Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 448
Filter
1.
Neuroreport ; 35(12): 763-770, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38935079

ABSTRACT

It is commonly accepted that exposure to stress may cause overactivity in the orofacial muscles, leading to consistent muscle pain, which is the main symptom of temporomandibular disorders. The central neural mechanism underlying this process, however, remains unclear. The locus coeruleus is considered to play an important role in stress-related behavioral changes. Therefore, the present study was designed to examine the role of locus coeruleus neurons in masseter overactivity induced by stress. C57BL/6 mice were subjected to chronic restraint stress for 14 days to establish an animal model. The behavioral changes and the electromyography of the masseter muscle in mice were measured. The expression of Fos in locus coeruleus was observed by immunofluorescence staining to assess neuronal activation. A chemogenetic test was used to inhibit locus coeruleus neuronal activity, and the behavioral changes and electromyography of the masseter muscle were observed again. The results exhibited that chronic restraint stress could induce anxiety-like behavior, overactivity of the masseter muscle, and significant activation of locus coeruleus neurons in mice. Furthermore, inhibition of noradrenergic neuron activity within the locus coeruleus could alleviate stress-induced anxiety behavior and masseter muscle overactivity. Activation of noradrenergic neurons in locus coeruleus induced by stress may be one of the central regulatory mechanisms for stress-induced anxiety-like behaviors and overactivity of masseter muscles.


Subject(s)
Electromyography , Locus Coeruleus , Masseter Muscle , Mice, Inbred C57BL , Restraint, Physical , Stress, Psychological , Animals , Locus Coeruleus/physiopathology , Masseter Muscle/physiopathology , Stress, Psychological/physiopathology , Male , Mice , Disease Models, Animal , Anxiety/physiopathology , Anxiety/etiology
2.
Curr Biol ; 34(12): 2644-2656.e7, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38810638

ABSTRACT

An epidemic of sleep loss currently affects modern societies worldwide and is implicated in numerous physiological disorders, including pain sensitization, although few studies have explored the brain pathways affected by active sleep deprivation (ASD; e.g., due to recreation). Here, we describe a neural circuit responsible for pain sensitization in mice treated with 9-h non-stress ASD. Using a combination of advanced neuroscience methods, we found that ASD stimulates noradrenergic inputs from locus coeruleus (LCNA) to glutamatergic neurons of the hindlimb primary somatosensory cortex (S1HLGlu). Moreover, artificial inhibition of this LCNA→S1HLGlu pathway alleviates ASD-induced pain sensitization in mice, while chemogenetic activation of this pathway recapitulates the pain sensitization observed following ASD. Our study thus implicates activation of the LCNA→S1HLGlu pathway in ASD-induced pain sensitization, expanding our fundamental understanding of the multisystem interplay involved in pain processing.


Subject(s)
Locus Coeruleus , Pain , Sleep Deprivation , Somatosensory Cortex , Animals , Mice , Sleep Deprivation/physiopathology , Locus Coeruleus/metabolism , Locus Coeruleus/physiopathology , Pain/physiopathology , Somatosensory Cortex/physiopathology , Male , Norepinephrine/metabolism , Mice, Inbred C57BL , Adrenergic Neurons/metabolism , Adrenergic Neurons/physiology , Neurons/physiology , Neurons/metabolism , Neural Pathways/physiopathology
3.
Anesthesiology ; 141(1): 131-150, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38602502

ABSTRACT

BACKGROUND: Dynamic changes in neuronal activity and in noradrenergic locus coeruleus (LC) projections have been proposed during the transition from acute to chronic pain. Thus, the authors explored the cellular cFos activity of the LC and its projections in conjunction with spontaneous pain-like behavior in neuropathic rats. METHODS: Tyrosine hydroxylase:Cre and wild-type Long-Evans rats, males and females, were subjected to chronic constriction injury (CCI) for 2 (short-term, CCI-ST) or 30 days (long-term, CCI-LT), evaluating cFos and Fluoro-Gold expression in the LC, and its projections to the spinal cord (SC) and rostral anterior cingulate cortex (rACC). These tests were carried out under basal conditions (unstimulated) and after noxious mechanical stimulation. LC activity was evaluated through chemogenetic and pharmacologic approaches, as were its projections, in association with spontaneous pain-like behaviors. RESULTS: CCI-ST enhanced basal cFos expression in the LC and in its projection to the SC, which increased further after noxious stimulation. Similar basal activation was found in the neurons projecting to the rACC, although this was not modified by stimulation. Strong basal cFos expression was found in CCI-LT, specifically in the projection to the rACC, which was again not modified by stimulation. No cFos expression was found in the CCI-LT LCipsilateral (ipsi)/contralateral (contra)→SC. Chemogenetics showed that CCI-ST is associated with greater spontaneous pain-like behavior when the LCipsi is blocked, or by selectively blocking the LCipsi→SC projection. Activation of the LCipsi or LCipsi/contra→SC dampened pain-like behavior. Moreover, Designer Receptor Exclusively Activated by Designer Drugs (DREADDs)-mediated inactivation of the CCI-ST LCipsi→rACC or CCI-LT LCipsi/contra→rACC pathway, or intra-rACC antagonism of α-adrenoreceptors, also dampens pain-like behavior. CONCLUSIONS: In the short term, activation of the LC after CCI attenuates spontaneous pain-like behaviors via projections to the SC while increasing nociception via projections to the rACC. In the long term, only the projections from the LC to the rACC contribute to modulate pain-like behaviors in this model.


Subject(s)
Locus Coeruleus , Rats, Long-Evans , Animals , Locus Coeruleus/physiopathology , Locus Coeruleus/metabolism , Rats , Male , Female , Behavior, Animal/physiology , Time Factors , Neuralgia/physiopathology , Neuralgia/etiology , Neuralgia/metabolism , Disease Models, Animal
4.
Parkinsonism Relat Disord ; 123: 106558, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518543

ABSTRACT

INTRODUCTION: Although locus coeruleus (LC) has been demonstrated to play a critical role in the cognitive function of Parkinson's disease (PD), the underlying mechanism has not been elucidated. The objective was to investigate the relationship among LC degeneration, cognitive performance, and the glymphatic function in PD. METHODS: In this retrospective study, 71 PD subjects (21 with normal cognition; 29 with cognitive impairment (PD-MCI); 21 with dementia (PDD)) and 26 healthy controls were included. All participants underwent neuromelanin-sensitive magnetic resonance imaging (NM-MRI) and diffusion tensor image scanning on a 3.0 T scanner. The brain glymphatic function was measured using diffusion along the perivascular space (ALPS) index, while LC degeneration was estimated using the NM contrast-to-noise ratio of LC (CNRLC). RESULTS: The ALPS index was significantly lower in both the whole PD group (P = 0.04) and the PDD subgroup (P = 0.02) when compared to the controls. Similarly, the CNRLC was lower in the whole PD group (P < 0.001) compared to the controls. In the PD group, a positive correlation was found between the ALPS index and both the Montreal Cognitive Assessment (MoCA) score (r = 0.36; P = 0.002) and CNRLC (r = 0.26; P = 0.03). Mediation analysis demonstrated that the ALPS index acted as a significant mediator between CNRLC and the MoCA score in PD subjects. CONCLUSION: The ALPS index, a neuroimaging marker of glymphatic function, serves as a mediator between LC degeneration and cognitive function in PD.


Subject(s)
Cognitive Dysfunction , Glymphatic System , Locus Coeruleus , Magnetic Resonance Imaging , Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/physiopathology , Glymphatic System/diagnostic imaging , Glymphatic System/physiopathology , Male , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/physiopathology , Female , Aged , Middle Aged , Retrospective Studies , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Diffusion Tensor Imaging , Dementia/diagnostic imaging , Dementia/physiopathology , Aged, 80 and over
5.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339042

ABSTRACT

We have previously proven the involvement of transient receptor potential ankyrin 1 (TRPA1) in stress adaptation. A lack of TRPA1 affects both urocortin 1 (member of the corticotropin-releasing hormone (CRH) family) content of the Edinger-Westphal nucleus. The noradrenergic locus ceruleus (LC) is also an important player in mood control. We aimed at investigating whether the TRPA1 is expressed in the LC, and to test if the response to chronic variable mild stress (CVMS) is affected by a lack of TRPA1. The TRPA1 expression was examined via RNAscope in situ hybridization. We investigated TRPA1 knockout and wildtype mice using the CVMS model of depression. Tyrosine hydroxylase (TH) and FOSB double immunofluorescence were used to test the functional neuromorphological changes in the LC. No TRPA1 expression was detected in the LC. The TH content was not affected by CVMS exposure. The CVMS-induced FOSB immunosignal did not co-localize with the TH neurons. TRPA1 is not expressed in the LC. A lack of functional TRPA1 receptor neither directly nor indirectly affects the TH content of LC neurons under CVMS.


Subject(s)
Locus Coeruleus , Stress, Psychological , TRPA1 Cation Channel , Animals , Mice , Corticotropin-Releasing Hormone/metabolism , Gene Expression , Locus Coeruleus/physiopathology , Urocortins/metabolism , TRPA1 Cation Channel/genetics , Stress, Psychological/genetics , Stress, Psychological/physiopathology , Tyrosine 3-Monooxygenase/metabolism
6.
J Pain ; 23(1): 131-140, 2022 01.
Article in English | MEDLINE | ID: mdl-34375745

ABSTRACT

Converging lines of evidence suggest that autonomic and nociceptive pathways linked with the locus coeruleus are disrupted in complex regional pain syndrome (CRPS). To investigate this, pupillary dilatation to arousal stimuli (which reflects neural activity in the locus coeruleus) and pupillary reflexes to light were assessed in a cross-sectional study of 33 patients with CRPS. Moderately painful electrical shocks were delivered to the affected or contralateral limb and unilateral 110 dB SPL acoustic startle stimuli were delivered via headphones. To determine whether the acoustic startle stimuli inhibited shock-induced pain, startle stimuli were also administered bilaterally 200 ms before or after the electric shock. The pupils constricted briskly and symmetrically to bright light (500 lux) and dilated symmetrically in dim light (5 lux). However, the pupil on the CRPS-affected side was smaller than the contralateral pupil before and after the delivery of painless and painful arousal stimuli. Auditory sensitivity was greater on the affected than unaffected side but acoustic startle stimuli failed to inhibit shock-induced pain. Together, these findings suggest that neural activity in pathways linked with the locus coeruleus is compromised on the affected side in patients with CRPS. This may contribute to autonomic disturbances, auditory discomfort and pain. PERSPECTIVE: The locus coeruleus is involved not only in modulation of pain but also regulates sensory traffic more broadly. Hence, fatigue of neural activity in the ipsilateral locus coeruleus might not only exacerbate pain and hyperalgesia in CRPS but could also contribute more generally to hemilateral disturbances in sensory processing.


Subject(s)
Autonomic Nervous System/physiopathology , Complex Regional Pain Syndromes/physiopathology , Locus Coeruleus/physiopathology , Pupil/physiology , Reflex/physiology , Adult , Arousal/physiology , Cross-Sectional Studies , Female , Humans , Hyperacusis/physiopathology , Male , Middle Aged , Reflex, Startle/physiology
7.
Cells ; 10(7)2021 07 20.
Article in English | MEDLINE | ID: mdl-34359997

ABSTRACT

The noradrenergic theory of Cognitive Reserve (Robertson, 2013-2014) postulates that the upregulation of the locus coeruleus-noradrenergic system (LC-NA) originating in the brainstem might facilitate cortical networks involved in attention, and protracted activation of this system throughout the lifespan may enhance cognitive stimulation contributing to reserve. To test the above-mentioned theory, a study was conducted on a sample of 686 participants (395 controls, 156 mild cognitive impairment, 135 Alzheimer's disease) investigating the relationship between LC volume, attentional performance and a biological index of brain maintenance (BrainPAD-an objective measure, which compares an individual's structural brain health, reflected by their voxel-wise grey matter density, to the state typically expected at that individual's age). Further analyses were carried out on reserve indices including education and occupational attainment. Volumetric variation across groups was also explored along with gender differences. Control analyses on the serotoninergic (5-HT), dopaminergic (DA) and cholinergic (Ach) systems were contrasted with the noradrenergic (NA) hypothesis. The antithetic relationships were also tested across the neuromodulatory subcortical systems. Results supported by Bayesian modelling showed that LC volume disproportionately predicted higher attentional performance as well as biological brain maintenance across the three groups. These findings lend support to the role of the noradrenergic system as a key mediator underpinning the neuropsychology of reserve, and they suggest that early prevention strategies focused on the noradrenergic system (e.g., cognitive-attentive training, physical exercise, pharmacological and dietary interventions) may yield important clinical benefits to mitigate cognitive impairment with age and disease.


Subject(s)
Adrenergic Neurons/pathology , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Reserve/physiology , Gray Matter/diagnostic imaging , Locus Coeruleus/diagnostic imaging , Nerve Net/diagnostic imaging , Aged , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Attention/physiology , Bayes Theorem , Case-Control Studies , Cholinergic Neurons/pathology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Dopaminergic Neurons/pathology , Educational Status , Exercise/physiology , Female , Gray Matter/pathology , Gray Matter/physiopathology , Humans , Locus Coeruleus/pathology , Locus Coeruleus/physiopathology , Magnetic Resonance Imaging , Male , Middle Aged , Models, Neurological , Nerve Net/pathology , Nerve Net/physiopathology , Neuroimaging , Organ Size , Serotonergic Neurons/pathology , Sex Factors
8.
J Alzheimers Dis ; 83(2): 505-522, 2021.
Article in English | MEDLINE | ID: mdl-34334399

ABSTRACT

This article aims to reevaluate our approach to female vulnerability to Alzheimer's disease (AD) and put forth a new hypothesis considering how sex differences in the locus coeruleus-noradrenaline (LC-NA) structure and function could account for why females are more likely to develop AD. We specifically focus our attention on locus coeruleus (LC) morphology, the paucity of estrogens, neuroinflammation, blood-brain barrier permeability, apolipoprotein ɛ4 polymorphism (APOEɛ4), and cognitive reserve. The role of the LC-NA system and sex differences are two of the most rapidly emerging topics in AD research. Current literature either investigates the LC due to it being one of the first brain areas to develop AD pathology or acknowledges the neuroprotective effects of estrogens and how the loss of these female hormones have the capacity to contribute to the sex differences seen in AD; however, existing research has neglected to concurrently examine these two rationales and therefore leaving our hypothesis undetermined. Collectively, this article should assist in alleviating current challenges surrounding female AD by providing thought-provoking connections into the interrelationship between the disruption of the female LC-NA system, the decline of estrogens, and AD vulnerability. It is therefore likely that treatment for this heterogeneous disease may need to be distinctly developed for females and males separately, and may require a precision medicine approach.


Subject(s)
Alzheimer Disease/physiopathology , Estrogens , Heuristics , Locus Coeruleus/physiopathology , Neuroprotective Agents , Blood-Brain Barrier/pathology , Brain/pathology , Humans , Inflammation , Norepinephrine/physiology , Sex Factors
9.
Neuropharmacology ; 196: 108702, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34246685

ABSTRACT

A growing body of literature implicates noradrenergic (NE) signaling in the modulation of ethanol consumption. However, relatively few studies have detailed specific brain pathways that mediate NE-associated binge-like ethanol consumption. To begin to fill this gap in the literature, male and female C57BL6/J and TH-ires-cre mice underwent pharmacological and chemogenetic testing, respectively, in combination with "drinking in the dark" procedures to model binge-like consumption of ethanol or sucrose solutions. First, we showed that intraperitoneal administration of the NE reuptake inhibitor, reboxetine, blunted binge-like ethanol intake in C57BL6/J mice. Chemogenetic activation of locus coeruleus (LC) tyrosine hydroxylase (TH)-expressing neurons blunted binge-like ethanol intake regardless of sex. Chemogenetic activation of LC projections to the lateral hypothalamus (LH), a region implicated in ethanol consumption, blunted binge-like ethanol drinking without altering sucrose intake in ethanol-experienced or ethanol-naïve mice. In C57BL/6 J mice, LH-targeted microinfusion of an α1-adrenergic receptor (AR) agonist blunted binge-like ethanol intake across both sexes, while LH infusion of a ß-AR agonist blunted binge-like ethanol intake in females exclusively. Finally, in mice with high baseline ethanol intake both an α1- AR agonist and an α-2 AR antagonist blunted binge-like ethanol intake. The present results provide novel evidence that increased NE tone in a circuit arising from the LC and projecting to the LH reduces binge-like ethanol drinking in mice, and may represent a novel approach to treating binge or heavy drinking prior to the development of dependence. This article is part of the special Issue on "Neurocircuitry Modulating Drug and Alcohol Abuse".


Subject(s)
Adrenergic Uptake Inhibitors/pharmacology , Binge Drinking/metabolism , Central Nervous System Depressants/administration & dosage , Ethanol/administration & dosage , Hypothalamic Area, Lateral/metabolism , Locus Coeruleus/metabolism , Norepinephrine/metabolism , Reboxetine/pharmacology , Adrenergic alpha-1 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic beta-Agonists/pharmacology , Animals , Binge Drinking/physiopathology , Female , Hypothalamic Area, Lateral/drug effects , Hypothalamic Area, Lateral/physiopathology , Locus Coeruleus/drug effects , Locus Coeruleus/physiopathology , Male , Mice , Neural Pathways , Tyrosine 3-Monooxygenase
10.
Neurobiol Aging ; 106: 241-256, 2021 10.
Article in English | MEDLINE | ID: mdl-34320462

ABSTRACT

The locus coeruleus (LC) provides the primary noradrenergic input to the forebrain and hippocampus, and may be vulnerable to degeneration and contribute to age-related cognitive decline and neuroinflammation. Additionally, inhibition of noradrenergic transmission by brain-permeable beta-blockers could exacerbate cognitive impairment. This study examined effects of age and acute beta-blocker administration on LC and hippocampus pathology, neuroinflammation and learning and memory behavior in mice. Male mice, 3 and 18 months old, were administered propranolol (beta-blocker) or mabuterol (beta-adrenergic agonist) acutely around behavioral assessment. Terminal inflammatory markers in plasma, hippocampus and LC were assessed alongside histopathology. An increase in hippocampal and LC microgliosis and inflammatory proteins in the hippocampus was detected in aged mice. We report pathological hyperphosphorylation of the postsynaptic NMDA receptor subunit 2B (NR2B) in the hippocampus, suggesting neuronal hyperexcitability. Furthermore, the aged proteome revealed an induction in proteins related to energy metabolism, and mitochondria dysfunction in the LC and hippocampus. In a series of hippocampal dependent behavioral assessment tasks acute beta-adrenergic agonist or beta blocker administration altered learning and memory behavior in both aged and young mice. In Y-maze, propranolol and mabuterol differentially altered time spent in novel versus familiar arms in young and aged mice. Propranolol impaired Novel Object Recognition in both young and aged mice. Mabuterol enhanced trace learning in fear conditioning. Aged mice froze more to context and less to cue. Propranolol impaired contextual recall in aged mice. Concluding, aged mice show LC and hippocampus pathology and heightened effects of beta-adrenergic pharmacology on learning and memory.


Subject(s)
Adrenergic beta-Antagonists/adverse effects , Aging/pathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/psychology , Learning/drug effects , Locus Coeruleus/pathology , Locus Coeruleus/physiopathology , Memory/drug effects , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/psychology , Propranolol/adverse effects , Adrenergic beta-Agonists/pharmacology , Animals , Clenbuterol/analogs & derivatives , Clenbuterol/pharmacology , Cognitive Dysfunction/pathology , Hippocampus/metabolism , Hippocampus/pathology , Inflammation Mediators/metabolism , Locus Coeruleus/metabolism , Male , Mice, Inbred C57BL , Neuroinflammatory Diseases/pathology , Receptors, N-Methyl-D-Aspartate/metabolism
11.
FASEB J ; 35(7): e21747, 2021 07.
Article in English | MEDLINE | ID: mdl-34151467

ABSTRACT

We tested the hypothesis that the cognitive impairment associated with inflammatory pain may result from dysregulation of the top-down control of locus ceruleus's (LC) activity by the medial prefrontal cortex (mPFC). Injection of complete Freund's adjuvant (CFA) served as a model for inflammatory pain. The CFA injection decreased the thermal thresholds in both sexes but only the male mice showed increased anxiety-like behavior and diminished cognition, while the females were not affected. Increased calcium fluorescence, a marker for neuronal activity, was detected by photometry in the mPFC of males but not in females with CFA. Next, while chemogenetic inhibition of the projections from the mPFC to the LC improved the object recognition memory of males with pain, the inhibition of the mPFC to LC pathway in female mice produced anxiolysis and spatial memory deficits. The behavior results prompted us to compare the reciprocal innervation of mPFC and LC between the sexes. We used an anterograde transsynaptic tagging technique, which relies on postsynaptic cre transfer, to assess the innervation of LC by mPFC efferents. The males showed a higher rate of postsynaptic cre transfer into LC neurons from mPFC efferents than the females. And vice versa, a retrograde tracing experiment demonstrated that LC to mPFC projection neurons were more numerous in females when compared to males. In conclusion, we provide evidence that subtle differences in the reciprocal neuronal circuit between the LC and mPFC may contribute to sex differences associated with the adverse cognitive effects of inflammatory pain.


Subject(s)
Inflammation/physiopathology , Locus Coeruleus/physiopathology , Pain/physiopathology , Prefrontal Cortex/physiopathology , Animals , Female , Male , Memory Disorders/physiopathology , Mice , Neurons/physiology , Sex Characteristics , Spatial Memory/physiology
12.
Nat Commun ; 12(1): 2275, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859187

ABSTRACT

Individuals may show different responses to stressful events. Here, we investigate the neurobiological basis of stress resilience, by showing that neural responsitivity of the noradrenergic locus coeruleus (LC-NE) and associated pupil responses are related to the subsequent change in measures of anxiety and depression in response to prolonged real-life stress. We acquired fMRI and pupillometry data during an emotional-conflict task in medical residents before they underwent stressful emergency-room internships known to be a risk factor for anxiety and depression. The LC-NE conflict response and its functional coupling with the amygdala was associated with stress-related symptom changes in response to the internship. A similar relationship was found for pupil-dilation, a potential marker of LC-NE firing. Our results provide insights into the noradrenergic basis of conflict generation, adaptation and stress resilience.


Subject(s)
Internship and Residency , Locus Coeruleus/physiopathology , Occupational Stress/diagnosis , Resilience, Psychological , Adult , Amygdala/physiopathology , Anxiety/epidemiology , Anxiety/physiopathology , Anxiety/psychology , Connectome , Depression/epidemiology , Depression/physiopathology , Depression/psychology , Emergency Service, Hospital , Female , Humans , Locus Coeruleus/diagnostic imaging , Magnetic Resonance Imaging , Male , Occupational Stress/epidemiology , Occupational Stress/physiopathology , Predictive Value of Tests , Risk Factors , Students, Medical/psychology , Young Adult
13.
Brain Res Bull ; 172: 52-60, 2021 07.
Article in English | MEDLINE | ID: mdl-33836239

ABSTRACT

Chronic pain is recognized as an important problem in communities. The locus coeruleus (LC) with extensive ascending and descending projections has a critical role in modulating pain. Some studies indicate how the locus coeruleus-noradrenaline system can remain more active after nociceptive stimulation. In the present study, we examined whether formalin-induced inflammatory pain may affect the electrophysiological properties of LC neurons after 24 h. Inflammatory pain was induced by a subcutaneous injection of 2% formalin (10 µL) into the hind paw of 2-3 week-old male Wistar rats. After 24 h, horizontal slices of brain stem containing the locus coeruleus were prepared and whole-cell patch-clamp recordings were carried out on LC neurons. Findings revealed that LC neurons from formalin injected rats had a significant enhancement in firing rate, half-width and instantaneous frequency of action potentials, but their resting membrane potential, input resistance and afterhyperpolarization amplitude almost remained unchanged. In addition, action potential peak amplitude, maximum rise slope, maximum decay slope, first spike latency and rheobase current significantly decreased in LC neurons obtained from formalin-treated rats. Here, for the first time, we demonstrate that inflammatory pain after 24 h induces hyperexcitability in LC neurons, which in turn may result in changes in noradrenaline release and pain processing.


Subject(s)
Action Potentials/physiology , Chronic Pain/physiopathology , Inflammation/physiopathology , Locus Coeruleus/physiopathology , Neurons/physiology , Animals , Chronic Pain/chemically induced , Formaldehyde , Inflammation/chemically induced , Male , Patch-Clamp Techniques , Rats , Rats, Wistar
14.
Nat Neurosci ; 24(5): 646-657, 2021 05.
Article in English | MEDLINE | ID: mdl-33753944

ABSTRACT

Children with autism spectrum disorder often exhibit delays in achieving motor developmental milestones such as crawling, walking and speech articulation. However, little is known about the neural mechanisms underlying motor-related deficits. Here, we reveal that mice with a syntenic deletion of the chromosome 16p11.2, a common copy number variation associated with autism spectrum disorder, also exhibit delayed motor learning without showing gross motor deficits. Using in vivo two-photon imaging in awake mice, we find that layer 2/3 excitatory neurons in the motor cortex of adult male 16p11.2-deletion mice show abnormally high activity during the initial phase of learning, and the process of learning-induced spine reorganization is prolonged. Pharmacogenetic activation of locus coeruleus noradrenergic neurons was sufficient to rescue the circuit deficits and the delayed motor learning in these mice. Our results unveil an unanticipated role of noradrenergic neuromodulation in improving the delayed motor learning in 16p11.2-deletion male mice.


Subject(s)
Adrenergic Neurons/physiology , Autistic Disorder/physiopathology , Chromosome Deletion , Learning/physiology , Locus Coeruleus/physiopathology , Motor Skills/physiology , Animals , Autistic Disorder/genetics , Chromosomes, Mammalian , DNA Copy Number Variations , Disease Models, Animal , Microscopy, Fluorescence, Multiphoton
15.
J Alzheimers Dis ; 79(3): 931-948, 2021.
Article in English | MEDLINE | ID: mdl-33459706

ABSTRACT

Proinflammatory cytokines such as tumor necrosis factor (TNF), with its now appreciated key roles in neurophysiology as well as neuropathophysiology, are sufficiently well-documented to be useful tools for enquiry into the natural history of neurodegenerative diseases. We review the broader literature on TNF to rationalize why abruptly-acquired neurodegenerative states do not exhibit the remorseless clinical progression seen in those states with gradual onsets. We propose that the three typically non-worsening neurodegenerative syndromes, post-stroke, post-traumatic brain injury (TBI), and post cardiac arrest, usually become and remain static because of excess cerebral TNF induced by the initial dramatic peak keeping microglia chronically activated through an autocrine loop of microglial activation through excess cerebral TNF. The existence of this autocrine loop rationalizes post-damage repair with perispinal etanercept and proposes a treatment for cerebral aspects of COVID-19 chronicity. Another insufficiently considered aspect of cerebral proinflammatory cytokines is the fitness of the endogenous cerebral anti-TNF system provided by norepinephrine (NE), generated and distributed throughout the brain from the locus coeruleus (LC). We propose that an intact LC, and therefore an intact NE-mediated endogenous anti-cerebral TNF system, plus the DAMP (damage or danger-associated molecular pattern) input having diminished, is what allows post-stroke, post-TBI, and post cardiac arrest patients a strong long-term survival advantage over Alzheimer's disease and Parkinson's disease sufferers. In contrast, Alzheimer's disease and Parkinson's disease patients remorselessly worsen, being handicapped by sustained, accumulating, DAMP and PAMP (pathogen-associated molecular patterns) input, as well as loss of the LC-origin, NE-mediated, endogenous anti-cerebral TNF system. Adrenergic receptor agonists may counter this.


Subject(s)
Brain Injuries/physiopathology , Neurodegenerative Diseases/physiopathology , Stroke/physiopathology , Tumor Necrosis Factor-alpha/physiology , Alzheimer Disease/diagnosis , Alzheimer Disease/physiopathology , Alzheimer Disease/therapy , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Brain/physiopathology , Brain Injuries/diagnosis , Brain Injuries/therapy , COVID-19/diagnosis , COVID-19/physiopathology , COVID-19/therapy , Disease Progression , Etanercept/therapeutic use , Heart Arrest/diagnosis , Heart Arrest/physiopathology , Heart Arrest/therapy , Humans , Locus Coeruleus/physiopathology , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/therapy , Norepinephrine/physiology , Parkinson Disease/diagnosis , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Risk Factors , SARS-CoV-2 , Stroke/diagnosis , Stroke/therapy , Survivors , Tumor Necrosis Factor-alpha/antagonists & inhibitors
16.
Exp Neurol ; 338: 113600, 2021 04.
Article in English | MEDLINE | ID: mdl-33453215

ABSTRACT

Drug relapse can be mainly ascribed to the retrieval of drug withdrawal memory induced by conditioned context. Previous studies have shown that the central nucleus of the amygdala lateral division (CeL) could be activated by conditioned context. However, what source of input that activates the CeL during conditioned context-induced retrieval of morphine-withdrawal memory remains unknown. In this study, using retrograde labeling, immunohistochemistry, local microinjection and chemogenetic technologies, we found that (1) Conditioned context induced an activation of the CeL and the inhibition of the CeL inhibited the context-induced retrieval of morphine-withdrawal memory; (2) the inhibition of the paraventricular nucleus of thalamus (PVT) or PVT-CeL projection neurons caused an attenuation of the activation of the CeL by conditioned context and conditioned place aversion (CPA); (3) the inhibition of the locus coeruleus (LC) or LC-CeL projection neurons decreased the activation of the CeL by conditioned context and CPA. These results suggest that the CeL is necessary for conditioned context-induced retrieval of morphine-withdrawal memory and inputs from PVT and LC contribute to the activation of the CeL during context-induced retrieval of morphine withdrawal memory.


Subject(s)
Central Amygdaloid Nucleus/physiopathology , Locus Coeruleus/physiopathology , Memory/physiology , Midline Thalamic Nuclei/physiopathology , Morphine Dependence/physiopathology , Animals , Conditioning, Psychological/physiology , Male , Mice , Mice, Inbred C57BL , Neural Pathways/physiopathology , Substance Withdrawal Syndrome/physiopathology
17.
Article in English | MEDLINE | ID: mdl-33007320

ABSTRACT

The noradrenergic locus coeruleus nucleus is an important station in both the ascending and descending pain regulatory pathways. These neurons discharge in tonic and phasic modes in response to sensory stimuli. However, few studies have set out to characterize the electrophysiological response of the locus coeruleus to noxious stimuli in conditions of neuropathic pain. Thus, the effects of mechanical nociceptive stimulation of the sciatic nerve area on spontaneous (tonic) and sensory-evoked (phasic) locus coeruleus discharge were studied by extracellular recording in anesthetized rats seven, fourteen and twenty-eight days after chronic constriction injury. Minor significant electrophysiological changes were found seven and fourteen days after nerve injury. However, alterations to the spontaneous activity in both the ipsilateral and contralateral locus coeruleus were found twenty-eight days after nerve constriction, as witnessed by an increase of burst firing incidence and irregular firing patterns. Furthermore, noxious-evoked responses were exacerbated in the contralateral and ipsilateral nucleus at twenty-eight days after injury, as were the responses evoked when stimulating the uninjured paw. In addition, mechanical stimulation of the hindpaw produced a significant sensitization of neuronal tonic activity after 28 days of neuropathy. In summary, long-term nerve injury led to higher spontaneous activity and exacerbated noxious-evoked responses in the locus coeruleus to stimulation of nerve-injured and even uninjured hindpaws, coinciding temporally with the development of depressive and anxiogenic-like behavior.


Subject(s)
Evoked Potentials/physiology , Locus Coeruleus/physiopathology , Neuralgia/physiopathology , Neurons/physiology , Animals , Anxiety/physiopathology , Behavior, Animal/physiology , Male , Neuralgia/etiology , Peripheral Nerve Injuries/complications , Peripheral Nerve Injuries/physiopathology , Rats , Rats, Sprague-Dawley , Sciatic Nerve/injuries , Sciatic Nerve/physiopathology
18.
Neuropathol Appl Neurobiol ; 47(4): 488-505, 2021 06.
Article in English | MEDLINE | ID: mdl-33119191

ABSTRACT

AIMS: Amyloid ß-oligomers (AßO) are potent modulators of Alzheimer's pathology, yet their impact on one of the earliest brain regions to exhibit signs of the condition, the locus coeruleus (LC), remains to be determined. Of particular importance is whether AßO impact the spontaneous excitability of LC neurons. This parameter determines brain-wide noradrenaline (NA) release, and thus NA-mediated brain functions, including cognition, emotion and immune function, which are all compromised in Alzheimer's patients. Therefore, the aim of the study was to determine the expression profile of AßO in the LC of Alzheimer's patients and to probe their potential impact on the molecular and functional correlates of LC excitability, using a mouse model of increased Aß production (APP-PSEN1). METHODS AND RESULTS: Immunohistochemistry and confocal microscopy, using AßO-specific antibodies, confirmed LC AßO expression both intraneuronally and extracellularly in both Alzheimer's and APP-PSEN1 samples. Patch clamp electrophysiology recordings revealed that APP-PSEN1 LC neuronal hyperexcitability accompanied this AßO expression profile, arising from a diminished inhibitory effect of GABA due to impaired expression and function of the GABA-A receptor (GABAA R) α3 subunit. This altered LC α3-GABAA R expression profile overlapped with AßO expression in samples from both APP-PSEN1 mice and Alzheimer's patients. Finally, strychnine-sensitive glycine receptors (GlyRs) remained resilient to Aß-induced changes and their activation reversed LC hyperexcitability. CONCLUSIONS: The data suggest a close association between AßO and α3-GABAA Rs in the LC of Alzheimer's patients, and their potential to dysregulate LC activity, thereby contributing to the spectrum of pathology of the LC-NA system in this condition.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Locus Coeruleus/pathology , Neurons/pathology , Alzheimer Disease/metabolism , Animals , Disease Models, Animal , Humans , Locus Coeruleus/metabolism , Locus Coeruleus/physiopathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Neurons/physiology
19.
PLoS One ; 15(12): e0244662, 2020.
Article in English | MEDLINE | ID: mdl-33378354

ABSTRACT

Although behavioral studies have repeatedly demonstrated that individuals with attention-deficit/hyperactivity disorder (ADHD) have deficits in alertness, little is known about its underlying neural basis. It is hypothesized that pupil diameter reflects the firing of norepinephrine (NE) neurons in the locus coeruleus (LC), and that the LC-NE neuromodulatory system for regulating alertness may be dysfunctional in ADHD. To clinically and non-invasively examine this hypothesis, we monitored the kinetics of pupil diameter in response to stimuli and compared them between adults with ADHD (n = 17) and typically developing (TD) adults (n = 23) during an auditory continuous performance task. Individuals in the ADHD group exhibited a significantly larger tonic pupil diameter, and a suppressed stimulus-evoked phasic pupil dilation, compared to those in the TD group. These findings provide support for the idea that the aberrant regulatory control of pupil diameter in adults with ADHD may be consistent with a compromised state of alertness resulting from a hyperactivated LC-NE system.


Subject(s)
Attention Deficit Disorder with Hyperactivity/psychology , Locus Coeruleus/physiopathology , Norepinephrine/metabolism , Pupil/physiology , Adult , Attention Deficit Disorder with Hyperactivity/physiopathology , Case-Control Studies , Female , Humans , Male , Neurons/physiology , Neuropsychological Tests
20.
Int J Mol Sci ; 21(22)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207731

ABSTRACT

Locus Coeruleus (LC) is the main noradrenergic nucleus of the central nervous system, and its neurons widely innervate the whole brain. LC is severely degenerated both in Alzheimer's disease (AD) and in Parkinson's disease (PD), years before the onset of clinical symptoms, through mechanisms that differ among the two disorders. Several experimental studies have shown that noradrenaline modulates neuroinflammation, mainly by acting on microglia/astrocytes function. In the present review, after a brief introduction on the anatomy and physiology of LC, we provide an overview of experimental data supporting a pathogenetic role of LC degeneration in AD and PD. Then, we describe in detail experimental data, obtained in vitro and in vivo in animal models, which support a potential role of neuroinflammation in such a link, and the specific molecules (i.e., released cytokines, glial receptors, including pattern recognition receptors and others) whose expression is altered by LC degeneration and might play a key role in AD/PD pathogenesis. New imaging and biochemical tools have recently been developed in humans to estimate in vivo the integrity of LC, the degree of neuroinflammation, and pathology AD/PD biomarkers; it is auspicable that these will allow in the near future to test the existence of a link between LC-neuroinflammation and neurodegeneration directly in patients.


Subject(s)
Alzheimer Disease , Locus Coeruleus , Parkinsonian Disorders , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Humans , Inflammation/metabolism , Inflammation/pathology , Inflammation/physiopathology , Locus Coeruleus/metabolism , Locus Coeruleus/pathology , Locus Coeruleus/physiopathology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Parkinsonian Disorders/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL