Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.456
Filter
1.
Poult Sci ; 103(5): 103621, 2024 May.
Article in English | MEDLINE | ID: mdl-38507829

ABSTRACT

In the large poultry industry, where farmed chickens are fed at high density, the prevalence of pathogens and repeated vaccinations induce immune stress, which can significantly decrease the production performance and increase the mortality. This study was designed to shed light on the molecular mechanisms and metabolic pathways involved in immune stress through an in-depth analysis of transcriptomic and metabolomic changes in jejunum samples from the broilers. Two groups were established for the experiment: a control group and an LPS group. LPS group received an intraperitoneal injection of LPS solution at a dose of 250 µg per kg at 12, 14, 33, and 35 d of age, whereas the control group received a sterile saline injection. The severity of immune stress was assessed using the Disease Activity Index. A jejunal section was collected to measure the intestinal villus structure (villus length and crypt depth). RNA sequencing and metabolomics data analysis were conducted to reveal differentially expressed genes and metabolites. The results showed that the DAI index was increased and jejunal villus height/crypt depth was decreased in the LPS group. A total of 96 differentially expressed genes and 672 differentially accumulating metabolites were detected in the jejunum by LPS group compared to the control group. The comprehensive analysis of metabolomic and transcriptomic data showed that 23 pathways were enriched in the jejunum and that appetite, nutrient absorption, energy and substance metabolism disorders and ferroptosis play an important role in immune stress in broilers. Our findings provide a deeper understanding of the molecular and metabolic responses in broilers to LPS-induced immune stress, suggesting potential targets for therapeutic strategies to improve the production performance of broiler chickens.


Subject(s)
Chickens , Jejunum , Stress, Physiological , Transcriptome , Animals , Chickens/physiology , Chickens/immunology , Chickens/genetics , Jejunum/metabolism , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/pharmacology , Poultry Diseases/immunology , Poultry Diseases/genetics , Poultry Diseases/metabolism , Metabolome , Male , Metabolomics , Gene Expression Profiling/veterinary
2.
Exp Physiol ; 109(5): 689-710, 2024 May.
Article in English | MEDLINE | ID: mdl-38466166

ABSTRACT

Endotoxin administration is commonly used to study the inflammatory response, and though traditionally given as a bolus injection, it can be administered as a continuous infusion over multiple hours. Several studies hypothesize that the latter better represents the prolonged and pronounced inflammation observed in conditions like sepsis. Yet very few experimental studies have administered endotoxin using both strategies, leaving significant gaps in determining the underlying mechanisms responsible for their differing immune responses. We used mathematical modelling to analyse cytokine data from two studies administering a 2 ng kg-1 dose of endotoxin, one as a bolus and the other as a continuous infusion over 4 h. Using our model, we simulated the dynamics of mean and subject-specific cytokine responses as well as the response to long-term endotoxin administration. Cytokine measurements revealed that the bolus injection led to significantly higher peaks for interleukin (IL)-8, while IL-10 reaches higher peaks during continuous administration. Moreover, the peak timing of all measured cytokines occurred later with continuous infusion. We identified three model parameters that significantly differed between the two administration methods. Monocyte activation of IL-10 was greater during the continuous infusion, while tumour necrosis factor α $ {\alpha} $ and IL-8 recovery rates were faster for the bolus injection. This suggests that a continuous infusion elicits a stronger, longer-lasting systemic reaction through increased stimulation of monocyte anti-inflammatory mediator production and decreased recovery of pro-inflammatory catalysts. Furthermore, the continuous infusion model exhibited prolonged inflammation with recurrent peaks resolving within 2 days during long-term (20-32 h) endotoxin administration.


Subject(s)
Cytokines , Endotoxins , Humans , Endotoxins/administration & dosage , Endotoxins/immunology , Cytokines/metabolism , Male , Inflammation/immunology , Interleukin-10/metabolism , Models, Theoretical , Infusions, Intravenous , Monocytes/immunology , Monocytes/drug effects , Interleukin-8/metabolism , Tumor Necrosis Factor-alpha/metabolism , Adult , Female , Lipopolysaccharides/administration & dosage
3.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902049

ABSTRACT

Lipopolysaccharide (LPS), an endotoxin, induces systemic inflammation by injection and is thought to be a causative agent of chronic inflammatory diseases, including type 2 diabetes mellitus (T2DM). However, our previous studies found that oral LPS administration does not exacerbate T2DM conditions in KK/Ay mice, which is the opposite of the response from LPS injection. Therefore, this study aims to confirm that oral LPS administration does not aggravate T2DM and to investigate the possible mechanisms. In this study, KK/Ay mice with T2DM were orally administered LPS (1 mg/kg BW/day) for 8 weeks, and blood glucose parameters before and after oral administration were compared. Abnormal glucose tolerance, insulin resistance progression, and progression of T2DM symptoms were suppressed by oral LPS administration. Furthermore, the expressions of factors involved in insulin signaling, such as insulin receptor, insulin receptor substrate 1, thymoma viral proto-oncogene, and glucose transporter type 4, were upregulated in the adipose tissues of KK/Ay mice, where this effect was observed. For the first time, oral LPS administration induces the expression of adiponectin in adipose tissues, which is involved in the increased expression of these molecules. Briefly, oral LPS administration may prevent T2DM by inducing an increase in the expressions of insulin signaling-related factors based on adiponectin production in adipose tissues.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Lipopolysaccharides , Animals , Mice , Adiponectin/metabolism , Administration, Oral , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Insulin/metabolism , Insulin Resistance/physiology , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/pharmacology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/therapy
4.
Int J Mol Sci ; 23(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35628136

ABSTRACT

LPS induces inflammatory cytokines, including IL-1ß, IL-6, and TNF-α, and causes an inflammatory response. The development of small molecules that have suppressive effect on those inflammatory cytokines is a desirable strategy for the treatment of inflammatory diseases. We synthesized 12 novel compounds with 4-amino-N-(4-(benzo[d]oxazol-2-ylamino)phenyl)butanamide moiety and evaluated their biological activities. Among them, 4 compounds (compound 5d, 5c, 5f, 5m and synthetic intermediate 4d) showed potent inhibition activities on IL-1ß and IL-6 mRNA expression in vitro. Further, in vivo activity was evaluated with two compounds (5f and 4d) and mRNA levels of IL-1ß, IL-6, and TNF-α were significantly decreased without hepatotoxicity. From the in vivo and in vitro test results, we confirmed that our synthesized compounds are effective for suppression of representative inflammatory cytokines.


Subject(s)
Benzoxazoles , Inflammation , Interleukin-6 , RNA, Messenger , Tumor Necrosis Factor-alpha , Benzoxazoles/pharmacology , Cytokines/genetics , Cytokines/metabolism , Humans , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides/administration & dosage , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
5.
Int J Mol Sci ; 23(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35628259

ABSTRACT

BAM15 (a mitochondrial uncoupling agent) was tested on cecal ligation and puncture (CLP) sepsis mice with in vitro experiments. BAM15 attenuated sepsis as indicated by survival, organ histology (kidneys and livers), spleen apoptosis (activated caspase 3), brain injury (SHIRPA score, serum s100ß, serum miR370-3p, brain miR370-3p, brain TNF-α, and apoptosis), systemic inflammation (cytokines, cell-free DNA, endotoxemia, and bacteremia), and blood-brain barrier (BBB) damage (Evan's blue dye and the presence of green fluorescent E. coli in brain after an oral administration). In parallel, brain miR arrays demonstrated miR370-3p at 24 h but not 120 h post-CLP, which was correlated with metabolic pathways. Either lipopolysaccharide (LPS) or TNF-α upregulated miR370-3p in PC12 (neuron cells). An activation by sepsis factors (LPS, TNF-α, or miR370-3p transfection) damaged mitochondria (fluorescent color staining) and reduced cell ATP, possibly through profound mitochondrial activity (extracellular flux analysis) that was attenuated by BAM15. In bone-marrow-derived macrophages, LPS caused mitochondrial injury, decreased cell ATP, enhanced glycolysis activity (extracellular flux analysis), and induced pro-inflammatory macrophages (iNOS and IL-1ß) which were neutralized by BAM15. In conclusion, BAM15 attenuated sepsis through decreased mitochondrial damage, reduced neuronal miR370-3p upregulation, and induced anti-inflammatory macrophages. BAM15 is proposed to be used as an adjuvant therapy against sepsis hyperinflammation.


Subject(s)
Brain Diseases , MicroRNAs , Sepsis , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Animals , Brain Diseases/genetics , Brain Diseases/metabolism , Lipopolysaccharides/administration & dosage , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Punctures , Sepsis/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
6.
Eur J Med Res ; 27(1): 46, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35317842

ABSTRACT

BACKGROUND: Long noncoding RNA (lncRNA)-regulated mechanism in acute lung injury (ALI) has attracted special interests in study researches. We planned to disclose whether KCNQ1 overlapping transcript 1 (Kcnq1ot1) is involved in ALI and its mechanism. METHODS: The lipopolysaccharide (LPS)-induced ALI model was established in mice. Kcnq1ot1, microRNA (miR)-7a-5p and Reticulon 3 (Rtn3) levels were measured in lung tissues of mice. The vector that changed Kcnq1ot1, miR-7a-5p and Rtn3 expression was injected into LPS-treated mice, and pathological damage, fibrosis, apoptosis and inflammatory response were subsequently examined in lung tissues. The relation between Kcnq1ot1 and miR-7a-5p, and that between miR-7a-5p and Rtn3 were identified. RESULTS: Kcnq1ot1 and Rtn3 expression increased while miR-7a-5p expression decreased in LPS-treated mice. Reduced Kcnq1ot1 or elevated miR-7a-5p alleviated pathological damage, fibrosis, apoptosis and inflammatory response in ALI mice, while overexpressed Rtn3 worsened ALI in mice. Downregulation of Rtn3 reversed the exacerbation of miR-7a-5p downregulation in ALI mice. Kcnq1ot1 competitively bound to miR-7a-5p and miR-7a-5p negatively mediated Rtn3 expression. CONCLUSION: Our experiments evidence that silencing Kcnq1ot1 upregulates miR-7a-5p to suppress Rtn3 expression, thereby diminishing LPS-induced ALI.


Subject(s)
Acute Lung Injury/genetics , MicroRNAs/genetics , RNA, Long Noncoding/physiology , Animals , Lipopolysaccharides/administration & dosage , Male , Mice , Mice, Inbred BALB C
7.
Behav Brain Res ; 423: 113776, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35120930

ABSTRACT

High-fat diet (HFD) consumption has been related to metabolic alterations, such as obesity and cardiovascular problems, and has pronounced effects on brain plasticity and memory impairment. HFD exposure has a pro-inflammatory effect associated with microglial cell modifications in the hippocampus, a region involved in the working memory process. Immune tolerance can protect from inflammation in periphery induced by HFD consumption, when the immune response is desensitized in development period with lipopolysaccharide (LPS) exposure, maybe this previously state can change the course of the diseases associated to HFDs but is not known if can protect the hippocampus's inflammatory response. In the present study, male mice were injected with LPS (100 µg.kg-1 body weight) on postnatal day 3 and fed with HFD for 16 weeks after weaning. Ours results indicated that postnatal exposure to LPS in the early postnatal developmental stage combined with HFD consumption prevented glycemia, insulin, HOMA-IR, microglial process, and increased pro-inflammatory cytokines mRNA expression, without changes in body weight gain and spatial working memory with respect vehicle + HFD group. These findings suggest that HFD consumption after postnatal LPS exposure induces hippocampal immune tolerance, without prevention in spatial working memory impairment on male mice.


Subject(s)
Diet, High-Fat , Hippocampus/immunology , Immune Tolerance , Lipopolysaccharides/pharmacology , Memory Disorders/immunology , Animals , Animals, Newborn , Lipopolysaccharides/administration & dosage , Male , Memory, Short-Term/physiology , Mice , Mice, Inbred C57BL , Spatial Memory/physiology
8.
Commun Biol ; 5(1): 102, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35091696

ABSTRACT

Emerging studies suggest that monocytes can be trained by bacterial endotoxin to adopt distinct memory states ranging from low-grade inflammation to immune exhaustion. While low-grade inflammation may contribute to the pathogenesis of chronic diseases, exhausted monocytes with pathogenic and immune-suppressive characteristics may underlie the pathogenesis of polymicrobial sepsis including COVID-19. However, detailed processes by which the dynamic adaption of monocytes occur remain poorly understood. Here we exposed murine bone-marrow derived monocytes to chronic lipopolysaccharide (LPS) stimulation at low-dose or high-dose, as well as a PBS control. The cells were profiled for genome-wide H3K27ac modification and gene expression. The gene expression of TRAM-deficient and IRAK-M-deficient monocytes with LPS exposure was also analyzed. We discover that low-grade inflammation preferentially utilizes the TRAM-dependent pathway of TLR4 signaling, and induces the expression of interferon response genes. In contrast, high dose LPS uniquely upregulates exhaustion signatures with metabolic and proliferative pathways. The extensive differences in the epigenomic landscape between low-dose and high-dose conditions suggest the importance of epigenetic regulations in driving differential responses. Our data provide potential targets for future mechanistic or therapeutic studies.


Subject(s)
Epigenomics , Inflammation/genetics , Lipopolysaccharides/pharmacology , Monocytes/drug effects , Transcriptome , Animals , COVID-19/virology , Dose-Response Relationship, Drug , Inflammation/immunology , Lipopolysaccharides/administration & dosage , Mice , SARS-CoV-2/isolation & purification
9.
PLoS Biol ; 20(1): e3001526, 2022 01.
Article in English | MEDLINE | ID: mdl-35085235

ABSTRACT

The NKCC1 ion transporter contributes to the pathophysiology of common neurological disorders, but its function in microglia, the main inflammatory cells of the brain, has remained unclear to date. Therefore, we generated a novel transgenic mouse line in which microglial NKCC1 was deleted. We show that microglial NKCC1 shapes both baseline and reactive microglia morphology, process recruitment to the site of injury, and adaptation to changes in cellular volume in a cell-autonomous manner via regulating membrane conductance. In addition, microglial NKCC1 deficiency results in NLRP3 inflammasome priming and increased production of interleukin-1ß (IL-1ß), rendering microglia prone to exaggerated inflammatory responses. In line with this, central (intracortical) administration of the NKCC1 blocker, bumetanide, potentiated intracortical lipopolysaccharide (LPS)-induced cytokine levels. In contrast, systemic bumetanide application decreased inflammation in the brain. Microglial NKCC1 KO animals exposed to experimental stroke showed significantly increased brain injury, inflammation, cerebral edema and worse neurological outcome. Thus, NKCC1 emerges as an important player in controlling microglial ion homeostasis and inflammatory responses through which microglia modulate brain injury. The contribution of microglia to central NKCC1 actions is likely to be relevant for common neurological disorders.


Subject(s)
Brain Edema/genetics , Brain Injuries/genetics , Microglia/metabolism , Solute Carrier Family 12, Member 2/genetics , Stroke/genetics , Animals , Brain Edema/chemically induced , Brain Edema/metabolism , Brain Edema/pathology , Brain Injuries/chemically induced , Brain Injuries/metabolism , Brain Injuries/pathology , Bumetanide/pharmacology , Embryo, Mammalian , Gene Expression Regulation , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Inflammasomes/drug effects , Inflammasomes/metabolism , Inflammation , Injections, Intraventricular , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/administration & dosage , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/drug effects , Microglia/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Phenotype , Solute Carrier Family 12, Member 2/deficiency , Stroke/chemically induced , Stroke/metabolism , Stroke/pathology
10.
Aging (Albany NY) ; 14(1): 410-429, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996049

ABSTRACT

Injury and dysfunction of endothelial cells (ECs) are closely related to the pathogenesis of steroid-induced osteonecrosis of the femoral head (ONFH), while MicroRNAs (miRNAs) play an essential role in the processes. Extracorporeal shockwave treatment (ESWT) has been used in the non-invasive treatment of various diseases including musculoskeletal and vascular disorders. In particular, ESWT with low energy levels showed a beneficial effect in ischemic tissues. However, there has been no comprehensive assessment of the effect of ESWT and miRNAs on steroid-induced ONFH. In the present study, we investigated the role and mechanism of ESWT and miRNAs both in vitro and in vivo. Using a steroid-induced ONFH rat model, we found that ESWT significantly enhances proliferation and angiogenesis as well as alleviates apoptosis. In two types of ECs, ESWT can promote cell proliferation and migration, enhance angiogenesis, and inhibit apoptosis. Notably, our study demonstrates that miR-135b is downregulated and modulated forkhead box protein O1 (FOXO1) in ECs treated with dexamethasone. Remarkably, both miR-135b knockdown and FOXO1 overexpression reversed the beneficial effect of ESWT on ECs. Additionally, our data suggest that ESWT activates the FOXO1-related pathway to impact proliferation, apoptosis, and angiogenesis. Taken together, this study indicates that ESWT relieves endothelial injury and dysfunction in steroid-induced ONFH via miR-135b targeting FOXO1.


Subject(s)
Extracorporeal Shockwave Therapy , Femur Head Necrosis/chemically induced , Femur Head Necrosis/therapy , Methylprednisolone/toxicity , MicroRNAs/metabolism , Nerve Tissue Proteins/metabolism , Angiogenesis Inducing Agents , Animals , Cell Proliferation , Cell Survival , Endothelial Cells/drug effects , Femur Head/pathology , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Gene Expression Regulation/drug effects , Glucocorticoids/administration & dosage , Glucocorticoids/toxicity , HEK293 Cells , Humans , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/toxicity , Male , Methylprednisolone/administration & dosage , MicroRNAs/genetics , Nerve Tissue Proteins/genetics , Random Allocation , Rats
11.
Neuropharmacology ; 207: 108950, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35074304

ABSTRACT

Anxiety is a common psychological disease which can induce severe social burdens. Searching methods that prevent the onset of anxiety is of great significance for ameliorating the social and individual problems induced by this type of disease. In this study, we investigated how innate immune pre-stimulation influences the anxiety-like behaviors in chronically stressed mice. Our results showed that a single injection of an innate immune stimulant lipopolysaccharide (LPS) at the dose of 50, 100, and 500 µg/kg 1 day before stress exposure prevented chronic social defeat stress (CSDS)-induced anxiety-like behaviors in mice. A single injection of LPS (100 µg/kg) 5 days before stress exposure produced similar preventive effects on CSDS-induced anxiety-like behaviors, while similar effects were not observed at the condition of 10-days interval between LPS injection and stress exposure. A second LPS injection 10 days after the first LPS injection or a 4 × LPS injection 10 days before stress exposure also prevented CSDS-induced anxiety-like behaviors. Moreover, a single injection of LPS (100 µg/kg) 1 day before stress exposure prevented the production of pro-inflammatory cytokines in the hippocampus and prefrontal cortex of CSDS mice. Suppression of innate immune stimulation by minocycline pretreatment simultaneously abrogated the preventive effect of LPS pre-injection (100 µg/kg) on CSDS-induced anxiety-like behaviors and pro-inflammatory cytokine production in the brain. Our results demonstrated that the pre-stimulation of the innate immune system can prevent the development of anxiety-like behaviors and the progression of the neuroinflammatory responses in the brain in chronically stressed mice.


Subject(s)
Anxiety/immunology , Anxiety/prevention & control , Hippocampus/immunology , Immunity, Innate/drug effects , Lipopolysaccharides/pharmacology , Prefrontal Cortex/immunology , Stress, Psychological , Animals , Anxiety/etiology , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cytokines , Disease Models, Animal , Hippocampus/drug effects , Lipopolysaccharides/administration & dosage , Mice , Prefrontal Cortex/drug effects , Stress, Psychological/complications , Stress, Psychological/immunology , Stress, Psychological/prevention & control
12.
Shock ; 57(2): 212-220, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34172615

ABSTRACT

OBJECTIVE: Ginsenoside Rd (GSRd) displays a variety of pharmacological effects. However, the underlying role in acute lung injury (ALI) is not clear. In this study, the protective effect of GSRd on lipopolysaccharide (LPS)-induced ALI is investigated to explore the potential mechanisms. METHODS: GSRd-target-ALI-related gene set was constructed. And bioinformatics tools were used to discover the potential mechanism. We observed the survival of subjects for 72 h. In addition, male BALB/c mice were intraperitoneal injected with GSRd (25 and 50 mg/kg) after received one intratracheal instillation of LPS. Inflammatory changes, oxidative stress, and phosphorylation were assessed to study the biological effects. RESULTS: A total of 245 interaction genes were collected. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were enriched in immune-inflammatory system. Among them, PI3K-Akt signaling pathway was the highest-ranked pathway of inflammatory response. In vivo study, it was found that GSRd improved survival in endotoxemic mice and inhibited the major characteristic of ALI. And the p-PI3K and p-Akt expression was significantly decreased by GSRd treatment. CONCLUSION: GSRd could protect mice against LPS-induced ALI effectively by inhibiting the PI3K-Akt signaling pathway.


Subject(s)
Acute Lung Injury/drug therapy , Ginsenosides/therapeutic use , Acute Lung Injury/chemically induced , Acute Lung Injury/mortality , Animals , Ginsenosides/pharmacology , Lipopolysaccharides/administration & dosage , Male , Mice , Mice, Inbred BALB C , Phosphatidylinositol 3-Kinases/drug effects , Signal Transduction/drug effects , Survival Rate
13.
Behav Brain Res ; 418: 113645, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34743949

ABSTRACT

Neuroinflammation has been implicated in cognitive dysfunction and the occurrence of depression in neurodegenerative diseases. Brain-derived neurotrophic factor (BDNF) is believed to be involved with the benefits of exercise training in boosting memory and learning processes and antidepressant therapies. This study aimed to investigate the effect of forced treadmill exercise on hippocampal BDNF expression levels, depression symptoms, tactile memory and working memory in lipopolysaccharide (LPS)-treated rats. For this purpose, 40 male Wistar rats received 0.25 mg/kg of LPS or saline intraperitoneally for 9 consecutive days before exercise. They again received a single injection of 0.5 mg/kg of LPS or saline on days 20 and 41 after exercise. Exercise groups had to run on a motorized treadmill 5 days a week for 8 weeks. Following the last exercise training session, forced swim test (FST), Y maze and novel object recognition (NOR) task were performed. Finally, the hippocampus of rats was removed and used for determination of BDNF expression levels by real-time polymerase chain reaction (real-time PCR). The data showed that LPS decreased BDNF expression levels, Y maze score, and recognition index in NOR and increased immobility time in FST (p < 0.05). In contrast, forced treadmill exercise increased BDNF expression levels and improved the percentage of spontaneous alternation, recognition index, and immobility time in LPS-treated rats (p < 0.05). There was a significant correlation between BDNF expression levels with immobility time and recognition index (p < 0.05) but not with the percentage of spontaneous alternation (p > 0.05). The findings suggest that forced treadmill exercise may protect the brain of LPS-treated rats by improving the symptoms of depression and cognitive function through its effect on BDNF expression levels.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Depression/physiopathology , Exercise Test , Lipopolysaccharides , Memory, Short-Term/drug effects , Animals , Cognition/physiology , Hippocampus/metabolism , Injections, Intraperitoneal , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/pharmacology , Male , Maze Learning/physiology , Rats , Rats, Wistar
14.
Bull Exp Biol Med ; 172(2): 113-116, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34855093

ABSTRACT

Changes in the Shaganin lymphocyte index (ratio of the number of lymphocytes to segmented neutrophils) in the peripheral blood of rats after intraperitoneal administration of LPS (100 µg/kg) at the end of a single stress exposure in a model of 24-h restraint stress were studied. The lymphocyte index was analyzed 3 h later, on the 1st and 8th days after the stress load. Immobilization was accompanied by a decrease in this parameter 3 h after exposure. One day after the stress load, an increase in the lymphocyte index was noted, which remained on the 8th day of observation. LPS injection did not affect the changes in this parameter caused by 24-h immobilization on the 1st and 8th days of the study, but prevented a pronounced increase in the lymphocyte index on the 1st day after the stress load. The data obtained expand the existing scientific understanding of the specificity of the involvement of immunomodulatory substances in the implementation of adaptive-compensatory processes in mammals under conditions of emotional stress.


Subject(s)
Lipopolysaccharides/administration & dosage , Lymphocytes/pathology , Stress, Psychological/blood , Animals , Immobilization/physiology , Immobilization/psychology , Injections, Intraperitoneal , Leukocyte Count , Lymphocyte Count , Neutrophils/pathology , Rats , Rats, Wistar , Stress, Psychological/chemically induced , Stress, Psychological/immunology
15.
Molecules ; 26(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34885991

ABSTRACT

Inflammation caused by bacterial lipopolysaccharide (LPS) disrupts epithelial homeostasis and threatens both human and animal health. Therefore, the discovery and development of new anti-inflammatory drugs is urgently required. Plant-derived essential oils (EOs) have good antioxidant and anti-inflammatory activities. Thus, this study aims to screen and evaluate the effects of cinnamon oil and eucalyptus oil on anti-inflammatory activities. The associated evaluation indicators include body weight gain, visceral edema coefficient, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), nitrogen monoxide (NO), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), Urea, Crea, ALT, TLR4, MyD88, NF-κB, IκB-α, iNOS, and Mn-SOD. In addition, tissue injury was determined by H&E staining. The results revealed that cinnamon oil and eucalyptus oil suppressed inflammation by decreasing SOD, TNF-α, and NF-κB levels. We also found that cinnamon oil increased the level of GSH-Px, MDA, and Mn-SOD, as well as the visceral edema coefficient of the kidney and liver. Altogether, these findings illustrated that cinnamon oil and eucalyptus oil exhibited wide antioxidant and anti-inflammatory activities against LPS-induced inflammation.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Cinnamomum zeylanicum/chemistry , Eucalyptus Oil/administration & dosage , Eucalyptus/chemistry , Lipopolysaccharides/adverse effects , Oils, Volatile/administration & dosage , Animals , Animals, Outbred Strains , Cytokines/blood , Female , Inflammation/blood , Inflammation/chemically induced , Inflammation/drug therapy , Lipopolysaccharides/administration & dosage , Male , Malondialdehyde/blood , Mice , Nitric Oxide/blood , Signal Transduction/drug effects , Superoxide Dismutase/blood , Treatment Outcome , Weight Gain/drug effects
16.
Bull Exp Biol Med ; 172(2): 175-179, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34853967

ABSTRACT

In 3-month bone marrow transplants of CBA mice from bone marrow donors receiving single injections of TLR-4 ligand (LPS) or NOD-2 ligand (muramyl dipeptide, MDP) 24 h before transplantation, an increase in the total number of MSCs (by 2.6 and 1.9 times, respectively), as well as a slight increase in the number of nuclear cells and the mass of bone capsules (by 1.3 and 1.2 times) were observed. After combined administration of MDР and LPS to donors, the total content of MSCs in the grafts was higher by 1.6 times in comparison with the total result of their isolated administration (and by 7.2 times in comparison with the control). At the same time, the concentration of osteogenic MSCs in the grafts of all groups was almost the same and corresponded to the control level. The number of nuclear cells and the mass of bone capsules of the grafts after combined administration of LPS and MDP were close (~80%) to the sum of the results of their isolated administration. These findings suggest that activation of the stromal tissue and the success of bone marrow transplantation depend on the intensity of innate immune responses. These data can be useful for the development of optimal methods of tissue transplantation.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine/administration & dosage , Bone Marrow Cells/drug effects , Bone Marrow Transplantation , Lipopolysaccharides/administration & dosage , Tissue Donors , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/physiology , Cell Count , Cell Proliferation/drug effects , Cells, Cultured , Drug Combinations , Lipopolysaccharides/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mice , Mice, Inbred CBA , Multipotent Stem Cells/cytology , Multipotent Stem Cells/drug effects , Nod2 Signaling Adaptor Protein/agonists , Toll-Like Receptor 4/agonists
17.
Cells ; 10(11)2021 11 05.
Article in English | MEDLINE | ID: mdl-34831270

ABSTRACT

Endotoxemia-activated tumor necrosis factor (TNFα)/nuclear factor kappa B (NFκB) signals result in acute on chronic inflammation-driven renal dysfunction in advanced cirrhosis. Systemic activation of peroxisome proliferator-activated receptor gamma (PPARγ) with pioglitazone can suppress inflammation-related splanchnic and pulmonary dysfunction in cirrhosis. This study explored the mechanism and effects of pioglitazone treatment on the abovementioned renal dysfunction in cirrhotic rats. Cirrhotic ascitic rats were induced with renal dysfunction by bile duct ligation (BDL). Then, 2 weeks of pioglitazone treatment (Pio, PPAR gamma agonist, 12 mg/kg/day, using the azert osmotic pump) was administered from the 6th week after BDL. Additionally, acute lipopolysaccharide (LPS, Escherichia coli 0111:B4; Sigma, 0.1 mg/kg b.w, i.p. dissolved in NaCl 0.9%) was used to induce acute renal dysfunction. Subsequently, various circulating, renal arterial and renal tissue pathogenic markers were measured. Cirrhotic BDL rats are characterized by decreased mean arterial pressure, increased cardiac output and portal venous pressure, reduced renal arterial blood flow (RABF), increased renal vascular resistance (RVR), increased relative renal weight/hydroxyproline, downregulated renal PPARγ expression, upregulated renal inflammatory markers (TNFα, NFκB, IL-6, MCP-1), increased adhesion molecules (VCAM-1 and ICAM-1), increased renal macrophages (M1, CD68), and progressive renal dysfunction (increasing serum and urinary levels of renal injury markers (lipocalin-2 and IL-18)). In particular, acute LPS administration induces acute on chronic renal dysfunction (increasing serum BUN/creatinine, increasing RVR and decreasing RABF) by increased TNFα-NFκB-mediated renal inflammatory markers as well as renal M1 macrophage infiltration. In comparison with the BDL+LPS group, chronic pioglitazone pre-treatment prevented LPS-induced renal pathogenic changes in the BDL-Pio+LPS group. Activation of systemic, renal vessel and renal tissue levels of PPARγ by chronic pioglitazone treatment has beneficial effects on the endotoxemia-related TNFα/NFκB-mediated acute and chronic renal inflammation in cirrhosis. This study revealed that normalization of renal and renal arterial levels of PPARγ effectively prevented LPS-induced acute and chronic renal dysfunction in cirrhotic ascitic rats.


Subject(s)
Ascites/complications , Endotoxemia/complications , Kidney/physiopathology , Liver Cirrhosis/complications , Pioglitazone/pharmacology , Acute Disease , Alanine Transaminase/blood , Animals , Ascites/blood , Bile Ducts/pathology , Bilirubin/blood , Blood Vessels/drug effects , Blood Vessels/pathology , Chronic Disease , Down-Regulation/drug effects , Endotoxemia/blood , Endotoxins/blood , Inflammation/blood , Inflammation/complications , Inflammation/pathology , Interleukin-6/blood , Kidney/drug effects , Ligation , Lipopolysaccharides/administration & dosage , Liver Cirrhosis/blood , Macrophages/drug effects , Macrophages/pathology , Male , NF-kappa B/metabolism , PPAR gamma/agonists , PPAR gamma/metabolism , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/blood , Vascular Resistance/drug effects
18.
Sci Rep ; 11(1): 22462, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34789790

ABSTRACT

We examined the relationship between zonulin and gastric motility in critical care patients and a translational mouse model of systemic inflammation. Gastric motility and haptoglobin (HP) 2 isoform quantification, proxy for zonulin, were examined in patients. Inflammation was triggered by lipopolysaccharide (LPS) injection in C57Bl/6 zonulin transgenic mouse (Ztm) and wildtype (WT) mice as controls, and gastro-duodenal transit was examined by fluorescein-isothiocyanate, 6 and 12 h after LPS-injection. Serum cytokines and zonulin protein levels, and zonulin gastric-duodenal mRNA expression were examined. Eight of 20 patients [14 years, IQR (12.25, 18)] developed gastric dysmotility and were HP2 isoform-producing. HP2 correlated with gastric dysmotility (r = - 0.51, CI - 0.81 to 0.003, p = 0.048). LPS injection induced a time-dependent increase in IL-6 and KC-Gro levels in all mice (p < 0.0001). Gastric dysmotility was reduced similarly in Ztm and WT mice in a time-dependent manner. Ztm had 16% faster duodenal motility than WT mice 6H post-LPS, p = 0.01. Zonulin mRNA expression by delta cycle threshold (dCT) was higher in the stomach (9.7, SD 1.4) than the duodenum (13.9, SD 1.4) 6H post-LPS, p = 0.04. Serum zonulin protein levels were higher in LPS-injected mice compared to vehicle-injected animals in a time-dependent manner. Zonulin correlated with gastric dysmotility in patients. A mouse model had time-dependent gastro-duodenal dysmotility after LPS-injection that paralleled zonulin mRNA expression and protein levels.


Subject(s)
Gastric Emptying/genetics , Gastrointestinal Transit/genetics , Haptoglobins/metabolism , Protein Precursors/blood , Sepsis/blood , Adolescent , Animals , Child , Cohort Studies , Cytokines/blood , Disease Models, Animal , Female , Gastric Mucosa/metabolism , Haptoglobins/genetics , Humans , Intestinal Mucosa/metabolism , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/adverse effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Precursors/genetics , Sepsis/chemically induced
19.
Neuropharmacology ; 200: 108816, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34599975

ABSTRACT

We recently reported that intraperitoneal injection of a low dose of lipopolysaccharide (LPS) prevents chronic stress-induced depression-like behaviors in mice. In this study, we reported that a single intranasal LPS administration (10 µg/mouse) one day prior to stress exposure produced prophylactic effects on chronic social defeat stress (CSDS)-induced depression-like behaviors, which was indicated by the reduction in social interaction time in the social interaction test and the decrease in immobility time in the tail suspension test and forced swimming test. The single intranasal LPS administration prior to stress exposure was also found to prevent CSDS-induced anxiety-like behaviors, including prevention of CSDS-induced decrease in the time spent in open arms in the elevated plus maze test, decrease in the time spent in lit side in the light-dark test, and decrease in the time spent in central regions in the open field test, along with no changes in locomotor activity. Further analysis showed that the single intranasal LPS administration one day prior to stress exposure prevented CSDS-induced increase in levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1ß mRNA in the hippocampus and prefrontal cortex. Inhibition of innate immune stimulation by minocycline pretreatment not only abrogated the preventive effect of intranasal LPS administration on CSDS-induced depression- and anxiety-like behaviors, but also abrogated the preventive effect of intranasal LPS administration on CSDS-induced neuroinflammatory responses in the hippocampus and prefrontal cortex. These results demonstrate that intranasal administration of innate immune stimulants could be a potential approach for the prevention of depression and anxiety.


Subject(s)
Anxiety/pathology , Behavior, Animal/drug effects , Depression/pathology , Lipopolysaccharides/pharmacology , Administration, Intranasal , Animals , Anxiety/etiology , Depression/etiology , Disease Models, Animal , Female , Hippocampus/drug effects , Inflammation Mediators/metabolism , Interleukin-1beta/drug effects , Interleukin-6/metabolism , Lipopolysaccharides/administration & dosage , Male , Mice , Mice, Inbred C57BL , Minocycline/pharmacology , Neuroinflammatory Diseases/pathology , Prefrontal Cortex/drug effects , Stress, Psychological/complications , Tumor Necrosis Factor-alpha/drug effects
20.
Int Immunopharmacol ; 101(Pt A): 108178, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34607226

ABSTRACT

Sepsis is an unusual systemic infection caused by bacteria, which is a life-threatening organ dysfunction. The innate immune system plays an important role in this process; however, the specific mechanisms remain unclear. Using the LPS + treated mouse model, we found that the survival rate of Tgm2-/- mice was lower than that of the control group, while the inflammation was much higher. We further showed that Tgm2 suppressed apoptosis by inhibiting the JNK/BCL-2 signaling pathway. More importantly, Tgm2 interacted with Aga and regulated mitochondria-mediated apoptosis induced by LPS. Our findings elucidated a protective mechanism of Tgm2 during LPS stimulation and may provide a new reference target for the development of novel anti-infective drugs from the perspective of host immunity.


Subject(s)
Aspartylglucosylaminase/metabolism , Macrophages/pathology , Protein Glutamine gamma Glutamyltransferase 2/metabolism , Sepsis/immunology , Animals , Apoptosis/immunology , Disease Models, Animal , Humans , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/immunology , MAP Kinase Signaling System/immunology , Macrophages/immunology , Mice , Mice, Knockout , Protein Glutamine gamma Glutamyltransferase 2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Sepsis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...