17.
Nat Methods ; 21(5): 889-896, 2024 May.
Article in English | MEDLINE | ID: mdl-38580844

ABSTRACT

The background light from out-of-focus planes hinders resolution enhancement in structured illumination microscopy when observing volumetric samples. Here we used selective plane illumination and reversibly photoswitchable fluorescent proteins to realize structured illumination within the focal plane and eliminate the out-of-focus background. Theoretical investigation of the imaging properties and experimental demonstrations show that selective plane activation is beneficial for imaging dense microstructures in cells and cell spheroids.


Subject(s)
Microscopy, Fluorescence , Microscopy, Fluorescence/methods , Humans , Spheroids, Cellular , Lighting/methods , Luminescent Proteins/metabolism , Luminescent Proteins/chemistry , Green Fluorescent Proteins/metabolism
18.
J Biophotonics ; 17(5): e202400023, 2024 May.
Article in English | MEDLINE | ID: mdl-38576140

ABSTRACT

Light exposure has been proven to have a significant impact on human health. As a result, researchers are increasingly exploring its potential benefits and drawbacks. With advancements in understanding light and the manufacturing of light sources, modern health lighting has become widely utilized in daily life and plays a critical role in the prevention and treatment of various illnesses. The use of light in healthcare is a global trend, with many countries actively promoting the development and application of relevant scientific research and medical technology. This field has gained worldwide attention and support from scientists and doctors alike. In this review, we examine the application of lighting in human health and recent breakthroughs in light exposure related to pathology, therapeutic strategies, molecular changes, and more. Finally, we also discuss potential future developments and areas of application.


Subject(s)
Light , Humans , Health , Phototherapy , Lighting
19.
Front Public Health ; 12: 1396198, 2024.
Article in English | MEDLINE | ID: mdl-38660366

ABSTRACT

Objective: This study aims to explore the association between outdoor artificial light at night (ALAN) exposure and gestational diabetes mellitus (GDM). Methods: This study is a retrospective case-control study. According with quantiles, ALAN has been classified into three categories (Q1-Q3). GDM was diagnosed through oral glucose tolerance tests. Conditional logistic regression models were used to evaluate the association between ALAN exposure and GDM risk. The odds ratio (OR) with 95% confidence interval (CI) was used to assess the association. Restricted cubic spline analysis (RCS) was utilized to investigate the no liner association between ALAN and GDM. Results: A total of 5,720 participants were included, comprising 1,430 individuals with GDM and 4,290 matched controls. Pregnant women exposed to higher levels of ALAN during the first trimester exhibited an elevated risk of GDM compared to those with lower exposure levels (Q2 OR = 1.39, 95% CI 1.20-1.63, p < 0.001); (Q3 OR = 1.70, 95% CI 1.44-2.00, p < 0.001). Similarly, elevated ALAN exposure during the second trimester also conferred an increased risk of GDM (second trimester: Q2 OR = 1.70, 95% CI 1.45-1.98, p < 0.001; Q3 OR = 2.08, 95% CI 1.77-2.44, p < 0.001). RCS showed a nonlinear association between ALAN exposure and GDM risk in second trimester pregnancy, with a threshold value of 4.235. Conclusion: Outdoor ALAN exposure during pregnancy is associated with an increased risk of GDM.


Subject(s)
Diabetes, Gestational , Humans , Female , Diabetes, Gestational/etiology , Pregnancy , Case-Control Studies , Adult , Retrospective Studies , Lighting/adverse effects , Risk Factors , Glucose Tolerance Test , China/epidemiology , Logistic Models
20.
J. optom. (Internet) ; 17(1)Jan.-March. 2024. tab, graf
Article in English | IBECS | ID: ibc-229112

ABSTRACT

Purpose To describe the performance of the Actiwatch Spectrum Plus (Philips, Respironics) for determining real world indoor and outdoor environments and physical activity in children. Methods Children wore the device while performing 10 different activities, ranging from sedentary to vigorous physical-activity, and under different indoor and outdoor conditions. Repeated measures ANOVA was implemented via mixed effects modeling to determine illuminance (lux) and physical activity (counts per 15 s, CP15) across conditions. Receiver operator characteristics (ROC) analysis assessed the accuracy to detect indoor versus outdoor settings. Results Illuminance was found to be statistically different across indoor (793 ± 348 lux) and outdoor (4,413 ± 518 lux) conditions (P<.0001), with excellent diagnostic accuracy to detect indoor versus outdoor settings (Area under the ROC Curve, AUC 0.94); 1088 lux was identified as the optimal threshold for outdoor illuminance (sensitivity: 93.0%; specificity: 85.0%). Using published activity ranges, we found that when children were sitting, 94% of the physical-activity readings were classified as sedentary or light. When children were walking, 88% of readings were classified as light, and when children were running, 77% of readings were classified as moderate or vigorous. Conclusion The Actiwatch Spectrum Plus performed well during real world activities in children, showing excellent diagnostic accuracy at 1088 lux as a threshold to detect indoor versus outdoor environments and in categorizing physical activity. (AU)


Subject(s)
Humans , Child , Lighting , Photophobia , Exercise , Luminescent Measurements/methods , Remote Sensors , Luminescence
SELECTION OF CITATIONS
SEARCH DETAIL
...