Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
Add more filters










Publication year range
1.
J Pept Sci ; 30(6): e3569, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38301277

ABSTRACT

The pursuit of novel antifungal agents is imperative to tackle the threat of antifungal resistance, which poses major risks to both human health and to food security. Iturin A is a cyclic lipopeptide, produced by Bacillus sp., with pronounced antifungal properties against several pathogens. Its challenging synthesis, mainly due to the laborious synthesis of the ß-amino fatty acid present in its structure, has hindered the study of its mode of action and the development of more potent analogues. In this work, a facile synthesis of bioactive iturin A analogues containing an alkylated cysteine residue is presented. Two analogues with opposite configurations of the alkylated cysteine residue were synthesized, to evaluate the role of the stereochemistry of the newly introduced amino acid on the bioactivity. Antifungal assays, conducted against F. graminearum, showed that the novel analogues are bioactive and can be used as a synthetic model for the design of new analogues and in structure-activity relationship studies. The assays also highlight the importance of the ß-amino acid in the natural structure and the role of the stereochemistry of the amino fatty acid, as the analogue with the D configuration showed stronger antifungal properties than the one with the L configuration.


Subject(s)
Antifungal Agents , Fusarium , Lipopeptides , Microbial Sensitivity Tests , Peptides, Cyclic , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Structure-Activity Relationship , Lipopeptides/pharmacology , Lipopeptides/chemistry , Lipopeptides/chemical synthesis , Fusarium/drug effects , Molecular Structure
3.
Bioorg Chem ; 115: 105231, 2021 10.
Article in English | MEDLINE | ID: mdl-34388485

ABSTRACT

The analgesic peptide DD04107 (Pal-EEMQRR-NH2) and its acetylated analogue inhibit α-calcitonin gene-related peptide (α-CGRP) exocytotic release from primary sensory neurons. Examining the crystal structure of the SNARE-Synaptotagmin-1(Syt1) complex, we hypothesized that these peptides could inhibit neuronal exocytosis by binding to Syt1, hampering at least partially its interaction with the SNARE complex. To address this hypothesis, we first interrogate the role of individual side-chains on the inhibition of α-CGRP release, finding that E1, M3, Q4 and R6 residues were crucial for activity. CD and NMR conformational analysis showed that linear peptides have tendency to adopt α-helical conformations, but the results with cyclic analogues indicated that this secondary structure is not needed for activity. Isothermal titration calorimetry (ITC) measurements demonstrate a direct interaction of some of these peptides with Syt1-C2B domain, but not with Syt7-C2B region, indicating selectivity. As expected for a compound able to inhibit α-CGRP release, cyclic peptide derivative Pal-E-cyclo[EMQK]R-NH2 showed potent in vivo analgesic activity, in a model of inflammatory pain. Molecular dynamics simulations provided a model consistent with KD values for the interaction of peptides with Syt1-C2B domain, and with their biological activity. Altogether, these results identify Syt1 as a potential new analgesic target.


Subject(s)
Analgesics/pharmacology , Lipopeptides/pharmacology , Pain/drug therapy , Synaptotagmin I/antagonists & inhibitors , Analgesics/chemical synthesis , Analgesics/chemistry , Animals , Calcitonin Gene-Related Peptide/antagonists & inhibitors , Calcitonin Gene-Related Peptide/metabolism , Dose-Response Relationship, Drug , Exocytosis/drug effects , Lipopeptides/chemical synthesis , Lipopeptides/chemistry , Male , Mice , Molecular Dynamics Simulation , Molecular Structure , Pain/metabolism , Structure-Activity Relationship , Synaptotagmin I/metabolism
4.
Int J Mol Sci ; 22(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205705

ABSTRACT

From a previous collection of lipopeptides derived from BP100, we selected 18 sequences in order to improve their biological profile. In particular, analogues containing a D-amino acid at position 4 were designed, prepared, and tested against plant pathogenic bacteria and fungi. The biological activity of these sequences was compared with that of the corresponding parent lipopeptides with all L-amino acids. In addition, the influence of the length of the hydrophobic chain on the biological activity was evaluated. Interestingly, the incorporation of a D-amino acid into lipopeptides bearing a butanoyl or a hexanoyl chain led to less hemolytic sequences and, in general, that were as active or more active than the corresponding all L-lipopeptides. The best lipopeptides were BP475 and BP485, both incorporating a D-Phe at position 4 and a butanoyl group, with MIC values between 0.8 and 6.2 µM, low hemolysis (0 and 24% at 250 µM, respectively), and low phytotoxicity. Characterization by NMR of the secondary structure of BP475 revealed that the D-Phe at position 4 disrupts the α-helix and that residues 6 to 10 are able to fold in an α-helix. This secondary structure would be responsible for the high antimicrobial activity and low hemolysis of this lipopeptide.


Subject(s)
Anti-Infective Agents/chemical synthesis , Lipopeptides/chemical synthesis , Microbial Sensitivity Tests , Oligopeptides/chemistry , Plant Diseases/therapy , Plant Diseases/microbiology
5.
Emerg Microbes Infect ; 10(1): 1227-1240, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34057039

ABSTRACT

The ongoing pandemic of COVID-19, caused by SARS-CoV-2, has severely impacted the global public health and socio-economic stability, calling for effective vaccines and therapeutics. In this study, we continued our efforts to develop more efficient SARS-CoV-2 fusion inhibitors and achieved significant findings. First, we found that the membrane-proximal external region (MPER) sequence of SARS-CoV-2 spike fusion protein plays a critical role in viral infectivity and can serve as an ideal template for design of fusion-inhibitory peptides. Second, a panel of novel lipopeptides was generated with greatly improved activity in inhibiting SARS-CoV-2 fusion and infection. Third, we showed that the new inhibitors maintained the potent inhibitory activity against emerging SARS-CoV-2 variants, including those with the major mutations of the B.1.1.7 and B.1.351 strains circulating in the United Kingdom and South Africa, respectively. Fourth, the new inhibitors also cross-inhibited other human CoVs, including SARS-CoV, MERS-CoV, HCoV-229E, and HCoV-NL63. Fifth, the structural properties of the new inhibitors were characterized by circular dichroism (CD) spectroscopy and crystallographic approach, which revealed the mechanisms underlying the high binding and inhibition. Combined, our studies provide important information for understanding the mechanism of SARS-CoV-2 fusion and a framework for the development of peptide therapeutics for the treatment of SARS-CoV-2 and other CoVs.


Subject(s)
Drug Design , Lipopeptides/chemical synthesis , Lipopeptides/pharmacology , SARS-CoV-2/drug effects , Virus Attachment/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cell Fusion , Cell Survival/drug effects , Chlorocebus aethiops , Communicable Diseases, Emerging/virology , HEK293 Cells , Humans , Mutagenesis, Site-Directed , Protein Conformation , Vero Cells
6.
Int J Mol Sci ; 22(4)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668410

ABSTRACT

Supramolecular hydrogels formed by self-assembly of low-molecular-weight amphiphiles (hydrogelators) have attracted significant attention, as smart and soft materials. However, most of the observed stimuli-responsive behaviour of these supramolecular hydrogels are limited to gel-sol transitions. In this study, we present bola-amphiphilic glycosylated lipopeptide-type supramolecular hydrogelators that exhibit reversible thermochromism along with a gel-sol transition. The bola-amphiphiles have mono-, di-, tri- or tetra-phenylalanine (F) as a short peptide moiety. We investigate and discuss the effects of the number of F residues on the gelation ability and the morphology of the self-assembled nanostructures.


Subject(s)
Hydrogels , Lipopeptides , Color , Hydrogels/chemical synthesis , Hydrogels/chemistry , Lipopeptides/chemical synthesis , Lipopeptides/chemistry , Phase Transition
7.
Acc Chem Res ; 54(8): 1878-1890, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33750106

ABSTRACT

The rise of multidrug resistant bacteria has significantly compromised our supply of antibiotics and poses an alarming medical and economic threat to society. To combat this problem, it is imperative that new antibiotics and treatment modalities be developed, especially those toward which bacteria are less capable of developing resistance. Peptide natural products stand as promising candidates to meet this need as bacterial resistance is typically slow in response to their unique modes of action. They also have additional benefits including favorable modulation of host immune responses and often possess broad-spectrum activity against notoriously treatment resistant bacterial biofilms. Moreover, nature has provided a wealth of peptide-based natural products from a range of sources, including bacteria and fungi, which can be hijacked in order to combat more dangerous clinically relevant infections.This Account highlights recent advances in the total synthesis and development of a range of peptide-based natural product antibiotics and details the medicinal chemistry approaches used to optimize their activity.In the context of antibiotics with potential to treat Gram-positive bacterial infections, this Account covers the synthesis and optimization of the natural products daptomycin, glycocin F, and alamethicin. In particular, the reported synthesis of daptomycin highlights the utility of on-resin ozonolysis for accessing a key kynurenine residue from the canonical amino acid tryptophan. Furthermore, the investigation into glycocin F analogues uncovered a potent lead compound against Lactobacillus plantarum that bears a non-native thioacetal linkage to a N-acetyl-d-glucosamine (GlcNAc) sugar, which is otherwise O-linked in its native form.For mycobacterial infections, this Account covers the synthesis and optimization of teixobactin, callyaerin A, lassomycin, and trichoderin A. The synthesis of callyaerin A, in particular, highlighted the importance of a (Z)-2,3-diaminoacrylamide motif for antimicrobial activity against Mycobacterium tuberculosis, while the synthesis of trichoderin A highlighted the importance of (R)-stereoconfiguration in a key 2-amino-6-hydroxy-4-methyl-8-oxodecanoic acid (AHMOD) residue.Lastly, this Account covers lipopeptide antibiotics bearing activity toward Gram-negative bacterial infections, namely, battacin and paenipeptin C. In both cases, optimization of the N-terminal lipid tails led to the identification of analogues with potent activity toward Escherichia coli and Pseudomonas aeruginosa.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Peptides/chemical synthesis , Alamethicin/chemical synthesis , Alamethicin/pharmacology , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteriocins/chemical synthesis , Bacteriocins/pharmacology , Daptomycin/chemical synthesis , Daptomycin/pharmacology , Drug Evaluation, Preclinical , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Positive Bacteria/drug effects , Lipopeptides/chemical synthesis , Lipopeptides/pharmacology , Microbial Sensitivity Tests , Ozone/chemistry , Peptides/chemistry , Peptides/pharmacology , Structure-Activity Relationship
8.
Acc Chem Res ; 54(8): 1830-1842, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33660974

ABSTRACT

Enamine and enol ethers are nucleophilic functional groups that are well known to most chemists. When enamine or enol ethers are present in natural products, they are nearly exclusively found as derivatives having a direct connection to electron-withdrawing groups for stabilization, and the resulting larger entities, such as enamides or enol acylates, can be further extended or modified in the framework of natural products. The restricted conformational space that is associated with even simple enamine and enol ether derivatives can be a strong determinant of the overall molecular structure, and the more polarized derivatives can endow some natural products with electrophilic properties and thus facilitate covalent interactions with biological targets.In this Account, I describe our efforts (published since 2016) to prepare natural products from several different classes that all feature enamine or enol ether derivatives as key functionalities. Our choice of targets has been guided by a desire to illuminate unknown biological mechanisms associated with the compounds or, alternatively, to improve upon known biological activities that appear to be promising from a biomedical perspective. In the present text, however, the exclusive focus will be on the syntheses.First, I will discuss the basic properties of the functional groups and briefly present a small collection of illustrative and inspirational examples from the literature for their construction in different complex settings. Next, I will provide an overview of our work on the macrocyclic APD-CLD natural products, rakicidin A and BE-43547A1, involving the development of an efficient macrocyclization strategy and the development of methods to construct the hallmark APD group: a modified enamide. The synthesis of the meroterpenoid strongylophorine-26 is discussed next, where we developed an oxidative quinone methoxylation to build a vinylogous ester group in the final step of the synthesis and employed FeCl3-mediated cascade reactions for the rapid assembly of the overall scaffold to enable a short semisynthesis from isocupressic acid. An efficient core scaffold assembly was also in focus in our synthesis of the alkaloid streptazone A with the signature enaminone system being assembled through a rhodium-catalyzed Pauson-Khand reaction. Sequential, site-selective redox manipulations were developed to arrive at strepatzone A and additional members of the natural product family. Finally, I discuss our work to prepare analogs of complex polyether ionophores featuring functionalized tetronic acids as cation-binding groups. A method for the construction of a suitably protected chloromethylidene-modified tetronate is presented which enabled its installation in the full structure through a C-acylation reaction. This work exemplifies how components of abundant polyether ionophores can be recycled and used to access new structures which may possess enhanced biological activities.


Subject(s)
Biological Products/chemical synthesis , Ethers/chemistry , Biological Products/chemistry , Catalysis , Cyclization , Depsipeptides/chemical synthesis , Depsipeptides/chemistry , Diterpenes/chemical synthesis , Diterpenes/chemistry , Furans/chemistry , Lipopeptides/chemical synthesis , Lipopeptides/chemistry , Molecular Conformation , Oxidation-Reduction , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Stereoisomerism
9.
ACS Chem Biol ; 16(2): 380-388, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33523635

ABSTRACT

We report a mechanistic study comparing the immune activation of conjugated Toll-like receptor (TLR) agonists and their unlinked mixtures. Herein, we synthesized a set of six linked dual agonists with different ligands, molecular structures, receptor locations, and biophysical characteristics. With these dimers, we ran a series of in vitro cell-based assays, comparing initial and overall NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation, cytokine expression profiles, as well as time-resolved TNF-α (Tumor Necrosis Factor alpha) expression. We show that initial activation kinetics, ligand specificity, and the dose of the agonist influence the activity of these linked TLR systems. These results can help improve vaccine design by showing how linked TLR agonists can improve their potency with the appropriate selection of key criteria.


Subject(s)
Heterocyclic Compounds, 3-Ring/pharmacology , Lipopeptides/pharmacology , Oligonucleotides/pharmacology , Toll-Like Receptors/agonists , Animals , Cytokines/metabolism , Dose-Response Relationship, Drug , Heterocyclic Compounds, 3-Ring/chemical synthesis , Kinetics , Ligands , Lipopeptides/chemical synthesis , Mice , NF-kappa B/metabolism , Oligonucleotides/chemical synthesis , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism
10.
Eur J Med Chem ; 212: 113138, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33422980

ABSTRACT

Facing the continuously urgent demands for novel antimicrobial agents since the growing emergence of bacterial resistance, a series of new ultra-short lipopeptides, composed of tryptophan and arginine and fatty acids, were de novo designed and synthesized in this study. Most of the new lipopeptides exhibited preferable antimicrobial potential against gram-positive bacteria, including MRSA clinical isolates. Among them, the new lipopeptides C14-R1 (C14-RWW-NH2) and C12-R2 (C12-RRW-NH2) presented higher selectivity to bacterial membranes over mammalian membranes and low cytotoxicity, which also maintained better antimicrobial activity in the presence of physiological salts or serum. Most importantly, C14-R1 and C12-R2 not only expressed low tendency of bacterial resistance, but also displayed synergistic antimicrobial activity against antibiotics-resistant bacteria when be used in combination with antibiotics. Especially, they could alleviate or reverse the ciprofloxacin resistance, implying an ideal anti-resistance function. Moreover, the new lipopeptides showed rapid killing kinetics, obvious effectiveness for persistent cells that escaped from antibiotics, and strong anti-biofilm ability, which further indicated a preferable anti-resistance ability. The typical non-receptor-mediated membrane mechanisms were characterized by LPS/LTA competitive inhibition, cytoplasmic membrane depolarization, PI uptake assay and scanning electron microscopy analyses systematically. Reactive oxygen species (ROS) generation assays supplemented their intracellular targets in the meanwhile. In addition to the remarkable antimicrobial activity in vivo, the new lipopeptides also displayed significant anti-inflammatory effect in vivo. To sum up, the new lipopeptides C14-R1 and C12-R2 viewed as novel antimicrobial alternatives for tackling the impending crisis of antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Gram-Positive Bacteria/drug effects , Lipopeptides/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Female , Lipopeptides/chemical synthesis , Lipopeptides/chemistry , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
11.
Chem Commun (Camb) ; 57(7): 895-898, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33367306

ABSTRACT

Solid-phase synthesis of peptides (SPPS) with release through formation of C-terminal γ-, δ-, or ε-lactams is presented. The natural products ciliatamide A and C were synthesized in up to 90% yield. Peptides carrying C-terminal lactams were shown to possess increased bio-stability and comparable biological activity as compared to the parent non-lactamized peptide amides.


Subject(s)
Lactams/chemistry , Peptides/chemistry , Solid-Phase Synthesis Techniques , Drug Stability , Humans , Lipopeptides/chemical synthesis , Lipopeptides/chemistry , Peptides/blood , Peptides/chemical synthesis
12.
Chembiochem ; 22(7): 1215-1222, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33180981

ABSTRACT

Synthetic vaccines, based on antigenic peptides that comprise MHC-I and MHC-II T-cell epitopes expressed by tumors, show great promise for the immunotherapy of cancer. For optimal immunogenicity, the synthetic peptides (SPs) should be adjuvanted with suitable immunostimulatory additives. Previously, we have shown that improved immunogenicity in vivo is obtained with vaccine modalities in which an SP is covalently connected to an adjuvanting moiety, typically a ligand to Toll-like receptor 2 (TLR2). SPs were covalently attached to UPam, which is a derivative of the classic TLR2 ligand Pam3 CysSK4 . A disadvantage of the triply palmitoylated UPam is its high lipophilicity, which precludes universal adoption of this adjuvant for covalent modification of various antigenic peptides as it renders the synthetic vaccine insoluble in several cases. Here, we report a novel conjugatable TLR2 ligand, mini-UPam, which contains only one palmitoyl chain, rather than three, and therefore has less impact on the solubility and other physicochemical properties of a synthetic peptide. In this study, we used SPs that contain the clinically relevant neoepitopes identified in a melanoma patient who completely recovered after T-cell therapy. Homogeneous mini-UPam-SP conjugates have been prepared in good yields by stepwise solid-phase synthesis that employed a mini-UPam building block pre-prepared in solution and the standard set of Fmoc-amino acids. The immunogenicity of the novel mini-UPam-SP conjugates was demonstrated by using the cancer patient's T-cells.


Subject(s)
Antigens, Neoplasm/chemistry , Cancer Vaccines/immunology , Ligands , Toll-Like Receptor 2/chemistry , Vaccines, Synthetic/immunology , Antigens, Neoplasm/immunology , Cancer Vaccines/chemistry , Cell Line , Dendritic Cells/cytology , Dendritic Cells/metabolism , Drug Design , Humans , Interleukin-8/metabolism , Lipopeptides/chemical synthesis , Lipopeptides/chemistry , Lipopeptides/immunology , Lipoylation , Lymphocyte Activation , Toll-Like Receptor 2/metabolism , Vaccines, Synthetic/chemistry
13.
Int J Mol Sci ; 21(16)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823798

ABSTRACT

Multidrug-resistant bacteria are a global health problem. One of the last-resort antibiotics against Gram-negative bacteria is the cyclic lipopeptide colistin, displaying a flexible linker with a fatty acid moiety. The aim of the present project was to investigate the effect on antimicrobial activity of introducing fatty acid moieties of different lengths and in different positions in a cyclic peptide, S3(B), containing a flexible linker. The lipidated analogues of S3(B) were synthesized by 9-fluorenylmethoxycarbonyl (Fmoc) solid-phase peptide synthesis. Following assembly of the linear peptide by Fmoc solid-phase peptide synthesis, on-resin head-to-tail cyclization and fatty acid acylation were performed. The antimicrobial activity was determined against the ESKAPE pathogens, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. Furthermore, hemolytic activity was determined against human erythrocytes. A total of 18 cyclic lipopeptides were synthesized and characterized. It was found that introduction of fatty acids in positions next to the flexible linker was more strongly linked to antimicrobial activity. The fatty acid length altered the overall hydrophobicity, which was the driving force for both high antimicrobial and hemolytic activity. Peptides became highly hemolytic when carbon-chain length exceeded 10 (i.e., C10), overlapping with the optimum for antimicrobial activity (i.e., C8-C12). The most promising candidate (C8)5 showed antimicrobial activity corresponding to that of S3(B), but with an improved hemolytic profile. Finally, (C8)5 was further investigated in a time-kill experiment.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Lipopeptides/chemistry , Lipopeptides/pharmacology , Acylation , Anti-Bacterial Agents/chemical synthesis , Cyclization , Fatty Acids/chemistry , Hemolysis/drug effects , Hydrophobic and Hydrophilic Interactions , Lipopeptides/chemical synthesis , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects
14.
Angew Chem Int Ed Engl ; 59(45): 19868-19872, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32725837

ABSTRACT

The development of novel antibiotics is critical to combating the growing emergence of drug-resistant pathogens. Malacidin A is a new member of the calcium-dependent antibiotic (CDAs) family with activity against antibiotic-resistant pathogens. Its mode of action is distinct from classical CDAs. However, the absolute structure of malacidin A has not been established. Herein, the total syntheses of malacidin A and its analogues are reported by a combination of Fmoc-based solid-phase peptide synthesis (SPPS) and ß-hydroxyaspartic acid ligation-mediated peptide cyclization. The total synthesis enabled us to establish the absolute configuration of malacidin A, which is in agreement with those for natural malacidin A confirmed by advanced Marfey's analysis in our study.


Subject(s)
Aspartic Acid/analogs & derivatives , Cyclization , Lipopeptides/chemical synthesis , Peptides, Cyclic/chemical synthesis , Aspartic Acid/chemistry , Molecular Structure , Solid-Phase Synthesis Techniques , Stereoisomerism
15.
Chem Asian J ; 15(16): 2467-2469, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32667142

ABSTRACT

The total synthesis of dysoxylactam A, a novel 17-membered macrolactam with potent multi-drug-resistant reversing activities, has been achieved, starting from 4-pentene-1-al in a longest linear sequence of 17 steps and 9.5% overall yield. The key transformations consist of iterative aldol and ring-closing metathesis reactions for the construction of the stereochemically enriched polypropionate scaffold and the macrocycle, respectively.


Subject(s)
Lipopeptides/chemical synthesis , Aldehydes/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cyclization , Drug Resistance, Multiple, Bacterial , Esterification , Lipopeptides/chemistry , Stereoisomerism
16.
Sci Rep ; 10(1): 7269, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350300

ABSTRACT

Lipidised analgesic peptide prodrugs self-assemble into peptide nanofibers; with the nanofiber morphology protecting the peptide from plasma degradation and improving therapeutic efficacy. Extending this learning, we hypothesised that a self-assembling lipidized peptide arginine vasopressin (AVP) receptor agonist, that had not been designed as a prodrug, could prove pharmacologically active and control urine production. The only approved AVP receptor agonist, desmopressin is indicated for the treatment of central diabetes insipidus (DI), bedwetting, haemophilia A and von Willebrand disease. Desmopressin is well tolerated by most patients, however adverse effects, such as hyponatraemia and water intoxication necessitate a strict fluid intake, thus motivating the search for alternative DI treatments. Selective V2 receptor agonism is required for anti-DI activity and we hypothesised that our new lipidized peptide (METx) would lead to selective AVP receptor agonism. METx was synthesised and characterised and then tested for activity against the V2, V1a and OT uterine receptors and not tested against the V1b receptor as METx was not expected to cross the blood brain barrier. METx was also tested in vivo in a healthy rat model. METx forms nanofibers and is a partial V2 receptor agonist (determined by measuring MDCK cell line cAMP accumulation), producing 57% of AVP's maximal activity (EC50 = 2.7 nM) and is not a V1a agonist up to a concentration of 1 µM (determined by measuring A7r5 cell line D-myo-inositol-1-phosphate accumulation). METx is a weak OT receptor antagonist, reducing the frequency of OT induced contractions (EC50 = 350 nM) and increasing the OT EC50 from 0.081 nM to 21 nM at a concentration of 600 nM. METx (41 nM) had no effect on spontaneous uterine contractions and METx (100 nM) had no effect on OT induced uterine contractions. Simulated binding studies show that binding avidity to the receptors follows the trend: V2 > OT > V1a. On intravenous injection, a nanoparticle formulation of METx reduced urine production in a healthy rat model in a dose responsive manner, with 40 mg kg-1 METx resulting in no urine production over 4 hours. The lipidized self-assembling peptide - METx - is a selective competitive V2 receptor agonist and an anti-diuretic.


Subject(s)
Antidiuretic Agents , Arginine Vasopressin , Lipopeptides , Receptors, Vasopressin/agonists , Urine , Animals , Antidiuretic Agents/chemical synthesis , Antidiuretic Agents/chemistry , Antidiuretic Agents/pharmacology , Arginine Vasopressin/chemical synthesis , Arginine Vasopressin/chemistry , Arginine Vasopressin/pharmacology , Dogs , Female , Lipopeptides/chemical synthesis , Lipopeptides/chemistry , Lipopeptides/pharmacology , Madin Darby Canine Kidney Cells , Male , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Vasopressin/metabolism
17.
FEMS Microbiol Lett ; 367(10)2020 05 01.
Article in English | MEDLINE | ID: mdl-32329786

ABSTRACT

Previously, we showed that contamination of SH-SY5Y neuroblastoma cells by Mycoplasma hyorhinis strains NDMh and MCLD leads to increased levels of calpastatin (the endogenous, specific inhibitor of the Ca2+-dependent protease calpain), resulting in inhibition of calpain activation. We have found that the increased calpastatin level is promoted by the lipoprotein fraction (MhLpp) of the mycoplasmal membrane. Here, we present MhLpp-based novel synthetic lipopeptides that induce upregulation of calpastatin in SH-SY5Y neuroblastoma cells, leading to protection of the treated cells against Ca2+/amyloid-ß-peptide toxicity. These lipopeptides present a new class of promising agents against calpain-induced cell toxicity.


Subject(s)
Calcium-Binding Proteins/genetics , Drug-Related Side Effects and Adverse Reactions/prevention & control , Lipopeptides/chemical synthesis , Lipopeptides/pharmacology , Mycoplasma hyorhinis/chemistry , Up-Regulation/drug effects , Amyloid beta-Peptides/toxicity , Cell Line, Tumor , Humans , Mycoplasma hyorhinis/genetics , Neuroblastoma , Neuroprotective Agents/pharmacology
18.
Org Lett ; 22(8): 3014-3017, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32239955

ABSTRACT

A series of novel sulfur-containing cycliclipopeptides named thioamycolamides A-E, with thiazoline, thioether rings, and fatty acid moieties, were identified from the culture broth of the rare actinomycete Amycolatopsis sp. 26-4. The planar structural elucidation was accomplished by HRMS and 1D/2D NMR spectroscopic data analyses. The absolute configurations were unambiguously determined by Marfey's method, CD spectroscopy, and synthesis of partial structures. Moreover, their growth inhibitory activities against human tumor cell lines were investigated.


Subject(s)
Actinobacteria/chemistry , Antineoplastic Agents/pharmacology , Lipopeptides/pharmacology , Peptides, Cyclic/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Lipopeptides/chemical synthesis , Lipopeptides/chemistry , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Sulfur/chemistry , Sulfur/pharmacology
19.
Mar Drugs ; 18(3)2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32210159

ABSTRACT

Jahanyne, a lipopeptide with a unique terminal alkynyl and OEP (2-(1-oxo-ethyl)-pyrrolidine) moiety, exhibits anticancer activity. We synthesized jahanyne and analogs modified at the OEP moiety, employing an α-fluoromethyl ketone (FMK) strategy. Preliminary bioassays indicated that compound 1b (FMK-jahanyne) exhibited decreased activities to varying degrees against most of the cancer cells tested, whereas the introduction of a fluorine atom to the α-position of a hydroxyl group (2b) enhanced activities against all lung cancer cells. Moreover, jahanyne and 2b could induce G0/G1 cell cycle arrest in a concentration-dependent manner.


Subject(s)
Drug Design , G1 Phase Cell Cycle Checkpoints/drug effects , Lipopeptides/pharmacology , Lung Neoplasms/drug therapy , Apoptosis/drug effects , Aquatic Organisms/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cyanobacteria/chemistry , Drug Screening Assays, Antitumor , Humans , Lipopeptides/chemical synthesis , Lipopeptides/therapeutic use , Lung Neoplasms/pathology , Molecular Structure , Structure-Activity Relationship
20.
Molecules ; 25(4)2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32069902

ABSTRACT

Antimicrobial resistance to conventional antibiotics and the limited alternatives to combat plant-threatening pathogens are worldwide problems. Antibiotic lipopeptides exert remarkable membrane activity, which usually is not prone to fast resistance formation, and often show organism-type selectivity. Additional modes of action commonly complement the bioactivity profiles of such compounds. The present work describes a multicomponent-based methodology for the synthesis of cyclic polycationic lipopeptides with stabilized helical structures. The protocol comprises an on solid support Ugi-4-component macrocyclization in the presence of a lipidic isocyanide. Circular dichroism was employed to study the influence of both macrocyclization and lipidation on the amphiphilic helical structure in water and micellar media. First bioactivity studies against model phytopathogens demonstrated a positive effect of the lipidation on the antimicrobial activity.


Subject(s)
Antifungal Agents/chemistry , Lactams/chemistry , Lipopeptides/chemistry , Peptides, Cyclic/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Botrytis/drug effects , Lipopeptides/chemical synthesis , Lipopeptides/pharmacology , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/pharmacology , Phytophthora infestans/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...