Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
1.
Biochim Biophys Acta Biomembr ; 1864(1): 183812, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34743950

ABSTRACT

Lipid-porphyrin conjugates are considered nowadays as promising building blocks for the conception of drug delivery systems with multifunctional properties such as photothermal therapy (PTT), photodynamic therapy (PDT), phototriggerable release, photoacoustic and fluorescence imaging. For this aim, we have recently synthesized a new lipid-porphyrin conjugate named PhLSM. This was obtained by coupling pheophorbide-a (Pheo-a), a photosensitizer derived from chlorophyll-a, to egg lyso-sphingomyelin. The pure PhLSMs were able to self-assemble into vesicle-like structures that were however not stable and formed aggregates with undefined structures due to the mismatch between the length of the alkyl chain in sn-1 position and the adjacent porphyrin. Herein, stable PhLSMs lipid bilayers were achieved by mixing PhLSMs with cholesterol which exhibits a complementary packing parameter. The interfacial behavior as well as the fine structures of their equimolar mixture was studied at the air/buffer interface by the mean of Langmuir balance and x-ray reflectomerty (XRR) respectively. Our XRR analysis unraveled the monolayer thickening and the increase in the lateral ordering of PhLSM molecules. Interestingly, we could prepare stable vesicles with this mixture that encapsulate hydrophilic fluorescent probe. The light-triggered release kinetics and the photothermal conversion were studied. Moreover, the obtained vesicles were photo-triggerable and allowed the release of an encapsulated cargo in an ON-OFF fashion.


Subject(s)
Drug Delivery Systems , Lipids/chemistry , Phospholipids/chemistry , Porphyrins/chemistry , Chlorophyll/analogs & derivatives , Chlorophyll/chemical synthesis , Chlorophyll/chemistry , Cholesterol/chemistry , Humans , Hydrophobic and Hydrophilic Interactions/radiation effects , Kinetics , Light , Lipid Bilayers/chemistry , Lipid Bilayers/radiation effects , Lipids/chemical synthesis , Lipids/radiation effects , Lipids/therapeutic use , Liposomes/chemistry , Liposomes/radiation effects , Liposomes/therapeutic use , Phospholipids/chemical synthesis , Phospholipids/pharmacology , Phospholipids/radiation effects , Photochemotherapy/trends , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Photosensitizing Agents/radiation effects , Photothermal Therapy/trends , Porphyrins/chemical synthesis , Porphyrins/radiation effects , Porphyrins/therapeutic use
2.
Mil Med Res ; 8(1): 28, 2021 04 25.
Article in English | MEDLINE | ID: mdl-33894781

ABSTRACT

With the rapid development of terahertz technologies, basic research and applications of terahertz waves in biomedicine have attracted increasing attention. The rotation and vibrational energy levels of biomacromolecules fall in the energy range of terahertz waves; thus, terahertz waves might interact with biomacromolecules. Therefore, terahertz waves have been widely applied to explore features of the terahertz spectrum of biomacromolecules. However, the effects of terahertz waves on biomacromolecules are largely unexplored. Although some progress has been reported, there are still numerous technical barriers to clarifying the relation between terahertz waves and biomacromolecules and to realizing the accurate regulation of biological macromolecules by terahertz waves. Therefore, further investigations should be conducted in the future. In this paper, we reviewed terahertz waves and their biomedical research advantages, applications of terahertz waves on biomacromolecules and the effects of terahertz waves on biomacromolecules. These findings will provide novel ideas and methods for the research and application of terahertz waves in the biomedical field.


Subject(s)
Lipids/radiation effects , Monosaccharides/radiation effects , Nucleic Acids/radiation effects , Proteins/radiation effects , Terahertz Radiation , Humans , Lipids/physiology , Monosaccharides/physiology , Nucleic Acids/physiology , Proteins/physiology
3.
Annu Rev Phys Chem ; 72: 445-465, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33878897

ABSTRACT

Ionizing rays cause damage to genomes, proteins, and signaling pathways that normally regulate cell activity, with harmful consequences such as accelerated aging, tumors, and cancers but also with beneficial effects in the context of radiotherapies. While the great pace of research in the twentieth century led to the identification of the molecular mechanisms for chemical lesions on the building blocks of biomacromolecules, the last two decades have brought renewed questions, for example, regarding the formation of clustered damage or the rich chemistry involving the secondary electrons produced by radiolysis. Radiation chemistry is now meeting attosecond science, providing extraordinary opportunities to unravel the very first stages of biological matter radiolysis. This review provides an overview of the recent progress made in this direction, focusing mainly on the atto- to femto- to picosecond timescales. We review promising applications of time-dependent density functional theory in this context.


Subject(s)
DNA/radiation effects , Lipids/radiation effects , Proteins/radiation effects , Radiation, Ionizing , Radiochemistry/methods , Computer Simulation , Humans , Models, Theoretical , Pulse Radiolysis
4.
J Biosci Bioeng ; 131(6): 613-621, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33582014

ABSTRACT

The oleaginous yeast Lipomyces starkeyi is an intriguing lipid producer that can produce triacylglycerol (TAG), a feedstock for biodiesel production. We previously reported that the L. starkeyi mutant E15 with high levels of TAG production compared with the wild-type was efficiently obtained using Percoll density gradient centrifugation. However, considering its use for biodiesel production, it is necessary to further improve the lipid productivity of the mutant. In this study, we aimed to obtain mutants with better lipid productivity than E15, evaluate its lipid productivity, and analyze lipid synthesis-related gene expression in the wild-type and mutant strains. The mutants E15-11, E15-15, and E15-25 exhibiting higher lipid productivity than E15 were efficiently isolated from cells exposed to ultraviolet light using Percoll density gradient centrifugation. They exhibited approximately 4.5-fold higher lipid productivity than the wild-type on day 3. The obtained mutants did not exhibit significantly different fatty acid profiles than the wild-type and E15 mutant strains. E15-11, E15-15, and E15-25 exhibited higher expression of acyl-CoA synthesis- and Kennedy pathway-related genes than the wild-type and E15 mutant strains. Activation of the pentose phosphate pathway, which supplies NADPH, was also observed. These results suggested that the increased expression of acyl-CoA synthesis- and Kennedy pathway-related genes plays a vital role in lipid productivity in the oleaginous yeast L. starkeyi.


Subject(s)
Lipids/biosynthesis , Lipomyces , Ultraviolet Rays , Biofuels , Fatty Acids/metabolism , Gene Expression Regulation, Fungal/radiation effects , Lipid Metabolism/genetics , Lipid Metabolism/radiation effects , Lipids/radiation effects , Lipomyces/genetics , Lipomyces/isolation & purification , Lipomyces/metabolism , Lipomyces/radiation effects , Metabolic Engineering , Organisms, Genetically Modified , Pentose Phosphate Pathway/genetics , Pentose Phosphate Pathway/radiation effects , Triglycerides/metabolism , Yeasts/genetics , Yeasts/metabolism , Yeasts/radiation effects
5.
Molecules ; 25(16)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32824857

ABSTRACT

Heavy ions refer to charged particles with a mass greater than four (i.e., alpha particles). The heavy ion irradiation used in radiotherapy or that astronauts suffer in space flight missions induces toxicity in normal tissue and leads to short-term and long-term damage in both the structure and function of the brain. However, the underlying molecular alterations caused by heavy ion radiation have yet to be completely elucidated. Herein, untargeted and targeted lipidomic profiling of the whole brain tissue and blood plasma 7 days after the administration of the 15 Gy (260 MeV, low linear energy (LET) = 13.9 KeV/µm) plateau irradiation of disposable 12C6+ heavy ions on the whole heads of rats was explored to study the lipid damage induced by heavy ion radiation in the rat brain using ultra performance liquid chromatography-mass spectrometry (UPLC-MS) technology. Combined with multivariate variables and univariate data analysis methods, our results indicated that an orthogonal partial least squares discriminant analysis (OPLS-DA) could clearly distinguish lipid metabolites between the irradiated and control groups. Through the combination of variable weight value (VIP), variation multiple (FC), and differential (p) analyses, the significant differential lipids diacylglycerols (DAGs) were screened out. Further quantitative targeted lipidomic analyses of these DAGs in the rat brain tissue and plasma supported the notion that DAG 47:1 could be used as a potential biomarker to study brain injury induced by heavy ion irradiation.


Subject(s)
Brain/metabolism , Carbon Radioisotopes/adverse effects , Heavy Ions/adverse effects , Lipids/analysis , Organ Size/radiation effects , Animals , Brain/radiation effects , Lipids/radiation effects , Male , Rats , Rats, Wistar
6.
Methods Mol Biol ; 2169: 167-174, 2020.
Article in English | MEDLINE | ID: mdl-32548828

ABSTRACT

Here, we describe how to extract tethers or lipid membrane nanotubes from the plasma membrane of cells using optical tweezers. This technique allows measuring the force required to hold the membrane tether at a constant length, which is related to the cell membrane tension. Following the evolution of this force during mechanical or chemical perturbations of the cell gives insight about the regulation of cell membrane tension. By pulling very long membrane tethers, one can also probe the membrane reservoir of a cell and a sudden rise in the tether force is usually due to the depletion of excess membranes stored in membrane folds or invaginations.


Subject(s)
Cell Membrane/chemistry , Lipids/radiation effects , Nanotubes/radiation effects , Optical Tweezers , Animals , Cell Membrane/metabolism , Cells, Cultured , Humans , Lasers , Lipids/chemistry , Nanotubes/chemistry , Polystyrenes/chemistry
7.
Molecules ; 25(4)2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32059440

ABSTRACT

The kinetics of lipid extraction utilizing microwave-assisted extraction (MAE) from Nannochloropsis sp. microalgae were studied using a low cost and green solvent, namely brine (NaCl) solution. The kinetic modelling of the lipid extraction was performed to evaluate the mechanism of the lipid mass transfer using different extraction models, including Fick's Law, First and Second-order Rate Law and the Patricelli mathematical model. The Patricelli mathematical model described the kinetics of lipid extraction well, with the highest average values of determination coefficient (R2 ≥ 0.952) and the lowest average values of mean relative percentage deviation (MRPD ≤ 8.666%). The lipid analysis indicated a positive influence of the microwave temperature and time on the quantity and quality of extracted lipids. SEM analysis of spent microalgae clearly shows an increase in the distorted cell with increase microwave temperature and time, which could be directly correlated to the mechanism of the MAE-brine technique.


Subject(s)
Lipids/chemistry , Microalgae/chemistry , Salts/chemistry , Kinetics , Lipids/isolation & purification , Lipids/radiation effects , Microwaves
8.
Chem Rev ; 120(7): 3328-3380, 2020 04 08.
Article in English | MEDLINE | ID: mdl-31851501

ABSTRACT

The development of new ion-activation/dissociation methods continues to be one of the most active areas of mass spectrometry owing to the broad applications of tandem mass spectrometry in the identification and structural characterization of molecules. This Review will showcase the impact of ultraviolet photodissociation (UVPD) as a frontier strategy for generating informative fragmentation patterns of ions, especially for biological molecules whose complicated structures, subtle modifications, and large sizes often impede molecular characterization. UVPD energizes ions via absorption of high-energy photons, which allows access to new dissociation pathways relative to more conventional ion-activation methods. Applications of UVPD for the analysis of peptides, proteins, lipids, and other classes of biologically relevant molecules are emphasized in this Review.


Subject(s)
Lipids/analysis , Nucleic Acids/analysis , Oligosaccharides/analysis , Peptides/analysis , Proteins/analysis , Amino Acid Sequence , Animals , Carbohydrate Sequence , Humans , Lipids/radiation effects , Mass Spectrometry/methods , Nucleic Acids/radiation effects , Oligosaccharides/radiation effects , Peptides/metabolism , Peptides/radiation effects , Protein Processing, Post-Translational , Proteins/metabolism , Proteins/radiation effects , Proteomics , Ultraviolet Rays
9.
Carbohydr Polym ; 212: 352-360, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30832867

ABSTRACT

This study determines the effects of stearic acid and gamma irradiation, alone and in combination, on properties of amylose-lipid nanomaterials from pasted high amylose maize starch (HAMS) with and without alpha amylase hydrolysis. HAMS was incorporated with stearic acid (0, 1.5% and 5%, w/w), irradiated at 0, 30 and 60 kGy and pasted under pressure in a rheometer. Isolated materials after thermostable alpha amylase or hot water washing were freeze-dried and characterised using differential scanning calorimetry (DSC), X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM). The isolated materials contain amylose-lipid complexes (ALCs) as determined by DSC and XRD. Pasting of gamma irradiated HAMS produced type I ALCs, whereas that for un-irradiated HAMS produced type II ALCs. The ALCs occurred at nanoscale with sizes ranging from 10 to 110 nm as observed with AFM and TEM. Tailor-made ALCs nanomaterials can be produced from HAMS (with and without added stearic acid).


Subject(s)
Amylose/radiation effects , Lipids/radiation effects , Nanostructures/radiation effects , Starch/radiation effects , Stearic Acids/radiation effects , Zea mays/radiation effects , Amylose/chemistry , Calorimetry, Differential Scanning/methods , Gamma Rays , Lipids/chemistry , Nanostructures/chemistry , Starch/chemistry , Stearic Acids/chemistry , X-Ray Diffraction/methods
10.
J Proteome Res ; 16(10): 3805-3815, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28825479

ABSTRACT

The potential for radiological accidents and nuclear terrorism has increased the need for the development of new rapid biodosimetry methods. In addition, in a clinical setting the issue of an individual's radiosensitivity should be taken into consideration during radiotherapy. We utilized metabolomics and lipidomics to investigate changes of metabolites in serum samples following exposure to total body ionizing radiation in humans. Serum was collected prior to irradiation, at 3-8 h after a single dose of 1.25-2 Gy, and at 24 h with a total delivered dose of 2-3.75 Gy. Metabolomics revealed perturbations in glycerophosphocholine, phenylalanine, ubiquinone Q2, and oxalic acid. Alterations were observed in circulating levels of lipids from monoacylglycerol, triacylglycerol, phosphatidylcholine, and phosphatidylglycerol lipid classes. Polyunsaturated fatty acids were some of the most dysregulated lipids, with increased levels linked to proinflammatory processes. A targeted metabolomics approach for eicosanoids was also employed. The results showed a rapid response for proinflammatory eicosanoids, with a dampening of the signal at the later time point. Sex differences were observed in the markers from the untargeted approach but not the targeted method. The ability to identify and quantify small molecules in blood can therefore be utilized to monitor radiation exposure in human populations.


Subject(s)
Inflammation/blood , Lipids/blood , Metabolome/genetics , Whole-Body Irradiation/adverse effects , Biomarkers/blood , Dose-Response Relationship, Radiation , Eicosanoids/blood , Eicosanoids/genetics , Female , Humans , Inflammation/etiology , Inflammation/genetics , Inflammation/pathology , Lipids/radiation effects , Male , Metabolome/radiation effects , Metabolomics/methods , Radiation Exposure/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL