Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.609
Filter
1.
Eur J Med Chem ; 271: 116445, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38701715

ABSTRACT

Lignans are widely distributed in nature, primarily found in the xylem and resins of plants, with the constituent units C6-C3, and their dimers are the most common in plants. In recent years, the trimeric sesquilignans have also received increasing attention from scholars. More than 200 derivatives have been isolated and identified from nearly 50 families, most of which are different types (monoepoxy lignans, bisepoxy lignans, benzofuran lignans) connected with simple phenylpropanoids through ether bonds, C-C bonds, and oxygen-containing rings to constitute sesquilignans. Some of them also possess pharmacological properties, including antioxidants, hepatoprotectives, antitumors, anti-inflammatory properties, and other properties. In addition, the chemical structure of sesquilignans is closely related to the pharmacological activity, and chemical modification of methoxylation enhances the pharmacological activity. In contrast, phenolic hydroxyl and hydroxyl glycosides reduce the pharmacological activity. Therefore, the present review aims to summarize the chemical diversity, bioactivities, and constitutive relationships to provide a theoretical basis for the more profound development and utilization of sesquilignans.


Subject(s)
Lignans , Lignans/chemistry , Lignans/pharmacology , Lignans/isolation & purification , Humans , Antioxidants/chemistry , Antioxidants/pharmacology , Molecular Structure , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology
3.
Bioorg Chem ; 147: 107392, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723423

ABSTRACT

Diabetes mellitus is a metabolic disease characterized by hyperglycemia, which can be counteracted by the inhibition of α-glucosidase (α-Glu) and α-amylase (α-Amy), enzymes responsible for the hydrolysis of carbohydrates. In recent decades, many natural compounds and their bioinspired analogues have been studied as α-Glu and α-Amy inhibitors. However, no studies have been devoted to the evaluation of α-Glu and α-Amy inhibition by the neolignan obovatol (1). In this work, we report the synthesis of 1 and a library of new analogues. The synthesis of these compounds was achieved by implementing methodologies based on: phenol allylation, Claisen/Cope rearrangements, methylation, Ullmann coupling, demethylation, phenol oxidation and Michael-type addition. Obovatol (1) and ten analogues were evaluated for their in vitro inhibitory activity towards α-Glu and α-Amy. Our investigation highlighted that the naturally occurring 1 and four neolignan analogues (11, 22, 26 and 27) were more effective inhibitors than the hypoglycemic drug acarbose (α-Amy: 34.6 µM; α-Glu: 248.3 µM) with IC5O value of 6.2-23.6 µM toward α-Amy and 39.8-124.6 µM toward α-Glu. Docking investigations validated the inhibition outcomes, highlighting optimal compatibility between synthesized neolignans and both the enzymes. Concurrently circular dichroism spectroscopy detected the conformational changes in α-Glu induced by its interaction with the studied neolignans. Detailed studies through fluorescence measurements and kinetics of α-Glu and α-Amy inhibition also indicated that 1, 11, 22, 26 and 27 have the greatest affinity for α-Glu and 1, 11 and 27 for α-Amy. Surface plasmon resonance imaging (SPRI) measurements confirmed that among the compounds studied, the neolignan 27 has the greater affinity for both enzymes, thus corroborating the results obtained by kinetics and fluorescence quenching. Finally, in vitro cytotoxicity of the investigated compounds was tested on human colon cancer cell line (HCT-116). All these results demonstrate that these obovatol-based neolignan analogues constitute promising candidates in the pursuit of developing novel hypoglycemic drugs.


Subject(s)
Glycoside Hydrolase Inhibitors , Lignans , alpha-Amylases , alpha-Glucosidases , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Lignans/pharmacology , Lignans/chemistry , Lignans/chemical synthesis , Structure-Activity Relationship , Humans , Molecular Structure , Dose-Response Relationship, Drug , Molecular Docking Simulation , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry
4.
Aging (Albany NY) ; 16(9): 8142-8154, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38728253

ABSTRACT

The specific mechanism of 4-hydroxysesamin (4-HS), a modification of Sesamin, on right ventricular failure due to pulmonary hypertension (PH) is ominous. By creating a rat model of PH in vivo and a model of pulmonary artery smooth muscle cell (PASMC) hypoxia and inflammation in vitro, the current work aimed to investigate in depth the molecular mechanism of the protective effect of 4-HS. In an in vitro model of hypoxia PASMC, changes in cell proliferation and inflammatory factors were detected after treatment with 4-HS, followed by changes in the JNK/p38 MAPK signaling pathway as detected by Western blot signaling pathway. The findings demonstrated that 4-HS was able to minimize PASMC cell death, block the JNK/p38 MAPK signaling pathway, and resist the promoting effect of hypoxia on PASMC cell proliferation. Following that, we found that 4-HS could both mitigate the right ventricular damage brought on by MCT and had a protective impact on rats Monocrotaline (MCT)-induced PH in in vivo investigations. The key finding of this study is that 4-HS may protect against PH by inhibiting the JNK/p38 MAPK signaling pathway.


Subject(s)
Cell Proliferation , Hypertension, Pulmonary , MAP Kinase Signaling System , p38 Mitogen-Activated Protein Kinases , Animals , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/drug therapy , Rats , p38 Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , Male , Cell Proliferation/drug effects , Ventricular Dysfunction, Right/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Lignans/pharmacology , Lignans/therapeutic use , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Heart Failure/metabolism , Rats, Sprague-Dawley , Monocrotaline , Disease Models, Animal
5.
J Sep Sci ; 47(9-10): e2300898, 2024 May.
Article in English | MEDLINE | ID: mdl-38726747

ABSTRACT

Based on the specific binding of drug molecules to cell membrane receptors, a screening and separation method for active compounds of natural products was established by combining phospholipase C (PLC) sensitized hollow fiber microscreening by a solvent seal with high-performance liquid chromatography technology. In the process, the factors affecting the screening were optimized. Under the optimal screening conditions, we screened honokiol (HK), magnolol (MG), negative control drug carbamazepine, and positive control drug amentoflavone, the repeatability of the method was tested. The PLC activity was determined before and after the screening. Experimental results showed that the sensitization factors of PLC of HK and MG were 61.0 and 48.5, respectively, and amentoflavone was 15.0, carbamazepine could not bind to PLC. Moreover, the molecular docking results were consistent with this measurement, indicating that HK and MG could be combined with PLC, and they were potential interacting components with PLC. This method used organic solvent to seal the PLC greatly ensuring the activity, so this method had the advantage of integrating separation, and purification with screening, it not only exhibited good reproducibility and high sensitivity but was also suitable for screening the active components in natural products by various targets in vitro.


Subject(s)
Biological Products , Type C Phospholipases , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/isolation & purification , Type C Phospholipases/metabolism , Type C Phospholipases/chemistry , Type C Phospholipases/antagonists & inhibitors , Chromatography, High Pressure Liquid , Molecular Docking Simulation , Lignans/chemistry , Lignans/isolation & purification , Lignans/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/isolation & purification , Humans , Allyl Compounds , Phenols
6.
Int Immunopharmacol ; 133: 112098, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38626551

ABSTRACT

Lung cancer is a serious health issue globally, and current treatments have proven to be inadequate. Therefore, immune checkpoint inhibitors (ICIs) that target the PD-1/PD-L1 pathway have become a viable treatment option in lun cancer. Honokiol, a lignan derived from Magnolia officinalis, has been found to possess anti-inflammatory, antioxidant, and antitumor properties. Our research found that honokiol can effectively regulate PD-L1 through network pharmacology and transcriptome analysis. Cell experiments showed that honokiol can significantly reduce PD-L1 expression in cells with high PD-L1 expression. Molecular docking, cellular thermal shift assay (CETSA) and Bio-Layer Interferometry (BLI)indicated that Honokiol can bind to PD-L1. Co-culture experiments on lung cancer cells and T cells demonstrated that honokiol mediates PD-L1 degradation, stimulates T cell activation, and facilitates T cell killing of tumor cells. Moreover, honokiol activates CD4 + and CD8 + T cell infiltration in vivo, thus suppressing tumor growth in C57BL/6 mice. In conclusion, this study has demonstrated that honokiol can inhibit the growth of lung cancer by targeting tumor cell PD-L1, suppressing PD-L1 expression, blocking the PD-1/PD-L1 pathway, and enhancing anti-tumor immunity.


Subject(s)
B7-H1 Antigen , Biphenyl Compounds , Lignans , Lung Neoplasms , Mice, Inbred C57BL , Lignans/pharmacology , Lignans/therapeutic use , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , B7-H1 Antigen/metabolism , Humans , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Lymphocyte Activation/drug effects , Allyl Compounds , Phenols
7.
Biochem Pharmacol ; 224: 116240, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679210

ABSTRACT

Hepatic steatosis is a critical factor in the development of nonalcoholic steatohepatitis (NASH). Sesamin (Ses), a functional lignan isolated from Sesamum indicum, possesses hypolipidemic, liver-protective, anti-hypertensive, and anti-tumor properties. Ses has been found to improve hepatic steatosis, but the exact mechanisms through which Ses achieves this are not well understood. In this study, we observed the anti-hepatic steatosis effects of Ses in palmitate/oleate (PA/OA)-incubated primary mouse hepatocytes, AML12 hepatocytes, and HepG2 cells, as well as in high-fat, high-cholesterol diet-induced NASH mice. RNA sequencing analysis revealed that cluster of differentiation 36 (CD36), a free fatty acid (FA) transport protein, was involved in the Ses-mediated inhibition of hepatic fat accumulation. Moreover, the overexpression of CD36 significantly increased hepatic steatosis in both Ses-treated PA/OA-incubated HepG2 cells and NASH mice. Furthermore, Ses treatment suppressed insulin-induced de novo lipogenesis in HepG2 cells, which was reversed by CD36 overexpression. Mechanistically, we found that Ses ameliorated NASH by inhibiting CD36-mediated FA uptake and upregulation of lipogenic genes, including FA synthase, stearoyl-CoA desaturase 1, and sterol regulatory element-binding protein 1. The findings of our study provide novel insights into the potential therapeutic applications of Ses in the treatment of NASH.


Subject(s)
CD36 Antigens , Dioxoles , Hepatocytes , Lignans , Lipid Metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Animals , Lignans/pharmacology , Lignans/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Mice , Humans , CD36 Antigens/metabolism , CD36 Antigens/genetics , Hepatocytes/drug effects , Hepatocytes/metabolism , Hep G2 Cells , Male , Lipid Metabolism/drug effects , Dioxoles/pharmacology , Dioxoles/therapeutic use , Diet, High-Fat/adverse effects
8.
Chem Biol Interact ; 395: 110999, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38608999

ABSTRACT

Bruceantinol (BOL), isolated from the dried fruit of the Brucea javanica (L.) Merr., exhibits cytotoxic effects on breast cancer cells. However, the underlying mechanism remains to be fully addressed. In this paper, the MCF-7 and MDA-MB-231 human breast cancer cell lines were used as experimental models to uncover how BOL inhibits breast cancer cell growth. The effects of BOL on cell growth, proliferation, the cell cycle, and apoptosis were investigated using the MTT assays, EdU incorporation assays, and flow cytometry, respectively. Bioinformatics techniques were applied to predict the key targets of BOL in breast cancer. Subsequent validation of these targets and the anti-breast cancer mechanism of BOL was conducted through Western blotting, RT-PCR, siRNA transfection, and molecular docking analysis. The results demonstrated that BOL dose- and time-dependently reduced the growth of both cell lines, impeded cell proliferation, disrupted the cell cycle, and induced necrosis in MCF-7 cells and apoptosis in MDA-MB-231 cells. Furthermore, CDK2/4/6 were identified as BOL targets, and their knockdown reduced cell sensitivity to BOL. BOL was found to potentially bind with CDK2/4/6 to facilitate protein degradation through the proteasome pathway. Additionally, BOL activated ERK in MDA-MB-231 cells, and this activation was required for BOL's functions in these cells. Collectively, BOL may act as an inhibitor of CDK2/4/6 to exert anti-breast cancer effects. Its effects on cell growth and CDK2/4/6 expression may also depend on ERK activation in HRs-HER2- breast cancer cells. These results suggest the potential of using BOL for treating breast cancer.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Proliferation , Cyclin-Dependent Kinase 2 , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Molecular Docking Simulation , Humans , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Apoptosis/drug effects , Female , Cell Line, Tumor , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , MCF-7 Cells , Lignans/pharmacology , Lignans/chemistry , Cell Cycle/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry
9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 409-415, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660844

ABSTRACT

OBJECTIVE: To study the effect of arctigenin(ARG) on adriamycin(ADM) resistance of leukemia cell line K562/A02 and the underlying mechanism. METHODS: Human leukemia cell line K562 and ADM-resistant cell line K562/A02 were cultured and treated with 2.5-50 µmol/L ADM. Cell proliferation was measured using CCK-8 method, and half maximal inhibitory concentration (IC50) was calculated. K562/A02 cells were treated with different concentrations of ARG (1, 2, 4, 8, 16 mmol/L) to detect the effect of ARG on K562/A02 cells, and a suitable concentration (2 mmol/L) was selected for subsequent experiments. K562/A02 cells were treated with 2 mmol/L ARG and 5 µmol/L ADM, and cell apoptosis was detected by flow cytometry, the expression of P-gp, MRP, cleaved caspase-3, Bax, Bcl-2 proteins and the TLR4/NF-κB signaling pathway-related proteins were measured by Western blot. TLR4 overexpression plasmid was transfected into K562/A02 cells which were co-treated with ARG and ADM, then drug sensitivity and cell apoptosis were measured. RESULTS: The IC50 value of ADM on K562/A02 cells was 36.57 µmol/L, which was significantly higher than that on K562 cells (1.30 µmol/L). ARG with a concentration of ≤2 mmol/L did not have a significant effect on K562/A02 cells. 2 mmol/L ARG significantly reduced the IC50 of ADM on K562/A02 cells. In 5 µmol/L ADM-treated K562/A02 cells, compared with the control group, the apoptosis rate of K562/A02 cells in the ARG group was significantly increased, the expressions of cleaved caspase-3, Bax proteins were significantly upregulated, the expressions of P-gp, MRP, Bcl-2, TLR4, MyD88, and p-NF-κB proteins were significantly downregulated, and the differences were statistically significant (P < 0.05). After transfection with TLR4 overexpression plasmid, the sensitivity of ARG-treated K562/A02 cells to ADM was reduced (P < 0.05), the cell apoptosis was decreased, and the expressions of P-gp, MRP, Bcl-2 and TLR4/NF-κB signaling pathway-related proteins were significantly elevated, while the expressions of cleaved caspase-3 and Bax proteins were significantly decreased (all P < 0.05). CONCLUSION: ARG may reverse the resistance of human leukemia cell line K562/A02 to ADM by inhibiting TLR4/NF-κB signaling pathway.


Subject(s)
Apoptosis , Cell Proliferation , Doxorubicin , Drug Resistance, Neoplasm , Furans , Lignans , Humans , Lignans/pharmacology , K562 Cells , Apoptosis/drug effects , Doxorubicin/pharmacology , Furans/pharmacology , Cell Proliferation/drug effects , NF-kappa B/metabolism , Signal Transduction , Caspase 3/metabolism , Toll-Like Receptor 4/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Leukemia , bcl-2-Associated X Protein/metabolism , Cell Line, Tumor
10.
J Nat Prod ; 87(4): 1067-1074, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38631020

ABSTRACT

A search for anti-trypanosomal natural compounds from plants collected in El Salvador, a country particularly endemic for Chagas disease, resulted in the isolation of five lignan-type compounds (1-5) from Peperomia pseudopereskiifolia. The lignan derivatives 1, 2, and 4 are new. Their absolute configuration was determined by chemical derivatization. Compounds 1, 5, 6, and 8 exhibited anti-trypanosomal activity against the amastigote form of T. cruzi comparable to that of the existing drug benznidazole.


Subject(s)
Lignans , Peperomia , Trypanocidal Agents , Trypanosoma cruzi , Lignans/pharmacology , Lignans/chemistry , Lignans/isolation & purification , Trypanosoma cruzi/drug effects , El Salvador , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/isolation & purification , Molecular Structure , Peperomia/chemistry , Nitroimidazoles/pharmacology , Nitroimidazoles/chemistry , Chagas Disease/drug therapy
11.
J Asian Nat Prod Res ; 26(5): 604-615, 2024 May.
Article in English | MEDLINE | ID: mdl-38634612

ABSTRACT

We established myocardial injury models in vivo and in vitro to investigate the cardioprotective effect of gomisin D obtained from Schisandra chinensis. Gomisin D significantly inhibited isoproterenol-induced apoptosis and hypertrophy in H9C2 cells. Gomisin D decreased serum BNP, ANP, CK-MB, cTn-T levels and histopathological alterations, and inhibited myocardial hypertrophy in mice. In mechanisms research, gomisin D reversed ISO-induced accumulation of intracellular ROS and Ca2+. Gomisin D further improved mitochondrial energy metabolism disorders by regulating the TCA cycle. These results demonstrated that gomisin D had a significant effect on isoproterenol-induced myocardial injury by inhibiting oxidative stress, calcium overload and improving mitochondrial energy metabolism.


Subject(s)
Apoptosis , Isoproterenol , Oxidative Stress , Polycyclic Compounds , Schisandra , Animals , Isoproterenol/pharmacology , Mice , Molecular Structure , Schisandra/chemistry , Oxidative Stress/drug effects , Apoptosis/drug effects , Calcium/metabolism , Male , Reactive Oxygen Species/metabolism , Lignans/pharmacology , Lignans/chemistry , Cardiotonic Agents/pharmacology , Cell Line , Myocytes, Cardiac/drug effects , Cyclooctanes/pharmacology , Cyclooctanes/chemistry
12.
World J Microbiol Biotechnol ; 40(4): 134, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38480613

ABSTRACT

Lignan, a beneficial constituent of Flaxseed (Linum usitatissimum L.) showed great interest in researchers because of its multiple functional properties. Nonetheless, a challenge arises due to the glycosidic structure of lignans, which the gut epithelium cannot readily absorb. Therefore, we screened 18 strains of Lactiplantibacillus plantarum, Lacticaseibacillus casei, Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, Pediococcus pentosaceus, Pediococcus acidilactici, and Enterococcus durans to remove glycosides from flaxseed lignan extract enzymatically. Among our findings, Lactiplantibacillus plantarum SCB0151 showed the highest activity of ß-glucosidase (8.91 ± 0.04 U/mL) and higher transformed efficiency of Secoisolariciresinol (SECO) (8.21 ± 0.13%). The conversion rate of Secoisolariciresinol diglucoside (SDG) and the generation rate of SECO was 58.30 ± 3.78% and 32.13 ± 2.78%, respectively, under the optimized conditions. According to the LC-HRMSMS analysis, SECO (68.55 ± 6.57 µM), Ferulic acid (FA) (32.12 ± 2.50 µM), and Coumaric acid (CA) (79.60 ± 6.21 µM) were identified in the biotransformation products (TP) of flaxseed lignan extract. Results revealed that the TP exhibited a more pronounced anti-inflammatory effect than the flaxseed lignan extract. SECO, FA, and CA demonstrated a more inhibitory effect on NO than that of SDG. The expression of iNOS and COX-2 was significantly suppressed by TP treatment in LPS-induced Raw264.7 cells. The secretion of IL-6, IL-2, and IL-1ß decreased by 87.09 ± 0.99%, 45.40 ± 0.87%, and 53.18 ± 0.83%, respectively, at 60 µg/mL of TP treatment. Given these data, the bioavailability of flaxseed lignan extract and its anti-inflammatory effect were significantly enhanced by Lactiplantibacillus plantarum SCB0151, which provided a novel approach to commercializing flaxseed lignan extract for functional food.


Subject(s)
Flax , Glucosides , Lignans , Flax/chemistry , Flax/metabolism , Fermentation , Lignans/pharmacology , Lignans/chemistry , Lignans/metabolism , Glycosides , Butylene Glycols/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology
13.
Int J Mol Sci ; 25(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542438

ABSTRACT

Schisandra chinensis (Schisandraceae) is a medicinal plant widely used in traditional Chinese medicine. Under the name Wu Wei Zi, it is used to treat many diseases, especially as a stimulant, adaptogen, and hepatoprotective. Dibenzocyclooctadiene lignans are the main compounds responsible for the effect of S. chinensis. As a part of ongoing studies to identify and evaluate anti-inflammatory natural compounds, we isolated a series of dibenzocyclooctadiene lignans and evaluated their biological activity. Furthermore, we isolated new sesquiterpene 7,7-dimethyl-11-methylidenespiro[5.5]undec-2-ene-3-carboxylic acid. Selected dibenzocyclooctadiene lignans were tested to assess their anti-inflammatory potential in LPS-stimulated monocytes by monitoring their anti-NF-κB activity, antioxidant activity in CAA assay, and their effect on gap junction intercellular communication in WB-ras cells. Some S. chinensis lignans showed antioxidant activity in CAA mode and affected the gap junction intercellular communication. The anti-inflammatory activity was proven for (-)-gomisin N, (+)-γ-schisandrin, rubrisandrin A, and (-)-gomisin J.


Subject(s)
Lignans , Polycyclic Compounds , Schisandra , Lignans/pharmacology , Cyclooctanes/pharmacology , Anti-Inflammatory Agents/pharmacology
14.
Drug Dev Ind Pharm ; 50(5): 401-409, 2024 May.
Article in English | MEDLINE | ID: mdl-38466185

ABSTRACT

OBJECTIVE: Magnolol (MG) and Brucea javanica (L.) Merr. oil (BJO) possess synergetic anti-tumor effects, but have poor water solubility and stability, which results in low oral bioavailability. SIGNIFICANCE: The MG loaded self-microemulsion drug delivery system (MG-SMDDS) with BJO as oil phase component was utilized to improve the cellular uptake and synergetic anti-tumor effects. METHODS: Compatibility study and pseudoternary phase diagram (PTPD) were respectively employed to screen for the composition and proportion of oil phase in the formulation. Central composite design-effect surface method was applied to optimize proportion of each formulation condition. The droplet size, ζ-potential, colloid stability, encapsulation rate (ER) and in vitro dissolution rate of MG-SMDDS were evaluated. Furthermore, cellular uptake and cytotoxicity of the microemulsion on HepG2 cells were assessed. RESULTS: The optimal composition of MG-SMDDS was: MG (9.09%), castor oil (7.40%), BJO (2.47%), Cremophor EL 35 (54.04%) and 1, 2-propanediol (27.01%). The MG-SMDDS exhibited satisfactory droplet size, ζ-potential, colloid stability and ER, as well as faster dissolution rate than free MG. More importantly, SMEDDS containing BJO could enhance the cellular uptake and cytotoxicity of free BJO and free MG on tumor cells. CONCLUSIONS: The BJO self-microemulsion delivery technique can provide an idea for design of oral delivery vehicles based on BJO.


Subject(s)
Biphenyl Compounds , Brucea , Drug Delivery Systems , Emulsions , Lignans , Plant Oils , Solubility , Lignans/administration & dosage , Lignans/pharmacology , Lignans/pharmacokinetics , Lignans/chemistry , Humans , Brucea/chemistry , Biphenyl Compounds/chemistry , Hep G2 Cells , Drug Delivery Systems/methods , Plant Oils/chemistry , Plant Oils/pharmacology , Plant Oils/administration & dosage , Particle Size , Biological Availability , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Survival/drug effects
15.
Chem Biodivers ; 21(5): e202400547, 2024 May.
Article in English | MEDLINE | ID: mdl-38507773

ABSTRACT

The hexane extract from twigs of Piper truncatum Vell (Piperaceae) displayed activity against Trypanosoma cruzi and was subjected to chromatographic steps to afford six dibenzylbutyrolactolic lignans, being four knowns: cubebin (1), (-)-9α-O-methylcubebin (2), (+)-9ß-O-methylcubebinin (3) and 3,4-dimethoxy-3,4-demethylenedioxycubebin (4) as well as two new, named truncatin A (5) and B (6). Initially, in vitro activity against trypomastigotes was evaluated and compounds 1, 4 and 6 exhibited EC50 values of 41.6, 21.0 and 39.6 µM, respectively. However, when tested against amastigotes, the relevant clinical form in the chronic phase of Chagas disease, compounds 1-6 displayed activities with EC50 values ranging from 1.6 to 13.7 µM. In addition, the mammalian cytotoxicity of compounds 1-6 was evaluated against murine fibroblasts (NCTC). Compounds 2, 3 and 4 exhibited reduced toxicity against NCTC cells (CC50>200 µM), resulting in SI values of>21.9,>14.5 and>121.9, respectively. Compound 4 showed the highest potency with an SI value twice superior to that determined by the standard drug benznidazole (SI>54.6) against the intracellular amastigotes. These data suggest that lignan 4 can be considered a possible scaffold for designing a new drug candidate for Chagas disease.


Subject(s)
Lignans , Piper , Trypanocidal Agents , Trypanosoma cruzi , Lignans/pharmacology , Lignans/chemistry , Lignans/isolation & purification , Piper/chemistry , Animals , Trypanosoma cruzi/drug effects , Mice , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/isolation & purification , Structure-Activity Relationship , Parasitic Sensitivity Tests , Fibroblasts/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Cell Survival/drug effects
16.
Phytother Res ; 38(5): 2462-2481, 2024 May.
Article in English | MEDLINE | ID: mdl-38444049

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder where oxidative stress, induced by ferroptosis, has been linked to neuronal damage and cognitive deficits. The objective of this study is to investigate if the potential therapeutic agent, Curculigoside (CUR), could ameliorate AD by inhibiting ferroptosis. The potential therapeutic targets, such as GPX4 and SLC7A11, were identified using weighted gene co-expression network analysis (WGCNA). Concurrently, CUR was also screened against these potential targets using various analytical methods. For the in vivo studies, intragastric administration of CUR significantly ameliorated cognitive impairment in AD model mice induced by scopolamine and okadaic acid (OA). In vitro, CUR protected neuronal cells by altering the levels of ferroptosis-related specific markers in OA and scopolamine-induced neurotoxicity. The administration of CUR through intragastric route significantly reduced the levels of AD-promoting factors (such as Aß1-42, p-tau) and ferroptosis-promoting factors in the hippocampus and cortex of AD mice. Furthermore, CUR up-regulated the expression of GPX4 and decreased the expression of SLC7A11 in the ferroptosis signaling pathway, thereby increasing the ratio of glutathione (GSH)/oxidized glutathione (GSSG) in vivo and vitro. In conclusion, the cumulative results suggest that the natural compound CUR may serve as a promising therapeutic agent to ameliorate AD by inhibiting ferroptosis.


Subject(s)
Alzheimer Disease , Benzoates , Disease Models, Animal , Ferroptosis , Glucosides , Lignans , Oxidative Stress , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Alzheimer Disease/drug therapy , Ferroptosis/drug effects , Oxidative Stress/drug effects , Mice , Glucosides/pharmacology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Male , Lignans/pharmacology , Amino Acid Transport System y+/metabolism , Amyloid beta-Peptides/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Medicine, Chinese Traditional , Mice, Inbred C57BL , Drugs, Chinese Herbal/pharmacology
17.
Phytomedicine ; 128: 155491, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489894

ABSTRACT

BACKGROUND: Dengue and chikungunya, caused by dengue virus (DENV) and chikungunya virus (CHIKV) respectively, are the most common arthropod-borne viral diseases worldwide, for which there are no FDA-approved antivirals or effective vaccines. Arctigenin, a phenylpropanoid lignan from the seeds of Arctium lappa L. is known for its anti-inflammatory, anti-cancer, antibacterial, and immunomodulatory properties. Arctigenin's antimicrobial and immunomodulatory capabilities make it a promising candidate for investigating its potential as an anti-DENV and anti-CHIKV agent. PURPOSE: The aim of the study was to explore the anti-DENV and anti-CHIKV effects of arctigenin and identify the possible mechanisms of action. METHODS: The anti-DENV or anti-CHIKV effects of arctigenin was assessed using various in vitro and in silico approaches. Vero CCL-81 cells were infected with DENV or CHIKV and treated with arctigenin at different concentrations, temperature, and time points to ascertain the effect of the compound on virus entry or replication. In silico molecular docking was performed to identify the interactions of the compound with viral proteins. RESULTS: Arctigenin had no effects on DENV. Various time- and temperature-dependent assays revealed that arctigenin significantly reduced CHIKV RNA copy number and infectious virus particles and affected viral entry. Entry bypass assay revealed that arctigenin inhibited the initial steps of viral replication. In silico docking results revealed the high binding affinity of the compound with the E1 protein and the nsp3 macrodomain of CHIKV. CONCLUSION: This study demonstrates the in-vitro anti-CHIKV potential of arctigenin and suggests that the compound might affect CHIKV entry and replication. Further preclinical and clinical studies are needed to identify its safety and efficacy as an anti-CHIKV drug.


Subject(s)
Antiviral Agents , Arctium , Chikungunya virus , Dengue Virus , Furans , Lignans , Molecular Docking Simulation , Virus Replication , Furans/pharmacology , Lignans/pharmacology , Arctium/chemistry , Chikungunya virus/drug effects , Animals , Virus Replication/drug effects , Antiviral Agents/pharmacology , Vero Cells , Chlorocebus aethiops , Dengue Virus/drug effects , Virus Internalization/drug effects , Seeds/chemistry
18.
J Obstet Gynaecol Res ; 50(5): 864-872, 2024 May.
Article in English | MEDLINE | ID: mdl-38480480

ABSTRACT

BACKGROUND: Ovarian cancer (OVCA) is prevalent in female reproductive organs. Despite recent advances, clinical outcomes remain poor, warranting fresh treatment avenues. Honokiol has an inhibitory effect on proliferation, invasion, and survival of cancer cells in vitro and in vivo. Therefore, this study intended to explore specific molecular mechanism by which honokiol affected OVCA progression. METHODS: Bioinformatics analyzed the drug honokiol that bound to OTU deubiquitinase, ubiquitin aldehyde binding 2 (OTUB2). Cellular thermal shift assay (CETSA) verified the binding relationship between honokiol and OTUB2. Cell counting kit 8 (CCK-8) tested the IC50 value and cell viability of OVCA cells after honokiol treatment. Corresponding assay kits determined malonic dialdehyde (MDA) and Fe2+ levels in OVCA cells. Flow cytometry measured reactive oxygen species levels. Western blot detected OTUB2, SLC7A11, and transcriptional co-activators Yes-associated protein (YAP) expression, and quantitative polymerase chain reaction (qPCR) detected OTUB2 expression. Immunohistochemistry (IHC) detected the expression level of Ki67 protein in tumor tissues. RESULTS: Honokiol was capable of inducing ferroptosis in OVCA cells. CETSA confirmed that honokiol could bind to OTUB2. Further cell functional and molecular experiments revealed that honokiol induced ferroptosis in OVCA cells via repression of YAP signaling pathway through binding to OTUB2. In addition, in vivo experiments have confirmed that honokiol could inhibit the growth of OVCA. CONCLUSION: Honokiol induced ferroptosis in OVCA cells via repression of YAP signaling pathway through binding to OTUB2, implicating that OTUB2 may be an effective target for OVCA treatment, and our study results may provide new directions for development of more effective OVCA treatment strategies.


Subject(s)
Allyl Compounds , Biphenyl Compounds , Ferroptosis , Lignans , Ovarian Neoplasms , Phenols , Humans , Female , Lignans/pharmacology , Ferroptosis/drug effects , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Biphenyl Compounds/pharmacology , Cell Line, Tumor , Transcription Factors/metabolism , YAP-Signaling Proteins/metabolism , Deubiquitinating Enzymes/metabolism , Adaptor Proteins, Signal Transducing/metabolism
19.
Genes (Basel) ; 15(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38540329

ABSTRACT

Kadsura coccinea is a medicinal plant from the Schisandraceae family that is native to China and has great pharmacological potential due to its lignans. However, there are significant knowledge gaps regarding the genetic and molecular mechanisms of lignans. We used transcriptome sequencing technology to analyze root, stem, and leaf samples, focusing on the identification and phylogenetic analysis of Cytochrome P450 (CYP) genes. High-quality data containing 158,385 transcripts and 68,978 unigenes were obtained. In addition, 36,293 unigenes in at least one database, and 23,335 across five databases (Nr, KEGG, KOG, TrEMBL, and SwissProt) were successfully annotated. The KEGG pathway classification and annotation of these unigenes identified 10,825 categorized into major metabolic pathways, notably phenylpropanoid biosynthesis, which is essential for lignan synthesis. A key focus was the identification and phylogenetic analysis of 233 Cytochrome P450 (CYP) genes, revealing their distribution across 38 families in eight clans, with roots showing specific CYP gene expression patterns indicative of their role in lignan biosynthesis. Sequence alignment identified 22 homologous single genes of these CYPs, with 6 homologous genes of CYP719As and 1 of CYP81Qs highly expressed in roots. Our study significantly advances the understanding of the biosynthesis of dibenzocyclooctadiene lignans, offering valuable insights for future pharmacological research and development.


Subject(s)
Kadsura , Lignans , Humans , Transcriptome/genetics , Phylogeny , Gene Expression Profiling , Cytochrome P-450 Enzyme System/genetics , Lignans/pharmacology
20.
J Ethnopharmacol ; 326: 117996, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38431110

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Schisandra chinensis, the dried and ripe fruit of the magnolia family plant Schisandra chinensis (Turcz.) Baill, was commonly used in traditional analgesic prescription. Studies have shown that the extract of Schisandra chinensis (SC) displayed analgesic activity. However, the analgesic active component and the exact mechanisms have yet to be revealed. AIM OF THE STUDY: The present study was to investigate the anti-nociceptive constituent of Schisandra chinensis, assess its analgesic effect, and explore the potential molecular mechanisms. MATERIALS AND METHODS: The effects of a series of well-recognized compounds from SC on glycine receptors were investigated. The analgesic effect of the identified compound was evaluated in three pain models. Mechanistic studies were performed using patch clamp technique on various targets expressed in recombinant cells. These targets included glycine receptors, Nav1.7 sodium channels, Cav2.2 calcium channels et al. Meanwhile, primary cultured spinal dorsal horn (SDH) neurons and dorsal root ganglion (DRG) neurons were also utilized. RESULTS: Schisandrin B (SchB) was a positive allosteric modulator of glycine receptors in spinal dorsal horn neurons. The EC50 of SchB on glycine receptors in spinal dorsal horn neurons was 2.94 ± 0.28 µM. In three pain models, the analgesic effect of SchB was comparable to that of indomethacin at the same dose. Besides, SchB rescued PGE2-induced suppression of α3 GlyR activity and alleviated persistent pain. Notably, SchB could also potently decrease the frequency of action potentials and inhibit sodium and calcium channels in DRG neurons. Consistent with the data from DRG neurons, SchB was also found to significantly block Nav1.7 sodium channels and Cav2.2 channels in recombinant cells. CONCLUSION: Our results demonstrated that, Schisandrin B, the primary lignan component of Schisandra chinensis, may exert its analgesic effect by acting on multiple ion channels, including glycine receptors, Nav1.7 channels, and Cav2.2 channels.


Subject(s)
Lignans , Polycyclic Compounds , Schisandra , Receptors, Glycine , Lignans/pharmacology , Pain , Calcium Channels, N-Type , Analgesics/pharmacology , Analgesics/therapeutic use , Sodium Channels , Cyclooctanes
SELECTION OF CITATIONS
SEARCH DETAIL
...