Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 226(2): 258-269, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35429403

ABSTRACT

BACKGROUND: Recurrent respiratory syncytial virus (RSV) infection requiring hospitalization is rare and the underlying mechanism is unknown. We aimed to determine the role of CD14-mediated immunity in the pathogenesis of recurrent RSV infection. METHODS: We performed genotyping and longitudinal immunophenotyping of the first patient with a genetic CD14 deficiency who developed recurrent RSV infection. We analyzed gene expression profiles and interleukin (IL)-6 production by patient peripheral blood mononuclear cells in response to RSV pre- and post-fusion (F) protein. We generated CD14-deficient human nasal epithelial cells cultured at air-liquid interface (HNEC-ALI) of patient-derived cells and after CRISPR-based gene editing of control cells. We analyzed viral replication upon RSV infection. RESULTS: Sanger sequencing revealed a homozygous single-nucleotide deletion in CD14, resulting in absence of the CD14 protein in the index patient. In vitro, viral replication was similar in wild-type and CD14-/- HNEC-ALI. Loss of immune cell CD14 led to impaired cytokine and chemokine responses to RSV pre- and post-F protein, characterized by absence of IL-6 production. CONCLUSIONS: We report an association of recurrent RSV bronchiolitis with a loss of CD14 function in immune cells. Lack of CD14 function led to defective immune responses to RSV pre- and post-F protein without a change in viral replication.


Subject(s)
Respiratory Syncytial Virus Infections , Cytokines , Humans , Leukocytes, Mononuclear/metabolism , Lipopolysaccharide Receptors/deficiency , Respiratory Syncytial Virus, Human
2.
Matrix Biol ; 77: 4-22, 2019 04.
Article in English | MEDLINE | ID: mdl-29777767

ABSTRACT

Sterile inflammation is a therapeutic target in many diseases where it represents an important initiator of disease progression. However, the detailed mechanisms underlying its evolution and biological relevance are not yet completely elucidated. Biglycan, a prototype extracellular matrix-derived damage-associated molecular pattern, mediates sterile inflammation in macrophages through Toll-like receptor (TLR) 2 and/or TLR4-dependent signaling pathways. Here we discovered that soluble biglycan is a novel high-affinity ligand for CD14, a well-known GPI-anchored co-receptor for TLRs. CD14 is required for all biglycan-mediated TLR2/4 dependent inflammatory signaling pathways in macrophages. By binding to CD14 and choosing different TLR signaling branches, biglycan induced TNF-α and CCL2 via TLR2/4, HSP70 through TLR2, and CCL5 via TLR4. Mechanistically, biglycan evoked phosphorylation and subsequent nuclear translocation of p38, p44/42, and NF-κB, and these effects were due to a specific, high-affinity interaction between biglycan protein core and CD14. Finally, we provide proof-of-principle for the requirement of CD14, by transiently overexpressing biglycan in a mouse model of renal ischemia/reperfusion injury performed in Cd14-/- mice. Lack of Cd14 prevented biglycan-mediated cytokine expression, recruitment of macrophages, M1 macrophage polarization as well as mitigated the tubular damage and serum creatinine levels, thereby improving renal function. Thus, CD14 inhibition could lead to the reduction in the activation of biglycan-TLR2/4 signaling pathways and could be a novel therapeutic approach in inflammatory kidney diseases.


Subject(s)
Biglycan/pharmacology , Kidney/drug effects , Lipopolysaccharide Receptors/genetics , Macrophages/drug effects , Reperfusion Injury/genetics , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics , Animals , Biglycan/immunology , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Chemokine CCL5/genetics , Chemokine CCL5/immunology , Extracellular Matrix/chemistry , Extracellular Matrix/immunology , Gene Expression Regulation , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/immunology , Humans , Inflammation , Kidney/immunology , Kidney/pathology , Ligands , Lipopolysaccharide Receptors/deficiency , Lipopolysaccharide Receptors/immunology , Macrophages/immunology , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation/drug effects , Protein Binding , Reperfusion Injury/immunology , Reperfusion Injury/pathology , Signal Transduction , Toll-Like Receptor 2/deficiency , Toll-Like Receptor 2/immunology , Toll-Like Receptor 4/deficiency , Toll-Like Receptor 4/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/immunology
3.
PLoS One ; 13(11): e0206217, 2018.
Article in English | MEDLINE | ID: mdl-30485272

ABSTRACT

OBJECTIVE: CD14 is a monocyte/macrophage pattern-recognition receptor that modulates innate inflammatory signaling. Soluble CD14 levels in knee OA synovial fluids are associated with symptoms and progression of disease. Here we investigate the role of this receptor in development of OA using a murine joint injury model of disease. METHODS: 10-week-old Male C57BL/6 (WT) and CD14-deficient (CD14-/-) mice underwent destabilization of the medial meniscus (DMM) surgery to induce OA. Joint histopathology was used to examine cartilage damage, and microCT to evaluate subchondral bone (SCB) remodeling at 6 and 19 weeks after surgery. Synovial and fat pad expression of macrophage markers (F4/80, CD11c, CD68, iNOS, CCR7, CD163 and CD206) was assessed by flow cytometry and droplet digital (dd)PCR. Changes in locomotive activity indicative of joint pain were evaluated longitudinally up to 16 weeks by automated behavioral analysis. RESULTS: Early cartilage damage scores 6 weeks post-DMM were similar in both strains (Mean score ±SEM WT: 4.667±1.38, CD14-/-: 4.6±0.6), but at 19 weeks were less severe in CD14-/- (6.0±0.46) than in WT mice (13.44±2.5, p = 0.0002). CD14-/- mice were protected from both age-related and post-surgical changes in SCB mineral density and trabecular thickness. In addition, CD14-/- mice were protected from decreases in climbing activity (p = 0.015 vs. WT, 8 weeks) observed after DMM. Changes in synovial/fat pad expression of CCR7, a marker of M1 macrophages, were slightly reduced post-DMM in the absence of CD14, while expression of CD68 (pan-macrophage marker) and CD163 (M2 marker) were unchanged. CONCLUSION: CD14 plays an important role in progression of structural and functional features of OA in the DMM model, and may provide a new target for therapeutic development.


Subject(s)
Joints/pathology , Joints/physiopathology , Lipopolysaccharide Receptors/deficiency , Osteoarthritis/metabolism , Osteoarthritis/pathology , Receptors, Pattern Recognition/deficiency , Animals , Cartilage/pathology , Disease Models, Animal , Gene Expression Regulation , Joints/diagnostic imaging , Joints/surgery , Lipopolysaccharide Receptors/metabolism , Macrophages/metabolism , Macrophages/pathology , Male , Menisci, Tibial/pathology , Menisci, Tibial/physiopathology , Mice, Inbred C57BL , Osteoarthritis/diagnostic imaging , Osteoarthritis/surgery , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Pattern Recognition/metabolism , X-Ray Microtomography
4.
Sci Rep ; 8(1): 719, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29335601

ABSTRACT

The TLR4 co-receptor CD14 was identified as an IBD candidate gene. Here, its influence on the intestinal barrier was addressed utilizing E. coli Nissle (EcN), which induces severe inflammation in germfree TLR4-/- mice. After monoassociation, EcN was detected in spleens and livers of TLR4-/- and CD14-/- but not wildtype mice. Barrier impairment was characterized by increased apoptosis and decreased epithelial junction (EJ) expression and was reversed by TLR2 stimulation in CD14-/- mice. Bone marrow (BM) transplantation revealed contribution of hematopoietic and non-hematopoietic cells towards intestinal homeostasis. EcN inoculated WT mice showed B cell activation, CD14-/- and TLR4-/- mice cytotoxic T cell and impaired B cell responses. The latter was characterized by absence of B cells in TLR4-/- mice, decreased levels of EcN induced immunoglobulins and downregulation of their transporter pIgR. EcN colonization of mice with genetically or antibody induced impaired B cell response resulted in dissemination of EcN and downregulation of EJ. BM chimeras indicated that CD14 originating from radiation resistant cells is sufficient to restore EJ-function. Overall, CD14/TLR4 signalling seems to be critical for intestinal barrier function and for the crosstalk between B cells and the epithelium, underlining that CD14 serves as a protective modulator of intestinal homeostasis.


Subject(s)
B-Lymphocytes/physiology , Bacterial Adhesion , Cell Communication , Epithelial Cells/physiology , Escherichia coli/physiology , Host-Pathogen Interactions , Lipopolysaccharide Receptors/metabolism , Animals , Lipopolysaccharide Receptors/deficiency , Mice , Mice, Knockout , Toll-Like Receptor 4/deficiency , Toll-Like Receptor 4/metabolism
5.
J Neural Eng ; 15(2): 025002, 2018 04.
Article in English | MEDLINE | ID: mdl-29219114

ABSTRACT

OBJECTIVE: Neuroinflammatory mechanisms are hypothesized to contribute to intracortical microelectrode failures. The cluster of differentiation 14 (CD14) molecule is an innate immunity receptor involved in the recognition of pathogens and tissue damage to promote inflammation. The goal of the study was to investigate the effect of CD14 inhibition on intracortical microelectrode recording performance and tissue integration. APPROACH: Mice implanted with intracortical microelectrodes in the motor cortex underwent electrophysiological characterization for 16 weeks, followed by endpoint histology. Three conditions were examined: (1) wildtype control mice, (2) knockout mice lacking CD14, and (3) wildtype control mice administered a small molecule inhibitor to CD14 called IAXO-101. MAIN RESULTS: The CD14 knockout mice exhibited acute but not chronic improvements in intracortical microelectrode performance without significant differences in endpoint histology. Mice receiving IAXO-101 exhibited significant improvements in recording performance over the entire 16 week duration without significant differences in endpoint histology. SIGNIFICANCE: Full removal of CD14 is beneficial at acute time ranges, but limited CD14 signaling is beneficial at chronic time ranges. Innate immunity receptor inhibition strategies have the potential to improve long-term intracortical microelectrode performance.


Subject(s)
Cell Differentiation/physiology , Electrodes, Implanted , Immunity, Innate/physiology , Lipopolysaccharide Receptors/antagonists & inhibitors , Motor Cortex/physiology , Neurons/physiology , Animals , Cell Differentiation/drug effects , Electrodes, Implanted/trends , Immunity, Innate/drug effects , Lipopolysaccharide Receptors/deficiency , Lipopolysaccharide Receptors/metabolism , Mice , Mice, Knockout , Microelectrodes/trends , Motor Cortex/cytology , Motor Cortex/drug effects , Neurons/drug effects
6.
Alcohol Clin Exp Res ; 41(3): 516-530, 2017 03.
Article in English | MEDLINE | ID: mdl-28146272

ABSTRACT

BACKGROUND: Molecular and behavioral studies support a role for innate immune proinflammatory pathways in mediating the effects of alcohol. Increased levels of Toll-like receptors (TLRs) have been observed in animal models of alcohol consumption and in human alcoholics, and many of these TLRs signal via the MyD88-dependent pathway. We hypothesized that this pathway is involved in alcohol drinking and examined some of its key signaling components. METHODS: Different ethanol (EtOH)-drinking paradigms were studied in male and female control C57BL/6J mice versus mice lacking CD14, TLR2, TLR4 (C57BL/10ScN), or MyD88. We studied continuous and intermittent access 2-bottle choice (2BC) and 1-bottle and 2BC drinking-in-the-dark (DID) tests as well as preference for saccharin, quinine, and NaCl. RESULTS: In the 2BC continuous access test, EtOH intake decreased in male TLR2 knockout (KO) mice, and we previously reported reduced 2BC drinking in male and female CD14 KO mice. In the intermittent access 2BC test, EtOH intake decreased in CD14 KO male and female mice, whereas drinking increased in MyD88 KO male mice. In the 2BC-DID test, EtOH drinking decreased in male and female mice lacking TLR2, whereas drinking increased in MyD88 KO male mice. In the 1-bottle DID test, EtOH intake decreased in female TLR2 KO mice. TLR2 KO and CD14 KO mice did not differ in saccharin preference but showed reduced preference for NaCl. MyD88 KO mice showed a slight reduction in preference for saccharin. CONCLUSIONS: Deletion of key components of the MyD88-dependent pathway produced differential effects on EtOH intake by decreasing (TLR2 KO and CD14 KO) or increasing (MyD88 KO) drinking, while deletion of TLR4 had no effect. Some of the drinking effects depended on the sex of the mice and/or the EtOH-drinking model.


Subject(s)
Alcohol Drinking/metabolism , Ethanol/administration & dosage , Lipopolysaccharide Receptors/deficiency , Myeloid Differentiation Factor 88/deficiency , Toll-Like Receptor 2/deficiency , Toll-Like Receptor 4/deficiency , Animals , Choice Behavior/drug effects , Choice Behavior/physiology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Sex Factors
7.
Alcohol Clin Exp Res ; 41(3): 531-540, 2017 03.
Article in English | MEDLINE | ID: mdl-28160299

ABSTRACT

BACKGROUND: In our companion article, we examined the role of MyD88-dependent signaling in ethanol (EtOH) consumption in mice lacking key components of this inflammatory pathway and observed differential effects on drinking. Here, we studied the role of these same signaling components in the acute sedative, intoxicating, and physiological effects of EtOH. Toll-like receptor 4 (TLR4) has been reported to strongly reduce the duration of EtOH-induced sedation, although most studies do not support its direct involvement in EtOH consumption. We examined TLR4 and other MyD88 pathway molecules to determine signaling specificity in acute EtOH-related behaviors. We also studied other GABAergic sedatives to gauge the EtOH specificity and potential role for GABA in EtOH's sedative and intoxicating effects in the mutant mice. METHODS: Loss of righting reflex (LORR) and recovery from motor incoordination were studied following acute injection of EtOH or other sedative drugs in male and female control C57BL/6J mice versus mice lacking CD14, TLR2, TLR4 (C57BL/10ScN), or MyD88. We also examined EtOH-induced hypothermia and blood EtOH clearance in these mice. RESULTS: Male and female mice lacking TLR4 or MyD88 showed reduced duration of EtOH-induced LORR and faster recovery from EtOH-induced motor incoordination in the rotarod test. MyD88 knockout mice had slightly faster recovery from EtOH-induced hypothermia compared to control mice. None of the mutants differed from control mice in the rate of blood EtOH clearance. All of the mutants showed similar decreases in the duration of gaboxadol-induced LORR, but only mice lacking TLR4 were less sensitive to the sedative effects of pentobarbital. Faster recovery from diazepam-induced motor impairment was observed in CD14, TLR4, and MyD88 null mice of both sexes. CONCLUSIONS: TLR4 and MyD88 were key mediators of the sedative and intoxicating effects of EtOH and GABAergic sedatives, indicating a strong influence of TLR4-MyD88 signaling on GABAergic function. Despite the involvement of TLR4 in EtOH's acute behaviors, it did not regulate EtOH consumption in any drinking model as shown in our companion article. Collectively, our studies demonstrate differential effects of TLR-MyD88 components in the acute versus chronic actions of EtOH.


Subject(s)
Ethanol/administration & dosage , Lipopolysaccharide Receptors/deficiency , Myeloid Differentiation Factor 88/deficiency , Reflex, Righting/drug effects , Toll-Like Receptor 2/deficiency , Toll-Like Receptor 4/deficiency , Animals , Female , GABA Modulators/administration & dosage , Hypnotics and Sedatives/administration & dosage , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Reflex, Righting/physiology , Rotarod Performance Test/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...