Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.109
Filter
1.
J Nanobiotechnology ; 22(1): 233, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725011

ABSTRACT

BACKGROUND: Dry Eye Disease (DED) is a prevalent multifactorial ocular disease characterized by a vicious cycle of inflammation, oxidative stress, and mitochondrial dysfunction on the ocular surface, all of which lead to DED deterioration and impair the patients' quality of life and social functioning. Currently, anti-inflammatory drugs have shown promising efficacy in treating DED; however, such drugs are associated with side effects. The bioavailability of ocular drugs is less than 5% owing to factors such as rapid tear turnover and the presence of the corneal barrier. This calls for investigations to overcome these challenges associated with ocular drug administration. RESULTS: A novel hierarchical action liposome nanosystem (PHP-DPS@INS) was developed in this study. In terms of delivery, PHP-DPS@INS nanoparticles (NPs) overcame the ocular surface transport barrier by adopting the strategy of "ocular surface electrostatic adhesion-lysosomal site-directed escape". In terms of therapy, PHP-DPS@INS achieved mitochondrial targeting and antioxidant effects through SS-31 peptide, and exerted an anti-inflammatory effect by loading insulin to reduce mitochondrial inflammatory metabolites. Ultimately, the synergistic action of "anti-inflammation-antioxidation-mitochondrial function restoration" breaks the vicious cycle associated with DED. The PHP-DPS@INS demonstrated remarkable cellular uptake, lysosomal escape, and mitochondrial targeting in vitro. Targeted metabolomics analysis revealed that PHP-DPS@INS effectively normalized the elevated level of mitochondrial proinflammatory metabolite fumarate in an in vitro hypertonic model of DED, thereby reducing the levels of key inflammatory factors (IL-1ß, IL-6, and TNF-α). Additionally, PHP-DPS@INS strongly inhibited reactive oxygen species (ROS) production and facilitated mitochondrial structural repair. In vivo, the PHP-DPS@INS treatment significantly enhanced the adhesion duration and corneal permeability of the ocular surface in DED mice, thereby improving insulin bioavailability. It also restored tear secretion, suppressed ocular surface damage, and reduced inflammation in DED mice. Moreover, it demonstrated favorable safety profiles both in vitro and in vivo. CONCLUSION: In summary, this study successfully developed a comprehensive DED management nanosystem that overcame the ocular surface transmission barrier and disrupted the vicious cycle that lead to dry eye pathogenesis. Additionally, it pioneered the regulation of mitochondrial metabolites as an anti-inflammatory treatment for ocular conditions, presenting a safe, efficient, and innovative therapeutic strategy for DED and other inflammatory diseases.


Subject(s)
Dry Eye Syndromes , Inflammation , Liposomes , Mitochondria , Oxidative Stress , Dry Eye Syndromes/drug therapy , Animals , Mitochondria/drug effects , Mitochondria/metabolism , Mice , Oxidative Stress/drug effects , Liposomes/chemistry , Inflammation/drug therapy , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cornea/metabolism , Cornea/drug effects , Drug Delivery Systems , Oligopeptides
2.
Sci Rep ; 14(1): 10499, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714740

ABSTRACT

Improving the efficacy of chemotherapy remains a key challenge in cancer treatment, considering the low bioavailability, high cytotoxicity, and undesirable side effects of some clinical drugs. Targeted delivery and sustained release of therapeutic drugs to cancer cells can reduce the whole-body cytotoxicity of the agent and deliver a safe localized treatment to the patient. There is growing interest in herbal drugs, such as curcumin, which is highly noted as a promising anti-tumor drug, considering its wide range of bioactivities and therapeutic properties against various tumors. Conversely, the clinical efficacy of curcumin is limited because of poor oral bioavailability, low water solubility, instability in gastrointestinal fluids, and unsuitable pH stability. Drug-delivery colloid vehicles like liposomes and nanoparticles combined with microbubbles and ultrasound-mediated sustained release are currently being explored as effective delivery modes in such cases. This study aimed to synthesize and study the properties of curcumin liposomes (CLs) and optimize the high-frequency ultrasound release and uptake by a human breast cancer cell line (HCC 1954) through in vitro studies of culture viability and cytotoxicity. CLs were effectively prepared with particles sized at 81 ± 2 nm, demonstrating stability and controlled release of curcumin under ultrasound exposure. In vitro studies using HCC1954 cells, the combination of CLs, ultrasound, and Definity microbubbles significantly improved curcumin's anti-tumor effects, particularly under specific conditions: 15 s of continuous ultrasound at 0.12 W/cm2 power density with 0.6 × 107 microbubbles/mL. Furthermore, the study delved into curcumin liposomes' cytotoxic effects using an Annexin V/PI-based apoptosis assay. The treatment with CLs, particularly in conjunction with ultrasound and microbubbles, amplified cell apoptosis, mainly in the late apoptosis stage, which was attributed to heightened cellular uptake within cancer cells.


