Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
J Agric Food Chem ; 72(35): 19447-19461, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39177289

ABSTRACT

α-Terpineol, an alcoholic monoterpene with lilac-like aroma, possesses diverse biological activities and has found applications in the food, pharmaceutical, cosmetic, and agricultural industries. Our previous studies indicated that gene PdTP1 was highly expressed in Penicillium digitatum DSM 62840 during the biotransformation of limonene to α-terpineol, while its actual biological functions are not fully understood. Here, PdTP1 was functionally characterized with bioinformatics analysis, subcellular localization, transcriptional activation activity, overexpression, and RNA interference (RNAi) silencing and RNA-seq analysis. Results showed that PdTP1 protein contained a GAL4-like Zn2Cys6 DNA-binding domain and a fungal_trans domain, was located in the nucleus and cell membrane and presented transcriptional activation effect, suggesting that PdTP1 encoded a Zn2Cys6 type transcription factor. Overexpression of PdTP1 in P. digitatum promoted limonene biotransformation and increased α-terpineol production, and opposite results were observed after the silencing of PdTP1. Moreover, transcription factor PdTP1 was found to affect the growth of P. digitatum and participate in ionic stress and oxidative stress responses. RNA-seq data revealed that altering the PdTP1 expression influenced the expression of some genes related to terpene metabolism or biosynthesis, fungal growth, and stress responses. In summary, PdTP1, which encoded a Zn2Cys6 transcription factor, played important roles in improving the production of α-terpineol from limonene and regulating fungal growth and environmental stress responses.


Subject(s)
Biotransformation , Cyclohexane Monoterpenes , Fungal Proteins , Limonene , Penicillium , Transcription Factors , Penicillium/metabolism , Penicillium/genetics , Penicillium/growth & development , Limonene/metabolism , Limonene/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cyclohexane Monoterpenes/metabolism , Gene Expression Regulation, Fungal , Terpenes/metabolism
2.
Int J Pharm ; 662: 124464, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39033939

ABSTRACT

Leishmaniases, a group of neglected tropical diseases caused by an intracellular parasite of the genus Leishmania, have significant impacts on global health. Current treatment options are limited due to drug resistance, toxicity, and high cost. This study aimed to develop nanostructured lipid carriers (NLCs) for delivering Citrus sinensis essential oil (CSEO) and its main constituent, R-limonene, against leishmaniasis. The influence of surface-modified NLCs using chitosan was also examined. The NLCs were prepared using a warm microemulsion method, and surface modification with chitosan was achieved through electrostatic interaction. These nanocarriers were characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy, and dynamic light scattering (DLS). In vitro cytotoxicity was assessed in L929 and RAW 264.7 cells, and leishmanicidal activity was evaluated against promastigote and amastigote forms. The NLCs were spherical, with particle sizes ranging from 97.9 nm to 111.3 nm. Chitosan-coated NLCs had a positive surface charge, with zeta potential values ranging from 45.8 mV to 59.0 mV. Exposure of L929 cells to NLCs resulted in over 70 % cell viability. Conversely, surface modification significantly reduced the viability of promastigotes (93 %) compared to free compounds. Moreover, chitosan-coated NLCs presented a better IC50 against the amastigote forms than uncoated NLCs. Taken together, these findings demonstrate the feasibility of using NLCs to overcome the limitations of current leishmaniasis treatments, warranting further research.


Subject(s)
Cell Survival , Chitosan , Citrus sinensis , Drug Carriers , Limonene , Lipids , Nanoparticles , Oils, Volatile , Oils, Volatile/administration & dosage , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Animals , Mice , Limonene/chemistry , Limonene/administration & dosage , Limonene/pharmacology , Drug Carriers/chemistry , RAW 264.7 Cells , Cell Survival/drug effects , Chitosan/chemistry , Chitosan/administration & dosage , Lipids/chemistry , Lipids/administration & dosage , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Citrus sinensis/chemistry , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Leishmaniasis/drug therapy , Particle Size , Cell Line , Leishmania/drug effects , Terpenes/chemistry , Terpenes/pharmacology , Terpenes/administration & dosage , Nanostructures/chemistry , Nanostructures/administration & dosage
3.
AAPS PharmSciTech ; 25(6): 160, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992299

ABSTRACT

In part I, we reported Hansen solubility parameters (HSP, HSPiP program), experimental solubility at varied temperatures for TOTA delivery. Here, we studied dose volume selection, stability, pH, osmolality, dispersion, clarity, and viscosity of the explored combinations (I-VI). Ex vivo permeation and deposition studies were performed to observe relative diffusion rate from the injected site in rat skin. Confocal laser scanning microscopy (CLSM) study was conducted to support ex vivo findings. Moreover, GastroPlus predicted in vivo parameters in humans and the impact of various critical factors on pharmacokinetic parameters (PK). Immediate release product (IR) contained 60% of PEG400 whereas controlled release formulation (CR) contained PEG400 (60%), water (10%) and d-limonene (30%) to deliver 2 mg of TOTA. GastroPlus predicted the plasma drug concentration of weakly basic TOTA as function of pH (from pH 2.0 to 9). The cumulative drug permeation and drug deposition were found to be in the order as B-VI˃ C-VI˃A-VI across rat skin. This finding was further supported with CLSM. Moreover, IR and CR were predicted to achieve Cmax of 0.0038 µg/ mL and 0.00023 µg/mL, respectively, after sub-Q delivery. Added limonene in CR extended the plasma drug concentration over period of 12 h as predicted in GastroPlus. Parameters sensitivity analysis (PSA) assessment predicted that sub-Q blood flow rate is the only factor affecting PK parameters in IR formulation whereas this was insignificant for CR. Thus, sub-Q delivery CR would be promising alternative with ease of delivery to children and aged patient.


Subject(s)
Skin Absorption , Solubility , Tolterodine Tartrate , Animals , Rats , Humans , Skin Absorption/drug effects , Skin Absorption/physiology , Tolterodine Tartrate/administration & dosage , Tolterodine Tartrate/pharmacokinetics , Thermodynamics , Solvents/chemistry , Skin/metabolism , Hydrogen-Ion Concentration , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/administration & dosage , Terpenes/chemistry , Terpenes/administration & dosage , Terpenes/pharmacokinetics , Administration, Cutaneous , Limonene/administration & dosage , Limonene/pharmacokinetics , Limonene/chemistry , Male , Polyethylene Glycols/chemistry , Drug Delivery Systems/methods , Chemistry, Pharmaceutical/methods , Cyclohexenes/chemistry , Cyclohexenes/pharmacokinetics , Cyclohexenes/administration & dosage , Rats, Sprague-Dawley
4.
J Agric Food Chem ; 72(26): 14874-14886, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38885647

ABSTRACT

A modified aroma extract dilution approach (AEDA), followed by the determination of flavor dilution (FD) factors, a quantitative analysis and calculation of the relative flavor activity (RFA) and odor activity values (OAVs) as well as recombination experiments were conducted to evaluate the odor- and taste-relevant components of cold-pressed Citrus latifolia peel oil. A 2-fold concentration by distillation and reanalysis, compared with the original oil, revealed relevant components. Partition of the odor-active substances into four reconstitution groups according to their respective FD factors, followed by a recombination, allowed for a better understanding of the contribution of each FD-factor group to the overall aroma. Especially α-pinene, limonene, γ-terpinene, and 7-methoxycoumarin contribute significantly to the distinct aroma profile of C. latifolia. Heptadecanal (CAS 629-90-3) was described for the first time as an odor-active substance in an enriched C. latifolia peel oil. Campherenyl acetate (CAS 18530-07-9) was identified in nature for the first time and described with a herbal, minty and citrus-like odor. The odor profile of the final recombinant mixture, containing 36 components, was similar to cold-pressed C. latifolia peel oil for most descriptors, whereas the taste profile was described as more aldehydic and citral-like.


Subject(s)
Citrus , Flavoring Agents , Gas Chromatography-Mass Spectrometry , Odorants , Taste , Citrus/chemistry , Odorants/analysis , Flavoring Agents/chemistry , Humans , Fruit/chemistry , Volatile Organic Compounds/chemistry , Smell , Plant Oils/chemistry , Female , Limonene/chemistry , Limonene/analysis , Male , Adult
5.
Int J Pharm ; 660: 124376, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38914355

ABSTRACT

Nanoemulsions have carved their position in topical delivery owing to their peculiar features of forming a uniform film on the skin and conquering stratum corneum barrier and hence fostering dermal penetration and retention. The present work developed syringic acid nanoemulsion (SA-NE) by spontaneous emulsification as an anti-psoriatic remedy via the dermal route. SA-NE were prepared with either lauroglycol90, limonene or their combination (oil phase) and tween80 (surfactant) with variable concentrations. The physicochemical characteristics of SA-NE were assessed together with Ex-vivo skin deposition and dermal toxicity. The effectiveness of optimal formula in psoriatic animal model and psoriatic patients was investigated using PASI scoring and dermoscope examination. Results showed that, SA-NE containing mixture of lauroglycol 90, limonene and 10 % tween80 (F5), was selected as the optimal formula presenting stable nanoemulsion for 2-month period, showing droplet size of 177.6 ± 13.23 nm, polydispersity index of 0.16 ± 0.06, zeta potential of -21.23 ± 0.41 mV. High SA% in different skin strata and no dermal irritation was noticed with limonene-based SA-NE also it showed high in-vitro anti- inflammatory potential compared to the blank and control formulations. A preclinical study demonstrated that limonene-based SA-NE is effective in alleviating psoriasis-like skin lesions against imiquimod-induced psoriasis in rats. Clinically, promising anti-psoriatic potential was asserted as all patients receiving F5 experienced better clinical improvement and response to therapy, achieving ≥ 50 % reduction in PASI scores versus only 35 % responders in the Dermovate® cream group. Collectively, the practical feasibility of limonene-based SA-NE topical delivery can boost curative functionality in the treatment of psoriatic lesions.


Subject(s)
Administration, Cutaneous , Emulsions , Limonene , Psoriasis , Skin Absorption , Skin , Animals , Limonene/chemistry , Limonene/administration & dosage , Limonene/pharmacology , Psoriasis/drug therapy , Skin Absorption/drug effects , Male , Skin/drug effects , Skin/metabolism , Skin/pathology , Humans , Female , Nanoparticles/chemistry , Rats , Adult , Middle Aged , Polysorbates/chemistry , Terpenes/chemistry , Terpenes/administration & dosage , Terpenes/pharmacology , Rats, Wistar , Disease Models, Animal
6.
Chem Commun (Camb) ; 60(43): 5598-5601, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38712724

ABSTRACT

A simple aqueous host:guest sensing array can selectively discriminate between different types of citrus varietal from peel extract samples. It can also distinguish between identical citrus samples at varying stages of ripening. The discrimination effects stem from detection of changes in the terpenoid composition of the peel extracts by the host:guest array, despite the overwhelming excess of a single component, limonene, in each sample. The hosts are insensitive to limonene but bind other monoterpenes strongly, even though they are similar in structure to the major limonene component. This work demonstrates the capability of host:guest arrays in sensing target molecules in environments with the competing agents present at high abundances in the sample matrix.


Subject(s)
Citrus , Terpenes , Citrus/chemistry , Terpenes/chemistry , Terpenes/analysis , Limonene/chemistry , Limonene/analysis , Fruit/chemistry
7.
J Alzheimers Dis ; 99(1): 333-343, 2024.
Article in English | MEDLINE | ID: mdl-38701154

ABSTRACT

Background: Neurodegeneration is a term describing an irreversible process of neuronal damage. In recent decades, research efforts have been directed towards deepening our knowledge of numerous neurodegenerative disorders, with a particular focus on conditions such as Alzheimer's disease (AD). Human transferrin (htf) is a key player in maintaining iron homeostasis within brain cells. Any disturbance in this equilibrium gives rise to the emergence of neurodegenerative diseases and associated pathologies, particularly AD. Limonene, a natural compound found in citrus fruits and various plants, has shown potential neuroprotective properties. Objective: In this study, our goal was to unravel the binding of limonene with htf, with the intention of comprehending the interaction mechanism of limonene with htf. Methods: Binding was scrutinized using fluorescence quenching and UV-Vis spectroscopic analyses. The binding mechanism of limonene was further investigated at the atomic level through molecular docking and extensive 200 ns molecular dynamic simulation (MD) studies. Results: Molecular docking uncovered that limonene interacted extensively with the deep cavity located within the htf binding pocket. MD results indicated that binding of limonene to htf did not induce substantial structural alterations, ultimately forming stable complex. The findings from fluorescence binding indicated a pronounced interaction between limonene and htf, limonene binds to htf with a binding constant (K) of 0.1×105 M-1. UV spectroscopy also advocated stable htf-limonene complex formation. Conclusions: The study deciphered the binding mechanism of limonene with htf, providing a platform to use limonene in AD therapeutics in context of iron homeostasis.


Subject(s)
Alzheimer Disease , Limonene , Molecular Docking Simulation , Transferrin , Limonene/pharmacology , Limonene/metabolism , Limonene/chemistry , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Transferrin/metabolism , Molecular Dynamics Simulation , Terpenes/pharmacology , Terpenes/chemistry , Terpenes/metabolism , Protein Binding
8.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731415

ABSTRACT

Investigations have shown that storage bugs seriously harm grains during storage. In the interim, essential oils (EOs) have been proven to be a good botanical pesticide. The anti-Lasioderma serricorne properties of Elsholtzia ciliata essential oil, which was obtained by steam distillation, were evaluated using DL-limonene, carvone, and their two optical isomer components using contact, repelling, and fumigation techniques. Simultaneously, the fumigation, contact, and repellent activities of carvone and its two optical isomers mixed with DL-limonene against L. serruricorne were evaluated. The results showed that E. ciliata, its main components (R-carvone, DL-limonene), and S-carvone exhibited both fumigations (LC50 = 14.47, 4.42, 20.9 and 3.78 mg/L) and contact (LD50 = 7.31, 4.03, 28.62 and 5.63 µg/adult) activity against L.serricorne. A binary mixture (1:1) of R-carvone and DL-limonene displayed an obvious synergistic effect. A binary mixture (1:1) of carvone and its two optical isomers exhibited an obvious synergistic effect, too. Furthermore, the repellent activity of the EO, carvone, and its two optical isomers, DL-limonene, and a combination of them varied. To stop insect damage during storage, E. ciliata and its components can be utilized as bio-insecticides.


Subject(s)
Insecticides , Lamiaceae , Oils, Volatile , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Lamiaceae/chemistry , Animals , Insecticides/chemistry , Insecticides/pharmacology , Limonene/chemistry , Limonene/pharmacology , Insect Repellents/chemistry , Insect Repellents/pharmacology , Cyclohexane Monoterpenes/chemistry , Cyclohexane Monoterpenes/pharmacology , Drug Synergism , Fumigation
9.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731461

ABSTRACT

This present study aims to characterize the essential oil compositions of the aerial parts of M. spicata L. and endemic M. longifolia ssp. cyprica (Heinr. Braun) Harley by using GC-FID and GC/MS analyses simultaneously. In addition, it aims to perform multivariate statistical analysis by comparing with the existing literature, emphasizing the literature published within the last two decades, conducted on both species growing within the Mediterranean Basin. The major essential oil components of M. spicata were determined as carvone (67.8%) and limonene (10.6%), while the major compounds of M. longifolia ssp. cyprica essential oil were pulegone (64.8%) and 1,8-cineole (10.0%). As a result of statistical analysis, three clades were determined for M. spicata: a carvone-rich chemotype, a carvone/trans-carveol chemotype, and a pulegone/menthone chemotype, with the present study result belonging to the carvone-rich chemotype. Carvone was a primary determinant of chemotype, along with menthone, pulegone, and trans-carveol. In M. longifolia, the primary determinants of chemotype were identified as pulegone and menthone, with three chemotype clades being pulegone-rich, combined menthone/pulegone, and combined menthone/pulegone with caryophyllene enrichment. The primary determinants of chemotype were menthone, pulegone, and caryophyllene. The present study result belongs to pulegone-rich chemotype.


Subject(s)
Gas Chromatography-Mass Spectrometry , Mentha spicata , Mentha , Oils, Volatile , Oils, Volatile/chemistry , Mentha/chemistry , Mentha spicata/chemistry , Multivariate Analysis , Mediterranean Region , Cyclohexane Monoterpenes/chemistry , Cyclohexane Monoterpenes/analysis , Monoterpenes/chemistry , Monoterpenes/analysis , Limonene/chemistry , Terpenes/chemistry , Terpenes/analysis , Menthol
10.
Parasit Vectors ; 17(1): 194, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664829

ABSTRACT

BACKGROUND: Sarcoptic mange is a serious animal welfare concern in bare-nosed wombats (Vombatus ursinus). Fluralaner (Bravecto®) is a novel acaricide that has recently been utilised for treating mange in wombats. The topical 'spot-on' formulation of fluralaner can limit treatment delivery options in situ, but dilution to a volume for 'pour-on' delivery is one practicable solution. This study investigated the in vitro acaricidal activity of Bravecto, a proposed essential oil-based diluent (Orange Power®), and two of its active constituents, limonene and citral, against Sarcoptes scabiei. METHODS: Sarcoptes scabiei were sourced from experimentally infested pigs. In vitro assays were performed to determine the lethal concentration (LC50) and survival time of the mites when exposed to varying concentrations of the test solutions. RESULTS: All compounds were highly effective at killing mites in vitro. The LC50 values of Bravecto, Orange Power, limonene and citral at 1 h were 14.61 mg/ml, 4.50%, 26.53% and 0.76%, respectively. The median survival times of mites exposed to undiluted Bravecto, Orange Power and their combination were 15, 5 and 10 min, respectively. A pilot survival assay of mites collected from a mange-affected wombat showed survival times of < 10 min when exposed to Bravecto and Orange Power and 20 min when exposed to moxidectin. CONCLUSIONS: These results confirm the acaricidal properties of Bravecto, demonstrate acaricidal properties of Orange Power and support the potential suitability of Orange Power and its active constituents as a diluent for Bravecto. As well as killing mites via direct exposure, Orange Power could potentially enhance the topical delivery of Bravecto to wombats by increasing drug penetration in hyperkeratotic crusts. Further research evaluating the physiochemical properties and modes of action of Orange Power and its constituents as a formulation vehicle would be of value.


Subject(s)
Acaricides , Isoxazoles , Plant Oils , Sarcoptes scabiei , Scabies , Animals , Sarcoptes scabiei/drug effects , Acaricides/pharmacology , Isoxazoles/pharmacology , Scabies/drug therapy , Scabies/parasitology , Plant Oils/pharmacology , Plant Oils/chemistry , Acyclic Monoterpenes/pharmacology , Swine , Limonene/pharmacology , Limonene/chemistry , Terpenes/pharmacology , Terpenes/chemistry , Cyclohexenes/pharmacology , Cyclohexenes/chemistry , Lethal Dose 50
11.
Small ; 20(29): e2400399, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38607266

ABSTRACT

To address the issue of bacterial growth on fresh-cut fruits, this paper reports the synthesis of nanosized γ-cyclodextrin metal-organic frameworks (CD-MOFs) using an ultrasound-assisted method and their application as carriers of limonene for antibacterial active packaging. The effects of the processing parameters on the morphology and crystallinity of the CD-MOFs are investigated, and the results prove that the addition of methanol is the key to producing nanosized CD-MOFs. The limonene loading content of the nanosized CD-MOFs can reach approximately 170 mg g-1. The sustained-release behaviors of limonene in the CD-MOFs are evaluated. Molecular docking simulations reveal the distribution and binding sites of limonene in the CD-MOFs. CD-MOFs are deposited on the surfaces of polycaprolactone (PCL) nanofibers via an immersion method, and limonene-loaded CD-MOF@PCL nanofibers are prepared. The morphology, crystallinity, thermal stability, mechanical properties, and antibacterial activity of the nanofibers are also studied. The nanofiber film effectively inhibits bacterial growth and prolongs the shelf life of fresh-cut apples. This study provides a novel strategy for developing antibacterial active packaging materials based on CD-MOFs and PCL nanofibers.


Subject(s)
Fruit , Limonene , Metal-Organic Frameworks , Nanofibers , Polyesters , gamma-Cyclodextrins , Limonene/chemistry , Limonene/pharmacology , Nanofibers/chemistry , Polyesters/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , gamma-Cyclodextrins/chemistry , Fruit/chemistry , Terpenes/chemistry , Terpenes/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Molecular Docking Simulation
12.
Sci Rep ; 14(1): 9828, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684729

ABSTRACT

The pharmacological effects of limonene, especially their derivatives, are currently at the forefront of research for drug development and discovery as well and structure-based drug design using huge chemical libraries are already widespread in the early stages of therapeutic and drug development. Here, various limonene derivatives are studied computationally for their potential utilization against the capsid protein of Herpes Simplex Virus-1. Firstly, limonene derivatives were designed by structural modification followed by conducting a molecular docking experiment against the capsid protein of Herpes Simplex Virus-1. In this research, the obtained molecular docking score exhibited better efficiency against the capsid protein of Herpes Simplex Virus-1 and hence we conducted further in silico investigation including molecular dynamic simulation, quantum calculation, and ADMET analysis. Molecular docking experiment has documented that Ligands 02 and 03 had much better binding affinities (- 7.4 kcal/mol and - 7.1 kcal/mol) to capsid protein of Herpes Simplex Virus-1 than Standard Acyclovir (- 6.5 kcal/mol). Upon further investigation, the binding affinities of primary limonene were observed to be slightly poor. But including the various functional groups also increases the affinities and capacity to prevent viral infection of the capsid protein of Herpes Simplex Virus-1. Then, the molecular dynamic simulation confirmed that the mentioned ligands might be stable during the formation of drug-protein complexes. Finally, the analysis of ADMET was essential in establishing them as safe and human-useable prospective chemicals. According to the present findings, limonene derivatives might be a promising candidate against the capsid protein of Herpes Simplex Virus-1 which ultimately inhibits Herpes Simplex Virus-induced encephalitis that causes interventions in brain inflammation. Our findings suggested further experimental screening to determine their practical value and utility.


Subject(s)
Antiviral Agents , Capsid Proteins , Drug Design , Herpesvirus 1, Human , Limonene , Molecular Docking Simulation , Molecular Dynamics Simulation , Limonene/chemistry , Limonene/pharmacology , Herpesvirus 1, Human/drug effects , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Ligands , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Computer Simulation , Protein Binding
13.
Bol. latinoam. Caribe plantas med. aromát ; 22(5): 581-593, sep. 2023. ilus, tab
Article in English | LILACS | ID: biblio-1561231

ABSTRACT

Limonene is the main component of citrus essential oils, and can reach a concentration of up to 96%. Popularly known for its potential therapeutic effects on the body, among these we point out its broad antimicrobial activity against various types of pathogens. Therefore, the purpose of this study was to address the antimicrobial and antifungal properties of limonene compared to microorganisms of interest in dentistry, based on a bibliometric study and literature review. The following databases were analyzed: PubMed, Google Scholar, SciELO and Science Direct, from which ten articles published between 2011-2021 were selected. Most of results indicate a satisfactory antimicrobial potential, besides providing important data and perspectives regarding the indication and clinical use, in addition to innovative therapeutic modalities for diseases that affect the oral cavity, such as tooth decay, periodontal disease and candidosis.


El limoneno es el componente principal de los aceites esenciales cítricos, y puede alcanzar una concentración de hasta el 96%. Popularmente conocido por sus potenciales efectos terapéuticos en el organismo, entre ellos se destacan su amplia actividad antimicrobiana frente a diversos tipos de patógenos. Por lo tanto, el objetivo de este estudio fue abordar las propiedades antimicrobianas y antifúngicas del limoneno en comparación con microorganismos de interés en la odontología, a partir de un estudio bibliométrico y una revisión bibliográfica. Se analizaron las siguientes bases de datos: PubMed, Google Scholar, SciELO y Science Direct, de las cuales se seleccionaron diez artículos publicados entre 2011-2021. La mayoría de los resultados indican un potencial antimicrobiano satisfactorio, además de proporcionar datos y perspectivas importantes con respecto a la indicación y el uso clínico, así como modalidades terapéuticas innovadoras para enfermedades que afectan la cavidad oral, como caries, enfermedad periodontal y candidosis.


Subject(s)
Oils, Volatile/chemistry , Limonene/pharmacology , Anti-Infective Agents/pharmacology , Antifungal Agents/pharmacology , Plants, Medicinal , Oils, Volatile/pharmacology , Databases, Bibliographic , Limonene/chemistry
14.
J Biomol Struct Dyn ; 41(8): 3511-3523, 2023 05.
Article in English | MEDLINE | ID: mdl-35297321

ABSTRACT

One-fifth of COVID-19 patients suffer a severe course of COVID-19 (SARS-CoV-2) infection; however, the specific causes remain unclear. Despite numerous papers that have been flooded in different scientific journals clear clinical picture of COVID-19 aftermath persists to remain fuzzy. The survivors of severe COVID-19infection having defeated the virus are just the starting of an uncharted recovery path. Currently, there is no drug available that is safe to consume to combat this pandemic. However, researchers still struggling to find specific therapeutic solutions. The present study employed an in silico approach to assessing the inhibitory potential of the phytochemicals obtained from GC-MS analysis of Citrus macroptera against inflammatory proteins like COX-2, NMDAR and VCAM-1 which remains in a hyperactive state even after a patient is fully cured of this deadly mRNA virus. An extensive molecular docking investigation of the phyto-compounds at the active binding pockets of the inflammatory proteins revealed the promising inhibitory potential of the phytochemicals. Reasonable physicochemical attributes of the compounds following Lipinski's rule of five, VEBER and PAINS analysis further established them as potential therapeutic candidates against aforesaid inflammatory proteins. MM-GBSA binding free energy estimation revealed that Limonene was the most promising candidate displaying the highest binding efficacy with the concerned VCAM-1 protein included in the present analysis. An interesting finding is the phytochemicals exhibited better binding energy scores with the concerned COX-2, VCAM-1 and NMDA receptor proteins than the conventional drugs that are specifically targeted against them. Our in silico results suggest that all the natural phyto-compounds derived from C. macroptera could be employed in Post covid inflammation complexities after appropriate pre-clinical and clinical trials for further scientific validation.Communicated by Ramaswamy H. Sarma.


Subject(s)
Citrus , Limonene , Phytochemicals , Plant Extracts , Post-Acute COVID-19 Syndrome , Citrus/chemistry , Humans , COVID-19/complications , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Post-Acute COVID-19 Syndrome/drug therapy , Molecular Docking Simulation , Plant Extracts/chemistry , Drug Development , Cyclooxygenase 2/chemistry , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/chemistry , Protein Binding , Vascular Cell Adhesion Molecule-1/antagonists & inhibitors , Cyclooxygenase 2 Inhibitors/chemistry , Limonene/chemistry , Limonene/pharmacology
15.
Food Res Int ; 158: 111573, 2022 08.
Article in English | MEDLINE | ID: mdl-35840259

ABSTRACT

Starch-guest inclusion complexes (ICs) are a novel, clean-label flavor encapsulation system with the potential to improve stability of aroma volatiles. While amylase has been shown to modulate guest release in vitro, release by sensory perception has not been evaluated. Here, Temporal Check-All-That-Apply (TCATA) and CATA were used to compare flavor perception of starch-limonene ICs to uncomplexed limonene, and the differences in perception were explored as a function of participant salivary α-amylase activity (sAA) and salivary flow rate (sFR). High sFR levels decreased limonene perception while high sAA increased limonene perception, highlighting the potential influence of these physiological factors on flavor perception of foods. Temporal flavor perception of a chewing gum containing starch-limonene ICs and a second chewing gum containing uncomplexed limonene and corn starch (CTL) was evaluated by 99 untrained consumers who assessed taste, texture, and aroma attributes over 17 min by TCATA and CATA. In addition, participants were segmented into three clusters based on their sAA and sFR, and cluster TCATA curves for each sample and attribute were statistically compared. Overall, participants rated Citrus, Sour and Bitter (p < 0.05) significantly higher for the IC sample and rated Sweet higher for the CTL. For Citrus, Sour, and Bitter, significant differences were observed between the three clusters for the IC chewing gum, while the CTL gum showed no significant differences for these three attributes. We demonstrate that flavor perception of starch-guest ICs varies with participants' salivary α-amylase activity and flow rate. Additionally, TCATA and CATA were found to be well suited to characterize flavor release systems over a long period of time as multiple flavor percepts can be simultaneously tracked.


Subject(s)
Chewing Gum , Salivary alpha-Amylases , Humans , Limonene/chemistry , Perception , Salivary alpha-Amylases/chemistry , Salivary alpha-Amylases/metabolism , Starch/chemistry
16.
Contact Dermatitis ; 86(2): 113-119, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34786729

ABSTRACT

BACKGROUND: Besides being a potential component of (some species of) colophonium, D-limonene is also used as a tackifier in the production of adhesives. Hydroperoxides of limonene are well-known skin sensitizers. OBJECTIVES: To show that D-limonene may be present in colophonium-containing but also colophonium-free ("hypoallergenic") adhesives, and that patients suffering from allergic contact dermatitis (ACD) from both types of adhesives might display positive patch test reactions to limonene hydroperoxides in this regard. METHODS: Five patients with suspected ACD from adhesives were patch tested to the baseline series (containing limonene hydroperoxides 0.3 and 0.2% pet.), additional series and, if available, to the culprit adhesives. The adhesives labelled as containing colophonium (n = 3) or free from it (n = 2) were analysed with gas chromatography - mass spectrometry (GC-MS) for the presence of D-limonene. RESULTS: All five patients sensitised to adhesives had (strong) positive patch test reactions to limonene hydroperoxides. The presence of D-limonene, and/or related components, could be demonstrated in all three colophonium-containing and, surprisingly, also in two colophonium-free ("hypoallergenic") tapes. CONCLUSIONS: D-limonene may be present in both regular and "hypoallergenic" adhesives, with limonene hydroperoxides potentially contributing to ACD from such medical devices. The use of fragrance chemicals in adhesives deserves further research.


Subject(s)
Dermatitis, Allergic Contact/etiology , Limonene/adverse effects , Surgical Tape/adverse effects , Adhesives/chemistry , Adult , Child , Child, Preschool , Female , Humans , Limonene/chemistry , Male , Patch Tests , Resins, Plant/chemistry , Retrospective Studies , Young Adult
17.
Molecules ; 26(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34885712

ABSTRACT

Mandarin is a favorite fruit of the citrus family. Mandarin seeds are considered a source of nontraditional oil obtained from byproduct materials. This investigation aimed to assess the biomolecules of mandarin seeds and evaluated their antimycotic and antimycotoxigenic impact on fungi. Moreover, it evaluated the protective role of mandarin oil against aflatoxin toxicity in cell lines. The two types of extracted oil (fixed and volatile) were ecofriendly. The fatty acid composition, tocopherol, sterols, and carotenoids were determined in the fixed oil, whereas volatiles and phenolics were estimated in the essential oil. A mixture of the two oils was prepared and evaluated for its antimicrobial impact. The reduction effect of this mixture was also investigated to reduce mycotoxin secretion using a simulated experiment. The protective effect of the oil was evaluated using healthy strains of cell lines. Fixed oil was distinguished by the omega fatty acid content (76.24%), lutein was the major carotenoid (504.3 mg/100 g) and it had a high ß-sitosterol content (294.6 mg/100 g). Essential oil contained limonene (66.05%), α-pinene (6.82%), ß-pinene (4.32%), and γ-terpinene (12.31%) in significant amounts, while gallic acid and catechol were recorded as the dominant phenolics. Evaluation of the oil mix for antimicrobial potency reflected a considerable impact against pathogenic bacteria and toxigenic fungi. By its application to the fungal media, this oil mix possessed a capacity for reducing mycotoxin secretion. The oil mix was also shown to have a low cytotoxic effect against healthy strains of cell lines and had potency in reducing the mortality impact of aflatoxin B1 applied to cell lines. These results recommend further study to involve this oil in food safety applications.


Subject(s)
Bacteria/drug effects , Citrus/chemistry , Oils, Volatile/chemistry , Plant Oils/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Bacteria/pathogenicity , Bicyclic Monoterpenes/chemistry , Bicyclic Monoterpenes/pharmacology , Cyclohexane Monoterpenes/chemistry , Cyclohexane Monoterpenes/pharmacology , Fruit/chemistry , Fungi/drug effects , Humans , Limonene/chemistry , Limonene/pharmacology , Mycotoxins/antagonists & inhibitors , Mycotoxins/chemistry , Oils, Volatile/pharmacology , Phytosterols/chemistry , Phytosterols/pharmacology , Plant Oils/pharmacology , Sitosterols/chemistry , Sitosterols/pharmacology
18.
Molecules ; 26(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34577179

ABSTRACT

Alzheimer's disease (AD) is caused by excessive oxidative damage and aging. The objective of this study was to investigate the anti-dementia effect of LCP fruit powder on amyloid ß (Aß)-induced Alzheimer's mice. The composition of LCP essential oil was determined by gas chromatography/mass spectrometry. In addition, the water maze was used to evaluate the learning and memorizing abilities of the mice. The concentrations of malondialdehyde (MDA), protein carbonyl, phosphorylated τ-protein, and the deposition of Aß plaques in mouse brains were also assessed. The results showed that the main components of essential oils in LCP and d-limonene, neral, and geranial contents were 14.15%, 30.94%, and 31.74%, respectively. Furthermore, oral administration with different dosages of LCP significantly decreased the escape time (21.25~33.62 s) and distance (3.23~5.07 m) in the reference memory test, and increased the duration time (26.14~28.90 s) and crossing frequency (7.00~7.88 times) in the target zone of probe test (p < 0.05). LCP also inhibited the contents of MDA and the phosphor-τ-protein from oxidative stress, reduced the brain atrophy by about 3~8%, and decreased the percentage of Aß plaques from 0.44 to 0.05%. Finally, it was observed that the minimum dosage of LCP fruit powder (LLCP, 30.2 mg/day) could prevent oxidative stress induced by Aß and subsequently facilitate memory and learning deficits in Aß-induced neurotoxicity and cognitively impaired mice.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Litsea/chemistry , Neuroprotective Agents/chemistry , Plant Extracts/chemistry , Acyclic Monoterpenes/chemistry , Animals , Brain , Disease Models, Animal , Humans , Limonene/chemistry , Male , Mice , Mice, Inbred C57BL , Morris Water Maze Test , Neuroprotective Agents/pharmacology , Oils, Volatile/chemistry , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Powders , tau Proteins/metabolism
19.
Molecules ; 26(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34443651

ABSTRACT

Caraway (Carum carvi L.) essential oil is a candidate for botanical herbicides. A hypothesis was formulated that the sand-applied maltodextrin-coated caraway oil (MCEO) does not affect the growth of maize (Zea mays L.). In the pot experiment, pre-emergence application of five doses of MCEO was tested on four maize cultivars up to the three-leaf growth stage. The morphological analyses were supported by the measurements of relative chlorophyll content (SPAD), two parameters of chlorophyll a fluorescence, e.g., Fv/Fm and Fv/F0, and fluorescence emission spectra. The analyzed MCEO contained 6.5% caraway EO with carvone and limonene as the main compounds, constituting 95% of the oil. The MCEO caused 7-day delays in maize emergence from the dose of 0.9 g per pot (equal to 96 g m-2). Maize development at the three-leaf growth stage, i.e., length of roots, length of leaves, and biomass of shoots and leaves, was significantly impaired already at the lowest dose of MCEO: 0.4 g per pot, equal to 44 g m-2. A significant drop of both chlorophyll a fluorescence parameters was noted, on average, from the dose of 0.7 g per pot, equal to 69 g m-2. Among the tested cultivars, cv. Rywal and Pomerania were less susceptible to the MCEO compared to the cv. Kurant and Podole. In summary, maize is susceptible to the pre-emergence, sand-applied MCEO from the dose of 44 g m-2.


Subject(s)
Oils, Volatile/pharmacology , Plant Oils/pharmacology , Zea mays/drug effects , Zea mays/growth & development , Biomass , Carum/chemistry , Chlorophyll A/metabolism , Cyclohexane Monoterpenes/chemistry , Cyclohexane Monoterpenes/pharmacology , Fluorescence , Herbicides/pharmacology , Limonene/chemistry , Limonene/pharmacology , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Zea mays/metabolism
20.
BMC Cancer ; 21(1): 902, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34362338

ABSTRACT

BACKGROUND: D-limonene and its derivatives have demonstrated potential chemopreventive and anticancer activity in preclinical and clinical studies. The aim of this scoping review was to assess and critically appraise current literature on the effect of these bioactive citrus peel compounds on breast cancer in human trials and to identify knowledge gaps for exploration in future studies. METHODS: This study followed a scoping review framework. Peer-reviewed journal articles were included if they reported the effect of d-limonene or its derivatives on breast cancer in human subjects. Articles were retrieved from academic databases - PubMed, EMBASE, CINAHL, Web of Science, and Cochrane reviews - and iteratively through review of bibliographies of relevant manuscripts. Titles and abstracts were appraised against the aforementioned inclusion criteria in a first round of screening. Through consensus meetings and full article review by authors, a final set of studies were selected. Results were reported according to the PRISMA extension for scoping reviews. RESULTS: Our search strategy yielded 367 records. Following screening and adjudication, five articles reporting on phase 1(n = 2), phase 2 (n = 2) and both trial phases (n = 1) were included as the final dataset for this review. Trials evaluating the effect of d-limonene (n = 2) showed it was well tolerated in subjects. One study (n = 43 participants) showed d-limonene concentrated in breast tissue (mean 41.3 µg/g tissue) and reduction in tumor cyclin D1 expression, which is associated with tumor proliferation arrest. This study did not show meaningful change in serum biomarkers associated with breast cancer, except for a statistically significant increase in insulin-like growth factor-1 (IGF-I) levels. While elevation of IGF-I is associated with increased cancer risk, the clinical implication of this study remains uncertain given its short duration. Trials with perillyl alcohol (n = 3) showed low tolerance and no effect on breast cancer. CONCLUSION: This review demonstrated a dearth of clinical studies exploring the effect of d-limonene and its derivatives on breast cancer. Limited literature suggests d-limonene is safe and tolerable in human subjects compared to its derivative, perillyl alcohol. Our review demonstrates the need for additional well-powered placebo-controlled trials that assess d-limonene's efficacy on breast cancer compared to other therapies.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Breast Neoplasms/drug therapy , Limonene/therapeutic use , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/pathology , Combined Modality Therapy , Drug Monitoring , Female , Humans , Limonene/chemistry , Limonene/pharmacology , Maximum Tolerated Dose , Middle Aged , Molecular Structure , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL