Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Entomol ; 47(1): 1-7, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29145607

ABSTRACT

The phenology of the stem-mining weevil Mecinus janthiniformis Tosevski and Caldara (Coleoptera: Curculionidae) as adults attacking Dalmatian toadflax, Linaria dalmatica (L.) Miller (Plantaginaceae), was studied in 2014-2015 at two low elevation sites in northern Utah. The seasonal pattern of adult weevil abundance on the host plant at the two sites was most similar between years when described by degree-day accumulation, versus calendar date. Repeated censusing over the growing season revealed that males appeared first and subsequently peaked in abundance on the host plant earlier than females did, such that the adult population was dominated by males early in the season and by females late in the season. Peak female abundance on the host plant occurred at the time when Dalmatian toadflax stems reached their maximum height and density and when they began flowering widely. Maximum toadflax stem heights and densities, and flowering activity, were markedly reduced in 2015 compared to 2014. In contrast to these host plant parameters that vary between years, degree-day accumulation can be used readily for timing collection and survey efforts for adult weevils and female adult weevils in particular. Use of degree-day accumulation can thereby facilitate implementation of redistribution and monitoring programs for M. janthiniformis as a biological control agent of Dalmatian toadflax.


Subject(s)
Herbivory , Life History Traits , Linaria , Pest Control, Biological , Weevils/physiology , Animals , Female , Linaria/growth & development , Male , Population Dynamics , Seasons , Sex Factors , Utah
2.
J Chem Ecol ; 39(9): 1204-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24008867

ABSTRACT

Global environmental change alters the supply of multiple limiting resources that regulate plant primary and secondary metabolism. Through modifications in resource availability, acquisition, and allocation, global change is likely to influence plant chemical defenses, and consequently species interactions that are mediated by these compounds. While many studies focus on individual global change factors, simultaneous changes in abiotic factors may interact to influence plant allelochemicals. In this study, we examined the individual and interactive effects of nitrogen enrichment and altered precipitation patterns on chemical defense compounds (iridoid glycosides) of an invasive plant, Linaria dalmatica. Plants were grown from seed in native mixed-grass prairie for 2 years. Nitrogen and water treatments were applied in each growing season over this period. Results indicate that soil water and nitrogen availability interact to shape plant chemical defense concentrations in L. dalmatica. Nitrogen addition decreased iridoid glycoside concentrations by approximately 25% under reduced water availability, increased concentrations by 37% in ambient water plots, and had no effect on these chemical defenses for plants growing under augmented water supply. Thus, results show differing patterns of allelochemical response to nitrogen enrichment, with respect to both the magnitude and direction of change, depending on water availability. Our study demonstrates the importance of examining multiple environmental factors in order to predict potential changes in plant chemical defenses with climate change.


Subject(s)
Iridoid Glycosides/metabolism , Linaria/metabolism , Nitrogen/metabolism , Pheromones/metabolism , Linaria/growth & development , Rain , Water/metabolism
3.
Am J Bot ; 99(10): 1630-7, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22947484

ABSTRACT

PREMISE OF THE STUDY: Human nitrogen (N) inputs to terrestrial ecosystems have greatly increased in recent years and may have important consequences for plant growth, reproduction, and defense. Although numerous studies have investigated the effects of nitrogen addition on plants, few have examined both above- and belowground responses within a range of predicted increase and apart from concomitant increases in other nutrients. • METHODS: We conducted a greenhouse experiment to study the consequences of increased nitrogen inputs, such as those from atmospheric N deposition, on plant performance, chemical defenses, and allocation tradeoffs for an invasive species, Linaria dalmatica. This plant produces iridoid glycosides, which are a group of terpenoid compounds. • KEY RESULTS: Soil nitrogen enrichment increased growth, reproduction, and whole-plant iridoid glycosides while decreasing some costs of defense. Interestingly, nitrogen addition had varying effects on defense allocation to above- and belowground tissues. Specifically, there was no change in iridoid glycoside concentrations of shoots, whereas concentrations decreased in flowers by ~35% and increased in roots by >400%. • CONCLUSIONS: Observed increases in plant performance and chemical defenses may have implications for the invasion potential of L. dalmatica. Moreover, our results highlight the importance of evaluating both above- and belowground plant defenses. In particular, findings presented here indicate that research focused on leaf-level defenses may not detect key allelochemical responses, including changes in plant resistance traits that could affect consumers (e.g., herbivores and pathogens) that specialize on different plant tissues as well as plant fitness and invasion success.


Subject(s)
Linaria/immunology , Linaria/metabolism , Nitrogen/metabolism , Biomass , Flowers/growth & development , Humans , Iridoid Glycosides/metabolism , Linaria/growth & development , Models, Biological , Pheromones/metabolism , Soil/chemistry
4.
Int J Environ Res Public Health ; 8(7): 2828-53, 2011 07.
Article in English | MEDLINE | ID: mdl-21845161

ABSTRACT

Environmental risk assessments characterizing potential environmental impacts of exotic weeds are more abundant and comprehensive for potential or new invaders than for widespread and well-established species such as Dalmatian (Linaria dalmatica [L.] Mill.) and yellow (L. vulgaris Mill.) toadflax. Specific effects evaluated in our assessment of environmental risks posed by yellow and Dalmatian toadflax included competitive displacement of other plant species, reservoirs of plant disease, animal and insect use, animal toxicity, human toxicity and allergenicity, erosion, and wildfire. Effect and exposure uncertainties for potential impacts of toadflax on human and ecological receptors were rated. Using publicly available information we were able to characterize ecological and human health impacts associated with toadflax, and to identify specific data gaps contributing to a high uncertainty of risk. Evidence supporting perceived negative environmental impacts of invasive toadflax was scarce.


Subject(s)
Environment , Linaria/physiology , Plant Weeds/physiology , Linaria/growth & development , Linaria/toxicity , Mexico , Plant Weeds/growth & development , Plant Weeds/toxicity , Population Dynamics , Risk Assessment , Species Specificity , United States
5.
Plant J ; 68(4): 703-14, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21790812

ABSTRACT

Spurs are tubular outgrowths of perianth organs that have evolved iteratively among angiosperms. They typically contain nectar and often strongly influence pollinator specificity, potentially mediating reproductive isolation. The identification of Antirrhinum majus mutants with ectopic petal spurs suggested that petal-spur development is dependent on the expression of KNOTTED 1-like homeobox (KNOX) genes, which are better known for their role in maintaining the shoot apical meristem. Here, we tested the role of KNOX genes in petal-spur development by isolating orthologs of the A. majus KNOX genes Hirzina (AmHirz) and Invaginata (AmIna) from Linaria vulgaris, a related species that differs from A. majus in possessing long, narrow petal spurs. We name these genes LvHirz and LvIna, respectively. Using quantitative reverse-transcription PCR, we show that LvHirz is expressed at high levels in the developing petals and demonstrate that the expression of petal-associated KNOX genes is sufficient to induce sac-like outgrowths on petals in a heterologous host. We propose a model in which KNOX gene expression during early petal-spur development promotes and maintains further morphogenetic potential of the petal, as previously described for KNOX gene function in compound leaf development. These data indicate that petal spurs could have evolved by changes in regulatory gene expression that cause rapid and potentially saltational phenotypic modifications. Given the morphological similarity of spur ontogeny in distantly related taxa, changes in KNOX gene expression patterns could be a shared feature of spur development in angiosperms.


Subject(s)
Flowers/growth & development , Genes, Homeobox , Linaria/genetics , Amino Acid Sequence , Flowers/genetics , Flowers/ultrastructure , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Linaria/growth & development , Molecular Sequence Data , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Nicotiana/genetics , Nicotiana/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...