Subject(s)
Curcumin , Drug Delivery Systems , Liposomes , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/administration & dosage , Humans , Liposomes/chemistry , Cell Line, Tumor , Drug Delivery Systems/methods , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Microbubbles , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Ultrasonic Waves , Drug Liberation , Apoptosis/drug effects
3.
J Am Chem Soc ; 146(19): 12925-12932, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691507

ABSTRACT

Technological breakthroughs in cryo-electron microscopy (cryo-EM) methods open new perspectives for highly detailed structural characterizations of extracellular vesicles (EVs) and synthetic liposome-protein assemblies. Structural characterizations of these vesicles in solution under a nearly native hydrated state are of great importance to decipher cell-to-cell communication and to improve EVs' application as markers in diagnosis and as drug carriers in disease therapy. However, difficulties in preparing holey carbon cryo-EM grids with low vesicle heterogeneities, at low concentration and with kinetic control of the chemical reactions or assembly processes, have limited cryo-EM use in the EV study. We report a straightforward membrane vesicle cryo-EM sample preparation method that assists in circumventing these limitations by using a free-standing DNA-affinity superlattice for covering holey carbon cryo-EM grids. Our approach uses DNA origami to self-assemble to a solution-stable and micrometer-sized ordered molecular template in which structure and functional properties can be rationally controlled. We engineered the template with cholesterol-binding sites to specifically trap membrane vesicles. The advantages of this DNA-cholesterol-affinity lattice (DCAL) include (1) local enrichment of artificial and biological vesicles at low concentration and (2) isolation of heterogeneous cell-derived membrane vesicles (exosomes) from a prepurified pellet of cell culture conditioned medium on the grid.


Subject(s)
Cryoelectron Microscopy , DNA , Cryoelectron Microscopy/methods , DNA/chemistry , Extracellular Vesicles/chemistry , Humans , Cholesterol/chemistry , Liposomes/chemistry
4.
Sci Rep ; 14(1): 10073, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698123

ABSTRACT

Cutaneous leishmaniasis is the most prevalent form of leishmaniasis worldwide. Although various anti-leishmanial regimens have been considered, due to the lack of efficacy or occurrence of adverse reactions, design and development of novel topical delivery systems would be essential. This study aimed to prepare artemether (ART)-loaded niosomes and evaluate their anti-leishmanial effects against Leishmania major. ART-loaded niosomes were prepared through the thin-film hydration technique and characterized in terms of particle size, zeta potential, morphology, differential scanning calorimetry, drug loading, and drug release. Furthermore, anti-leishmanial effect of the preparation was assessed in vitro and in vivo. The prepared ART-loaded niosomes were spherical with an average diameter of about 100 and 300 nm with high encapsulation efficiencies of > 99%. The results of in vitro cytotoxicity revealed that ART-loaded niosomes had significantly higher anti-leishmanial activity, lower general toxicity, and higher selectivity index (SI). Half-maximal inhibitory concentration (IC50) values of ART, ART-loaded niosomes, and liposomal amphotericin B were 39.09, 15.12, and 20 µg/mL, respectively. Also, according to the in vivo study results, ART-loaded niosomes with an average size of 300 nm showed the highest anti-leishmanial effects in animal studies. ART-loaded niosomes would be promising topical drug delivery system for the management of cutaneous leishmaniasis.


Subject(s)
Artemether , Leishmania major , Leishmaniasis, Cutaneous , Liposomes , Liposomes/chemistry , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Artemether/chemistry , Leishmania major/drug effects , Animals , Mice , Particle Size , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/chemistry , Mice, Inbred BALB C , Drug Liberation , Humans
5.
J Nanobiotechnology ; 22(1): 216, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698399

ABSTRACT

The enhanced permeability and retention (EPR) effect has become the guiding principle for nanomedicine against cancer for a long time. However, several biological barriers severely resist therapeutic agents' penetration and retention into the deep tumor tissues, resulting in poor EPR effect and high tumor mortality. Inspired by lava, we proposed a proteolytic enzyme therapy to improve the tumor distribution and penetration of nanomedicine. A trypsin-crosslinked hydrogel (Trypsin@PSA Gel) was developed to maintain trypsin's activity. The hydrogel postponed trypsin's self-degradation and sustained the release. Trypsin promoted the cellular uptake of nanoformulations in breast cancer cells, enhanced the penetration through endothelial cells, and degraded total and membrane proteins. Proteomic analysis reveals that trypsin affected ECM components and down-regulated multiple pathways associated with cancer progression. Intratumoral injection of Trypsin@PSA Gel significantly increased the distribution of liposomes in tumors and reduced tumor vasculature. Combination treatment with intravenous injection of gambogic acid-loaded liposomes and intratumoral injection of Trypsin@PSA Gel inhibited tumor growth. The current study provides one of the first investigations into the enhanced tumor distribution of liposomes induced by a novel proteolytic enzyme therapy.


Subject(s)
Hydrogels , Liposomes , Polyethylene Glycols , Trypsin , Xanthones , Liposomes/chemistry , Animals , Polyethylene Glycols/chemistry , Hydrogels/chemistry , Humans , Trypsin/metabolism , Trypsin/chemistry , Female , Mice , Cell Line, Tumor , Mice, Inbred BALB C , Breast Neoplasms/drug therapy , Proteolysis
6.
Int J Nanomedicine ; 19: 4121-4136, 2024.
Article in English | MEDLINE | ID: mdl-38736655

ABSTRACT

Purpose: This study aims to broaden the application of nano-contrast agents (NCAs) within the realm of the musculoskeletal system. It aims to introduce novel methods, strategies, and insights for the clinical management of ischemic muscle disorders, encompassing diagnosis, monitoring, evaluation, and therapeutic intervention. Methods: We developed a composite encapsulation technique employing O-carboxymethyl chitosan (OCMC) and liposome to encapsulate NCA-containing gold nanorods (GNRs) and perfluoropentane (PFP). This nanoscale contrast agent was thoroughly characterized for its basic physicochemical properties and performance. Its capabilities for in vivo and in vitro ultrasound imaging and photothermal imaging were authenticated, alongside a comprehensive biocompatibility assessment to ascertain its effects on microcirculatory perfusion in skeletal muscle using a murine model of hindlimb ischemia, and its potential to augment blood flow and facilitate recovery. Results: The engineered GNR@OCMC-liposome/PFP nanostructure exhibited an average size of 203.18±1.49 nm, characterized by size uniformity, regular morphology, and a good biocompatibility profile. In vitro assessments revealed NCA's potent photothermal response and its transformation into microbubbles (MBs) under near-infrared (NIR) irradiation, thereby enhancing ultrasonographic visibility. Animal studies demonstrated the nanostructure's efficacy in photothermal imaging at ischemic loci in mouse hindlimbs, where NIR irradiation induced rapid temperature increases and significantly increased blood circulation. Conclusion: The dual-modal ultrasound/photothermal NCA, encapsulating GNR and PFP within a composite shell-core architecture, was synthesized successfully. It demonstrated exceptional stability, biocompatibility, and phase transition efficiency. Importantly, it facilitates the encapsulation of PFP, enabling both enhanced ultrasound imaging and photothermal imaging following NIR light exposure. This advancement provides a critical step towards the integrated diagnosis and treatment of ischemic muscle diseases, signifying a pivotal development in nanomedicine for musculoskeletal therapeutics.


Subject(s)
Contrast Media , Gold , Ischemia , Muscle, Skeletal , Nanotubes , Ultrasonography , Animals , Gold/chemistry , Nanotubes/chemistry , Contrast Media/chemistry , Contrast Media/pharmacology , Mice , Ischemia/diagnostic imaging , Ischemia/therapy , Muscle, Skeletal/diagnostic imaging , Ultrasonography/methods , Hindlimb/blood supply , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Liposomes/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Muscular Diseases/diagnostic imaging , Muscular Diseases/therapy , Photothermal Therapy/methods , Disease Models, Animal , Humans , Pentanes
7.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731568

ABSTRACT

Cancer is one of the major causes of death, and its negative impact continues to rise globally. Chemotherapy, which is the most common therapy, has several limitations due to its tremendous side effects. Therefore, developing an alternate therapeutic agent with high biocompatibility is indeed needed. The anti-oxidative effects and bioactivities of several different crude extracts of marine algae have been evaluated both in vitro and in vivo. In the present study, we synthesized the aqueous extract (HA) from the marine algae Amphiroa anceps, and then, a liposome was formulated for that extract (NHA). The extracts were characterized using different photophysical tools like dynamic light scattering, UV-visible spectroscopy, FTIR, scanning electron microscopy, and GC-MS analysis. The SEM image revealed a size range of 112-185 nm for NHA and the GC-MS results showed the presence of octadecanoic acid and n-Hexadecanoic acid in the majority. The anticancer activity was studied using A549 cells, and the NHA inhibited the cancer cells dose-dependently, with the highest killing of 92% at 100 µg/mL. The in vivo studies in the zebrafish model showed that neither the HA nor NHA of Amphiroa anceps showed any teratogenic effect. The outcome of our study showed that NHA can be a potential drug candidate for inhibiting cancer with good biocompatibility up to a dose of 100 µg/mL.


Subject(s)
Antineoplastic Agents , Rhodophyta , Zebrafish , Rhodophyta/chemistry , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , A549 Cells , Neoplasms/drug therapy , Neoplasms/pathology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Liposomes/chemistry , Gas Chromatography-Mass Spectrometry , Nanoparticles/chemistry , Cell Line, Tumor
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732135

ABSTRACT

Glioblastoma (GBM) is the most lethal and common malignant primary brain tumor in adults. An important feature that supports GBM aggressiveness is the unique composition of its extracellular matrix (ECM). Particularly, fibronectin plays an important role in cancer cell adhesion, differentiation, proliferation, and chemoresistance. Thus, herein, a hydrogel with mechanical properties compatible with the brain and the ability to disrupt the dynamic and reciprocal interaction between fibronectin and tumor cells was produced. High-molecular-weight hyaluronic acid (HMW-HA) functionalized with the inhibitory fibronectin peptide Arg-Gly-Asp-Ser (RGDS) was used to produce the polymeric matrix. Liposomes encapsulating doxorubicin (DOX) were also included in the hydrogel to kill GBM cells. The resulting hydrogel containing liposomes with therapeutic DOX concentrations presented rheological properties like a healthy brain. In vitro assays demonstrated that unmodified HMW-HA hydrogels only caused GBM cell killing after DOX incorporation. Conversely, RGDS-functionalized hydrogels displayed per se cytotoxicity. As GBM cells produce several proteolytic enzymes capable of disrupting the peptide-HA bond, we selected MMP-2 to illustrate this phenomenon. Therefore, RGDS internalization can induce GBM cell apoptosis. Importantly, RGDS-functionalized hydrogel incorporating DOX efficiently damaged GBM cells without affecting astrocyte viability, proving its safety. Overall, the results demonstrate the potential of the RGDS-functionalized hydrogel to develop safe and effective GBM treatments.


Subject(s)
Doxorubicin , Fibronectins , Glioblastoma , Hyaluronic Acid , Hydrogels , Oligopeptides , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Oligopeptides/chemistry , Oligopeptides/pharmacology , Fibronectins/metabolism , Fibronectins/antagonists & inhibitors , Hydrogels/chemistry , Cell Line, Tumor , Hyaluronic Acid/chemistry , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Liposomes/chemistry , Apoptosis/drug effects , Matrix Metalloproteinase 2/metabolism
9.
J Photochem Photobiol B ; 255: 112910, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663337

ABSTRACT

The prognosis for patients with advanced-stage pancreatic ductal adenocarcinoma (PDAC) remains dismal. It is generally accepted that combination cancer therapies offer the most promise, such as Folforinox, despite their associated high toxicity. This study addresses the issue of chemoresistance by introducing a complementary dual priming approach to attenuate the DNA repair mechanism and to improve the efficacy of a type 1 topoisomerase (Top1) inhibitor. The result is a regimen that integrates drug-repurposing and nanotechnology using 3 clinically relevant FDA-approved agents (1) Top1 inhibitor (irinotecan) at subcytotoxic doses (2) benzoporphyrin derivative (BPD) as a photoactive molecule for photodynamic priming (PDP) to improve the delivery of irinotecan within the cancer cell and (3) minocycline priming (MNP) to modulate DNA repair enzyme Tdp1 (tyrosyl-DNA phosphodiesterase) activity. We demonstrate in heterotypic 3D cancer models that incorporate cancer cells and pancreatic cancer-associated fibroblasts that simultaneous targeting of Tdp1 and Top1 were significantly more effective by employing MNP and photoactivatable multi-inhibitor liposomes encapsulating BPD and irinotecan compared to monotherapies or a cocktail of dual or triple-agents. These data are encouraging and warrant further work in appropriate animal models to evolve improved therapeutic regimens.


Subject(s)
Carcinoma, Pancreatic Ductal , Irinotecan , Minocycline , Pancreatic Neoplasms , Photochemotherapy , Humans , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Cell Line, Tumor , Minocycline/pharmacology , Minocycline/therapeutic use , Irinotecan/pharmacology , Irinotecan/therapeutic use , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Phosphoric Diester Hydrolases/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/therapeutic use , Topoisomerase I Inhibitors/chemistry , Liposomes/chemistry
10.
J Am Chem Soc ; 146(18): 12410-12422, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38669207

ABSTRACT

Synthetic nanoparticles as lipid nanoparticles (LNPs) are widely used as drug delivery vesicles. However, they hold several drawbacks, including low biocompatibility and unfavorable immune responses. Naturally occurring extracellular vesicles (EVs) hold the potential as native, safe, and multifunctional nanovesicle carriers. However, loading of EVs with large biomolecules remains a challenge. Here, we present a controlled loading methodology using DNA-mediated and programmed fusion between EVs and messenger RNA (mRNA)-loaded liposomes. The fusion efficiency is characterized at the single-particle level by real-time microscopy through EV surface immobilization via lipidated biotin-DNA handles. Subsequently, fused EV-liposome particles (EVLs) can be collected by employing a DNA strand-replacement reaction. Transferring the fusion reaction to magnetic beads enables us to scale up the production of EVLs one million times. Finally, we demonstrated encapsulation of mCherry mRNA, transfection, and improved translation using the EVLs compared to liposomes or LNPs in HEK293-H cells. We envision this as an important tool for the EV-mediated delivery of RNA therapeutics.


Subject(s)
Extracellular Vesicles , Liposomes , Humans , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , HEK293 Cells , Liposomes/chemistry , RNA, Messenger/chemistry , RNA, Messenger/genetics , DNA/chemistry , Nanoparticles/chemistry
11.
Colloids Surf B Biointerfaces ; 238: 113892, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581834

ABSTRACT

Receptor and ligand binding mediated targeted drug delivery systems (DDS) sometimes fail to target to tumor sites, and cancer cell membrane (CCM) coating can overcome the dilemma of immune clearance and nonspecific binding of DDS in vivo. In order to enhance the targeting ability and improve the anti-tumor effect, a dual targeting DDS was established based on U87MG CCM mediated homologous targeting and cyclic peptide RGD mediated active targeting. The DDS was prepared by coating RGD doped CCM onto doxorubicin (DOX) loaded liposomes. The homologous and active dual targeting ability endowed the DDS (RGD-CCM-LP-DOX) exhibited superior cancer cell affinity, improved tissue distribution and enhanced anti-tumor effects. In vivo pharmacodynamic studies revealed that RGD-CCM-LP-DOX exhibited superior therapeutic effect compared with homologous targeting CCM-LP-DOX and non-targetable LP-DOX injection. H&E staining, Ki 67 staining and TUNEL staining confirmed that RGD-CCM-LP-DOX not only increased anti-tumor efficacy, but also reduced tissue toxicity by changing the distribution in vivo. The experimental results showed that the RGD doped CCM camouflaged liposome DDS is a better choice for chemotherapeutics delivery.


Subject(s)
Cell Membrane , Doxorubicin , Drug Delivery Systems , Liposomes , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Liposomes/chemistry , Animals , Humans , Mice , Cell Membrane/metabolism , Cell Membrane/drug effects , Cell Membrane/chemistry , Oligopeptides/chemistry , Mice, Inbred BALB C , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Cell Line, Tumor , Mice, Nude , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Tissue Distribution , Drug Screening Assays, Antitumor
12.
Colloids Surf B Biointerfaces ; 238: 113917, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615391

ABSTRACT

In this study, the encapsulation and structural characteristics of the self-assembled liposome formed by epigallocatechin gallate (EGCG) and alcohol dehydrogenase (ADH) were studied. According to the results, EGCG significantly increased the catalytic activity of ADH with a 33.33 % activation rate and the liposomes were able to entrap EGCG-ADH with an effectiveness of 88.94 %. The self-assembled monolayers had nanometer-sized particles, and the excellent self-assembled system was demonstrated by the low PDI value and high surface absolute potential. The scanning electron microscope showed that the self-assembled liposome was honeycomb, groove-shaped, and rough. The spectroscopic results showed that EGCG-ADH complex was formed through hydrogen bond, which changed the secondary structure of the liposome, and verified EGCG-ADH liposome system was successfully prepared. In vitro digestion experiments showed that the gastrointestinal tolerance and antioxidant activity of EGCG-ADH liposomes were significantly higher than those of free EGCG-ADH.


Subject(s)
Alcohol Dehydrogenase , Catechin , Liposomes , Liposomes/chemistry , Catechin/chemistry , Catechin/analogs & derivatives , Alcohol Dehydrogenase/chemistry , Alcohol Dehydrogenase/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Particle Size , Hydrogen Bonding
13.
ACS Nano ; 18(18): 11753-11768, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38649866

ABSTRACT

The association between dysfunctional microglia and amyloid-ß (Aß) is a fundamental pathological event and increases the speed of Alzheimer's disease (AD). Additionally, the pathogenesis of AD is intricate and a single drug may not be enough to achieve a satisfactory therapeutic outcome. Herein, we reported a facile and effective gene therapy strategy for the modulation of microglia function and intervention of Aß anabolism by ROS-responsive biomimetic exosome-liposome hybrid nanovesicles (designated as TSEL). The biomimetic nanovesicles codelivery ß-site amyloid precursor protein cleaving enzyme-1 (BACE1) siRNA (siBACE1) and TREM2 plasmid (pTREM2) gene drug efficiently penetrate the blood-brain barrier and enhance the drug accumulation at AD lesions with the help of exosomes homing ability and angiopep-2 peptides. Specifically, an upregulation of TREM2 expression can reprogram microglia from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype while also restoring its capacity to phagocytose Aß and its nerve repair function. In addition, siRNA reduces the production of Aß plaques at the source by knocking out the BACE1 gene, which is expected to further enhance the therapeutic effect of AD. The in vivo study suggests that TSEL through the synergistic effect of two gene drugs can ameliorate APP/PS1 mice cognitive impairment by regulating the activated microglial phenotype, reducing the accumulation of Aß, and preventing the retriggering of neuroinflammation. This strategy employs biomimetic nanovesicles for the delivery of dual nucleic acids, achieving synergistic gene therapy for AD, thus offering more options for the treatment of AD.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Biomimetic Materials , Genetic Therapy , Alzheimer Disease/therapy , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Animals , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Mice , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Gene Transfer Techniques , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Humans , Liposomes/chemistry , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Biomimetics , Exosomes/metabolism , Exosomes/chemistry , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics
14.
J Aerosol Med Pulm Drug Deliv ; 37(2): 100-110, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38640446

ABSTRACT

Inhalation of liposomes formulated with phospholipids similar to endogenous lung surfactants and lipids offers biocompatibility and versatility within the pulmonary medicine field to treat a range of diseases such as lung cancer, cystic fibrosis and lung infections. Manipulation of the physicochemical properties of liposomes enables innovative design of the carrier to meet specific delivery, release and targeting requirements. This delivery system offers several benefits: improved pharmacokinetics with reduced toxicity, enhanced therapeutic efficacy, increased delivery of poorly soluble drugs, taste masking, biopharmaceutics degradation protection and targeted cellular therapy. This section provides an overview of liposomal formulation and delivery, together with their applications for different disease states in the lung.


Subject(s)
Liposomes , Pneumonia , Humans , Liposomes/chemistry , Liposomes/metabolism , Administration, Inhalation , Lung/metabolism , Phospholipids , Drug Delivery Systems
15.
Int J Nanomedicine ; 19: 3715-3735, 2024.
Article in English | MEDLINE | ID: mdl-38681090

ABSTRACT

Liposomes, noted for their tunable particle size, surface customization, and varied drug delivery capacities, are increasingly acknowledged in therapeutic applications. These vesicles exhibit surface flexibility, enabling the incorporation of targeting moieties or peptides to achieve specific targeting and avoid lysosomal entrapment. Internally, their adaptable architecture permits the inclusion of a broad spectrum of drugs, contingent on their solubility characteristics. This study thoroughly reviews liposome fabrication, surface modifications, and drug release mechanisms post-systemic administration, with a particular emphasis on drugs crossing the blood-brain barrier (BBB) to address lesions. Additionally, the review delves into recent developments in the use of liposomes in ischemic stroke models, offering a comparative evaluation with other nanocarriers like exosomes and nano-micelles, thereby facilitating their clinical advancement.


Subject(s)
Blood-Brain Barrier , Drug Carriers , Ischemic Stroke , Liposomes , Liposomes/chemistry , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Ischemic Stroke/drug therapy , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Animals , Drug Delivery Systems/methods , Drug Liberation , Particle Size
16.
Nanotheranostics ; 8(3): 285-297, 2024.
Article in English | MEDLINE | ID: mdl-38577322

ABSTRACT

Rationale: Microbubble (MB) contrast agents combined with ultrasound targeted microbubble cavitation (UTMC) are a promising platform for site-specific therapeutic oligonucleotide delivery. We investigated UTMC-mediated delivery of siRNA directed against epidermal growth factor receptor (EGFR), to squamous cell carcinoma (SCC) via a novel MB-liposome complex (LPX). Methods: LPXs were constructed by conjugation of cationic liposomes to the surface of C4F10 gas-filled lipid MBs using biotin/avidin chemistry, then loaded with siRNA via electrostatic interaction. Luciferase-expressing SCC-VII cells (SCC-VII-Luc) were cultured in Petri dishes. The Petri dishes were filled with media in which LPXs loaded with siRNA against firefly luciferase (Luc siRNA) were suspended. Ultrasound (US) (1 MHz, 100-µs pulse, 10% duty cycle) was delivered to the dishes for 10 sec at varying acoustic pressures and luciferase assay was performed 24 hr later. In vivo siRNA delivery was studied in SCC-VII tumor-bearing mice intravenously infused with a 0.5 mL saline suspension of EGFR siRNA LPX (7×108 LPX, ~30 µg siRNA) for 20 min during concurrent US (1 MHz, 0.5 MPa spatial peak temporal peak negative pressure, five 100-µs pulses every 1 ms; each pulse train repeated every 2 sec to allow reperfusion of LPX into the tumor). Mice were sacrificed 2 days post treatment and tumor EGFR expression was measured (Western blot). Other mice (n=23) received either EGFR siRNA-loaded LPX + UTMC or negative control (NC) siRNA-loaded LPX + UTMC on days 0 and 3, or no treatment ("sham"). Tumor volume was serially measured by high-resolution 3D US imaging. Results: Luc siRNA LPX + UTMC caused significant luciferase knockdown vs. no treatment control, p<0.05) in SCC-VII-Luc cells at acoustic pressures 0.25 MPa to 0.9 MPa, while no significant silencing effect was seen at lower pressure (0.125 MPa). In vivo, EGFR siRNA LPX + UTMC reduced tumor EGFR expression by ~30% and significantly inhibited tumor growth by day 9 (~40% decrease in tumor volume vs. NC siRNA LPX + UTMC, p<0.05). Conclusions: Luc siRNA LPXs + UTMC achieved functional delivery of Luc siRNA to SCC-VII-Luc cells in vitro. EGFR siRNA LPX + UTMC inhibited tumor growth and suppressed EGFR expression in vivo, suggesting that this platform holds promise for non-invasive, image-guided targeted delivery of therapeutic siRNA for cancer treatment.


Subject(s)
Carcinoma, Squamous Cell , Liposomes , Animals , Mice , Liposomes/chemistry , RNA, Small Interfering/genetics , Microbubbles , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/therapy , ErbB Receptors/genetics , Luciferases
17.
Carbohydr Polym ; 336: 122115, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670750

ABSTRACT

To alleviate skull defects and enhance the biological activity of taxifolin, this study utilized the thin-film dispersion method to prepare paclitaxel liposomes (TL). Thiolated chitosan (CSSH)-modified TL (CTL) was synthesized through charge interactions. Injectable hydrogels (BLG) were then prepared as hydrogel scaffolds loaded with TAX (TG), TL (TLG), and CTL (CTLG) using a Schiff base reaction involving oxidized dextran and carboxymethyl chitosan. The study investigated the bone reparative properties of CTLG through molecular docking, western blot techniques, and transcriptome analysis. The particle sizes of CTL were measured at 248.90 ± 14.03 nm, respectively, with zeta potentials of +36.68 ± 5.43 mV, respectively. CTLG showed excellent antioxidant capacity in vitro. It also has a good inhibitory effect on Escherichia coli and Staphylococcus aureus, with inhibition rates of 93.88 ± 1.59 % and 88.56 ± 2.83 % respectively. The results of 5-ethynyl-2 '-deoxyuridine staining, alkaline phosphatase staining and alizarin red staining showed that CTLG also had the potential to promote the proliferation and differentiation of mouse embryonic osteoblasts (MC3T3-E1). The study revealed that CTLG enhances the expression of osteogenic proteins by regulating the Wnt signaling pathway, shedding light on the potential application of TAX and bone regeneration mechanisms.


Subject(s)
Cell Proliferation , Chitosan , Hydrogels , Liposomes , Osteoblasts , Quercetin , Quercetin/analogs & derivatives , Skull , Wnt Signaling Pathway , Animals , Chitosan/analogs & derivatives , Chitosan/chemistry , Chitosan/pharmacology , Quercetin/pharmacology , Quercetin/chemistry , Liposomes/chemistry , Wnt Signaling Pathway/drug effects , Osteoblasts/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Cell Proliferation/drug effects , Mice , Skull/drug effects , Skull/pathology , Skull/metabolism , Rats , Bone Regeneration/drug effects , Rats, Sprague-Dawley , Osteogenesis/drug effects , Staphylococcus aureus/drug effects , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cell Differentiation/drug effects , Escherichia coli/drug effects , Male , Molecular Docking Simulation
18.
Carbohydr Polym ; 336: 122134, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670761

ABSTRACT

In our research we used the anionic nanofibrillar cellulose (ANFC) as a platform for far-red light-induced release of cargo from liposomes. In contrast to previous works, where photosensitizers are usually in the liposomal bilayers, we used a cellulose-binding dye. Our phthalocyanine derivative has been shown to bind very strongly to cellulose and cellulose nanofiber hydrogels, allowing us to place it outside of the liposomes. Both the sensitizer and cationic liposomes bind strongly to the ANFC after mixing, making the system easy to fabricate. Upon light activation, the photosensitizer generates reactive oxygen species (ROS) within the ANFC hydrogel, where the reactive oxygen species oxidize unsaturated lipids in the liposomal membrane, which makes the liposomes more permeable, resulting in on-demand cargo release. We were able to achieve ca. 70 % release of model hydrophilic cargo molecule calcein from the hydrogels with a relatively low dose of light (262 J/cm2) while employing the straightforward fabrication techniques. Our system was remarkably responsive to the far-red light (730 nm), enabling deep tissue penetration. Therefore, this very promising novel cellulose-immobilized photosensitizer liposomal platform could be used as a controlled drug delivery system, which can have applications in externally activated coatings or implants.


Subject(s)
Cellulose , Hydrogels , Light , Liposomes , Nanofibers , Photosensitizing Agents , Liposomes/chemistry , Cellulose/chemistry , Photosensitizing Agents/chemistry , Hydrogels/chemistry , Nanofibers/chemistry , Reactive Oxygen Species/metabolism , Isoindoles , Drug Liberation , Fluoresceins/chemistry , Indoles/chemistry , Red Light
19.
Acta Biomater ; 179: 325-339, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38561074

ABSTRACT

Subarachnoid hemorrhage (SAH) is primarily attributed to the rupture of intracranial aneurysms and is associated with a high incidence of disability and mortality. SAH disrupts the blood‒brain barrier, leading to the release of iron ions from blood within the subarachnoid space, subsequently inducing neuronal ferroptosis. A recently discovered protein, known as ferroptosis suppressor protein 1 (FSP1), exerts anti-ferroptotic effects by facilitating the conversion of oxidative coenzyme Q 10 (CoQ10) to its reduced form, which effectively scavenges reactive oxygen radicals and mitigates iron-induced ferroptosis. In our investigation, we observed an increase in FSP1 levels following SAH. However, the depletion of CoQ10 caused by SAH hindered the biological function of FSP1. Therefore, we created neuron-targeted liposomal CoQ10 by introducing the neuron-targeting peptide Tet1 onto the surface of liposomal CoQ10. Our objective was to determine whether this formulation could activate the FSP1 system and subsequently inhibit neuronal ferroptosis. Our findings revealed that neuron-targeted liposomal CoQ10 effectively localized to neurons at the lesion site after SAH. Furthermore, it facilitated the upregulation of FSP1, reduced the accumulation of malondialdehyde and reactive oxygen species, inhibited neuronal ferroptosis, and exerted neuroprotective effects both in vitro and in vivo. Our study provides evidence that supplementation with CoQ10 can effectively activate the FSP1 system. Additionally, we developed a neuron-targeted liposomal CoQ10 formulation that can be selectively delivered to neurons at the site of SAH. This innovative approach represents a promising therapeutic strategy for neuronal ferroptosis following SAH. STATEMENT OF SIGNIFICANCE: Subarachnoid hemorrhage (SAH) is primarily attributed to the rupture of intracranial aneurysms and is associated with a high incidence of disability and mortality. Ferroptosis suppressor protein 1 (FSP1), exerts anti-ferroptotic effects by facilitating the conversion of oxidative coenzyme Q 10 (CoQ10) to its reduced form, which effectively scavenges reactive oxygen radicals and mitigates iron-induced ferroptosis. In our investigation, we observed an increase in FSP1 levels following SAH. However, the depletion of CoQ10 caused by SAH hindered the biological function of FSP1. Therefore, we created neuron-targeted liposomal CoQ10. We find that it effectively localized to neurons at the lesion site after SAH and activated the FSP1/CoQ10 system. This innovative approach represents a promising therapeutic strategy for neuronal ferroptosis following SAH and other central nervous system diseases characterized by disruption of the blood-brain barrier.


Subject(s)
Ferroptosis , Liposomes , Neurons , Subarachnoid Hemorrhage , Ubiquinone , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/pathology , Animals , Ferroptosis/drug effects , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Liposomes/chemistry , Male , Mice , Reactive Oxygen Species/metabolism , Rats, Sprague-Dawley , Mice, Inbred C57BL
20.
Biotechnol J ; 19(4): e2400050, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651271

ABSTRACT

Hepatocellular carcinoma (HCC) is a digestive tract cancer with high mortality and poor prognosis, especially in China. Current chemotherapeutic drugs lead to poor prognosis, low efficacy, and high side effects due to weak targeting specificity and rapidly formed multidrug resistance (MDR). Based on the previous studies on the doxorubicin (DOX) formulation for cancer targeting therapy, we developed a novel DOX delivery formulation for the targeting chemotherapy of HCC and DOX resistant HCC. HCSP4 was previously screened and casein kinase 2α (CK2α) was predicted as its specific target on HCC cells in our lab. In the study, miR125a-5p was firstly predicted as an MDR inhibiting miRNA, and then CK2α was validated as the target of HCSP4 and miR125a-5p using CK2α-/-HepG2 cells. Based on the above, an HCC targeting and MDR inhibiting DOX delivery liposomal formulation, HCSP4/Lipo-DOX/miR125a-5p was synthesized and tested for its HCC therapeutic efficacy in vitro. The results showed that the liposomal DOX delivery formulation targeted to HCC cells specifically and sensitively, and presented the satisfied therapeutic efficacy for HCC, particularly for DOX resistant HCC. The potential therapeutic mechanism of the DOX delivery formulation was explored, and the formulation inhibited the expression of MDR-relevant genes including ATP-binding cassette subfamily B member 1 (ABCB1, also known as P-glycoprotein), ATP-binding cassette subfamily C member 5 (ABCC5), enhancer of zeste homolog 2 (EZH2), and ATPase Na+/K+ transporting subunit beta 1 (ATP1B1). Our study presents a novel targeting chemotherapeutic drug formulation for the therapy of HCC, especially for drug resistant HCC, although it is primarily and needs further study in vivo, but provided a new strategy for the development of novel anticancer drugs.


Subject(s)
Carcinoma, Hepatocellular , Casein Kinase II , Doxorubicin , Drug Resistance, Neoplasm , Liposomes , Liver Neoplasms , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liposomes/chemistry , Casein Kinase II/genetics , Casein Kinase II/metabolism , Casein Kinase II/antagonists & inhibitors , Hep G2 Cells , Drug Resistance, Neoplasm/drug effects , Drug Delivery Systems , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...