Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biosci Bioeng ; 131(6): 613-621, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33582014

ABSTRACT

The oleaginous yeast Lipomyces starkeyi is an intriguing lipid producer that can produce triacylglycerol (TAG), a feedstock for biodiesel production. We previously reported that the L. starkeyi mutant E15 with high levels of TAG production compared with the wild-type was efficiently obtained using Percoll density gradient centrifugation. However, considering its use for biodiesel production, it is necessary to further improve the lipid productivity of the mutant. In this study, we aimed to obtain mutants with better lipid productivity than E15, evaluate its lipid productivity, and analyze lipid synthesis-related gene expression in the wild-type and mutant strains. The mutants E15-11, E15-15, and E15-25 exhibiting higher lipid productivity than E15 were efficiently isolated from cells exposed to ultraviolet light using Percoll density gradient centrifugation. They exhibited approximately 4.5-fold higher lipid productivity than the wild-type on day 3. The obtained mutants did not exhibit significantly different fatty acid profiles than the wild-type and E15 mutant strains. E15-11, E15-15, and E15-25 exhibited higher expression of acyl-CoA synthesis- and Kennedy pathway-related genes than the wild-type and E15 mutant strains. Activation of the pentose phosphate pathway, which supplies NADPH, was also observed. These results suggested that the increased expression of acyl-CoA synthesis- and Kennedy pathway-related genes plays a vital role in lipid productivity in the oleaginous yeast L. starkeyi.


Subject(s)
Lipids/biosynthesis , Lipomyces , Ultraviolet Rays , Biofuels , Fatty Acids/metabolism , Gene Expression Regulation, Fungal/radiation effects , Lipid Metabolism/genetics , Lipid Metabolism/radiation effects , Lipids/radiation effects , Lipomyces/genetics , Lipomyces/isolation & purification , Lipomyces/metabolism , Lipomyces/radiation effects , Metabolic Engineering , Organisms, Genetically Modified , Pentose Phosphate Pathway/genetics , Pentose Phosphate Pathway/radiation effects , Triglycerides/metabolism , Yeasts/genetics , Yeasts/metabolism , Yeasts/radiation effects
2.
Biosci Biotechnol Biochem ; 73(11): 2474-7, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19897922

ABSTRACT

Yeasts of the genus Lipomyces are known as fat yeasts, and they store large amounts of lipids. Because the major lipid produced by Lipomyces is triglyceride, which can be used as a food and energy resource, the control of lipid production by Lipomyces sp. is an important issue. Here we report the effects of UV irradiation on lipid production in Lipomyces lipofer cells. UV irradiation (315-400 nm) led to a 4-fold increase in the amount of triglyceride per cell. We discovered a novel phenomenon, that UV irradiation promotes triglyceride accumulation in L. lipofer.


Subject(s)
Lipomyces/metabolism , Lipomyces/radiation effects , Triglycerides/metabolism , Ultraviolet Rays , Cell Proliferation/radiation effects , Glucose/metabolism , Lipomyces/cytology , Triglycerides/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...