Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 512
Filter
1.
Pestic Biochem Physiol ; 200: 105845, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582577

ABSTRACT

7-dehydrocholesterol (7-DHC) is a key intermediate product used for biosynthesis of molting hormone. This is achieved through a series of hydroxylation reactions catalyzed by the Halloween family of cytochrome P450s. Neverland is an enzyme catalyzes the first reaction of the ecdysteroidogenic pathway, which converts dietary cholesterol into 7-DHC. However, research on the physiological function of neverland in orthopteran insects is lacking. In this study, neverland from Locusta migratoria (LmNvd) was cloned and analyzed. LmNvd was mainly expressed in the prothoracic gland and highly expressed on days 6 and 7 of fifth instar nymphs. RNAi-mediated silencing of LmNvd resulted in serious molting delays and abnormal phenotypes, which could be rescued by 7-DHC and 20-hydroxyecdysone supplementation. Hematoxylin and eosin staining results showed that RNAi-mediated silencing of LmNvd disturbed the molting process by both promoting the synthesis of new cuticle and suppressing the degradation of the old cuticle. Quantitative real-time PCR results suggested that the mRNA expression of E75 early gene and chitinase 5 gene decreased and that of chitin synthase 1 gene was markedly upregulated after knockdown of LmNvd. Our results suggest that LmNvd participates in the biosynthesis process of molting hormone, which is involved in regulating chitin synthesis and degradation in molting cycles.


Subject(s)
Locusta migratoria , Molting , Animals , Molting/genetics , Ecdysone/metabolism , Locusta migratoria/genetics , Locusta migratoria/metabolism , RNA Interference , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Insect Proteins/metabolism
2.
Pestic Biochem Physiol ; 201: 105860, 2024 May.
Article in English | MEDLINE | ID: mdl-38685214

ABSTRACT

The Osiris gene family is believed to play important roles in insect biology. Previous studies mainly focused on the roles of Osiris in Drorophila, how Osiris operates during the development of other species remains largely unknown. Here, we investigated the role of LmOsi17 in development of the hemimetabolous insect Locusta migratoria. LmOsi17 was highly expressed in the intestinal tract of nymphs. Knockdown of LmOsi17 by RNA interference (RNAi) in nymphs resulted in growth defects. The dsLmOsi17-injected nymphs did not increase in body weight or size and eventually died. Immunohistochemical analysis showed that LmOsi17 was localized to the epithelial cells of the foregut and the gastric caecum. Histological observation and hematoxylin-eosin staining indicate that the foregut and gastric caecum are deformed in dsLmOsi17 treated nymphs, suggesting that LmOsi17 is involved in morphogenesis of foregut and gastric caecum. In addition, we observed a significant reduction in the thickness of the new cuticle in dsLmOsi17-injected nymphs compared to control nymphs. Taken together, these results suggest that LmOsi17 contributes to morphogenesis of intestinal tract that affects growth and development of nymphs in locusts.


Subject(s)
Insect Proteins , Locusta migratoria , Morphogenesis , Nymph , Animals , Locusta migratoria/growth & development , Locusta migratoria/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Nymph/growth & development , RNA Interference , Intestines
3.
Int J Biol Macromol ; 266(Pt 2): 131137, 2024 May.
Article in English | MEDLINE | ID: mdl-38537854

ABSTRACT

The coat protein II (COPII) complex consists of five primary soluble proteins, namely the small GTP-binding protein Sar1, the inner coat Sec23/Sec24 heterodimers, and the outer coat Sec13/Sec31 heterotetramers. COPII is essential for cellular protein and lipid trafficking through cargo sorting and vesicle formation at the endoplasmic reticulum. However, the roles of COPII assembly genes remain unknown in insects. In present study, we identified five COPII assembly genes (LmSar1, LmSec23, LmSec24, LmSec13 and LmSec31) in Locusta migratoria. RT-qPCR results revealed that these genes showed different expression patterns in multiple tissues and developmental days of fifth-instar nymphs. Injection of double-stranded RNA against each LmCOPII gene induced a high RNAi efficiency, and considerably suppressed feeding, and increased mortality to 100 %. Results from the micro-sectioning and hematoxylin-eosin staining of midguts showed that the brush border was severely damaged and the number of columnar cells was significantly reduced in dsLmCOPII-injected nymphs, as compared with the control. The dilated endoplasmic reticulum phenotype of columnar cells was observed by transmission electron microscopy. RT-qPCR results further indicated that silencing any of the five genes responsible for COPII complex assembly repressed the expression of genes involved in insulin/mTOR-associated nutritional pathway. Therefore, COPII assembly genes could be promising RNAi targets for insect pest management by disrupting gut and cuticle development.


Subject(s)
Locusta migratoria , RNA Interference , Animals , Locusta migratoria/genetics , Locusta migratoria/growth & development , Homeostasis , Insect Proteins/genetics , Insect Proteins/metabolism , COP-Coated Vesicles/metabolism , COP-Coated Vesicles/genetics , Gastrointestinal Tract/metabolism
4.
J Chem Ecol ; 50(1-2): 11-17, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37851278

ABSTRACT

Swarming locusts cause huge plagues across the world threatening food production. Before swarms form, locust populations exhibit a dramatic phase change from a solitary to a gregarious phase. The cause of this phase change is a complicated interplay of conspecific and environmental cues and is, especially for one of the major pests, the migratory locust Locusta migratoria, still not well understood. Here we study the behavior of both solitary and gregarious L. migratoria towards the headspace odors of conspecifics. As we do not find a general attraction of gregarious animals to the headspace of gregarious conspecifics, swarm formation does not seem to be mainly governed by olfactory aggregation cues. When testing for potential mating signals, we observe that the headspace of virgin gregarious females is highly attractive only towards virgin males of the same phase, while mated gregarious males and solitary males, regardless of their mating state, do not become attracted. Interestingly, this phase-specific attraction goes along with the finding, that mating behavior in experiments with inter-phasic pairings is extremely rare. Our data suggest that odor emissions in L. migratoria play a significant role in a mating context.


Subject(s)
Locusta migratoria , Animals , Female , Male , Smell , Behavior, Animal , Odorants , Reproduction
5.
Insect Sci ; 31(2): 435-447, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37489033

ABSTRACT

Locust (Locusta migratoria) has a single striated muscle myosin heavy chain (Mhc) gene, which contains 5 clusters of alternative exclusive exons and 1 differently included penultimate exon. The alternative exons of Mhc gene encode 4 distinct regions in the myosin motor domain, that is, the N-terminal SH3-like domain, one lip of the nucleotide-binding pocket, the relay, and the converter. Here, we investigated the role of the alternative regions on the motor function of locust muscle myosin. Using Sf9-baculovirus protein expression system, we expressed and purified 5 isoforms of the locust muscle myosin heavy meromyosin (HMM), including the major isoform in the thorax dorsal longitudinal flight muscle (FL1) and 4 isoforms expressed in the abdominal intersegmental muscle (AB1 to AB4). Among these 5 HMMs, FL1-HMM displayed the highest level of actin-activated adenosine triphosphatase (ATPase) activity (hereafter referred as ATPase activity). To identify the alternative region(s) responsible for the elevated ATPase activity of FL1-HMM, we produced a number of chimeras of FL1-HMM and AB4-HMM. Substitution with the relay of AB4-HMM (encoded by exon-14c) substantially decreased the ATPase activity of FL1-HMM, and conversely, the relay of FL1-HMM (encoded by exon-14a) enhanced the ATPase activity of AB4-HMM. Mutagenesis showed that the exon-14a-encoded residues Gly474 and Asn509 are responsible for the elevated ATPase activity of FL1-HMM. Those results indicate that the alternative relay encoded by exon-14a/c play a key role in regulating the ATPase activity of FL1-HMM and AB4-HMM.


Subject(s)
Locusta migratoria , Muscle, Striated , Animals , Locusta migratoria/genetics , Locusta migratoria/metabolism , Amino Acid Sequence , Myosins/chemistry , Myosins/genetics , Myosins/metabolism , Protein Isoforms/genetics , Myosin Heavy Chains/chemistry , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Muscle, Striated/metabolism
6.
Pest Manag Sci ; 80(2): 442-451, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37717207

ABSTRACT

BACKGROUND: The oriental migratory locust is a major crop pest across eastern and south-eastern Asia. Metarhizium anisopliae is an effective biopesticide agent used for locust control, but its performance is temperature dependent, and thus can be more variable than chemical pesticide performance. To predict biopesticide performance for the control of the oriental migratory locust, we adapted a previous temperature-dependent model and validated it using field trial data. To increase the applicability of this model, we explored the use of readily available temperature variables, as well as our own satellite-derived canopy temperature variable, to run the model. RESULTS: Compared to collected in situ temperature data, our canopy temperature variable most accurately represented the ambient temperature experienced by the locust. When the biopesticide performance model was run using this canopy temperature and compared to field trials results, the model predictions were more accurate than when the model was run with the other temperature variables. The accuracy of the biopesticide performance model was impacted by vegetation cover, but across the areas most associated with locust oviposition, growth and migration, the model predictions were satisfactorily accurate to guide biopesticide operational use. CONCLUSION: We validated the model in six provinces in China, representing the three agro-ecological zones largely representative of the oriental migratory locust problem areas in China, Thailand, Cambodia and Vietnam. Whilst further validation work is needed, this model could be used in these countries to assess, at a fine spatial scale, the appropriateness of M. anisopliae for controlling the oriental migratory locust. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Grasshoppers , Locusta migratoria , Animals , Biological Control Agents , Pest Control , China , Vietnam
7.
Food Funct ; 15(2): 493-502, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38099620

ABSTRACT

Edible insects have been proposed as an environmentally and economically sustainable source of protein, and are considered as an alternative food, especially to meat. The migratory locust, Locusta migratoria, is an edible species authorised by the European Union as a novel food. In addition to their nutritional value, edible insects are also sources of bioactive compounds. This study used an in silico approach to simulate the gastrointestinal digestion of selected L. migratoria proteins and posteriorly identify peptides capable of selectively inhibiting the N-subunit of the somatic angiotensin-I converting enzyme (sACE). The application of the molecular docking protocol enabled the identification of three peptides, namely TCDSL, IDCSR and EAEEGQF, which were predicted to act as potential selective inhibitors of the sACE N-domain and, therefore, possess bioactivity against cardiac and pulmonary fibrosis.


Subject(s)
Locusta migratoria , Animals , Locusta migratoria/chemistry , Molecular Docking Simulation , Peptides/pharmacology , Peptides/metabolism , Proteins , Food
8.
ACS Nano ; 17(24): 25311-25321, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38064446

ABSTRACT

Natural materials, such as locust mandibles and squid beaks, define significant mechanical gradients that have been attributed to the chemical gradients of their specialized structural proteins (SPs). However, the mechanism by which SPs form chemical gradients in these materials remains unknown. In this study, a highly abundant histidine-rich structural protein (LmMHSP) was identified in the mandible of a migratory locust (Locusta migratoria). LmMHSP was proven by both in vivo and in vitro evidence to act as a core building block of the mandible with a variety of synergistic functions including chitin binding, matrix formation via liquid-liquid phase separation, chemical cross-linking, and metal coordination. Furthermore, we found that the SP gradient in the locust mandible stems from the chitin-binding activity of LmMHSP and different microstructures of chitin scaffolds in different regions. These findings advance our understanding of the formation mechanisms of natural biomaterials and have implications for the fabrication of biomimetic materials.


Subject(s)
Biomimetic Materials , Locusta migratoria , Animals , Insect Proteins/chemistry , Insect Proteins/metabolism , Chitin/chemistry , Locusta migratoria/metabolism
9.
Pestic Biochem Physiol ; 196: 105620, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945256

ABSTRACT

Cytochrome P450 monooxygenases (P450s) are a superfamily of multifunctional heme-containing proteins and could function as odorant-degrading enzymes (ODEs) in insect olfactory systems. In our previous study, we identified a P450 gene from the antennal transcriptome of Locusta migratoria, LmCYP6MU1, which could be induced by a variety of volatiles. However, the regulatory mechanisms of this gene in response to volatiles remain unknown. In current study, we investigated the tissues and development stages expression patterns of LmCYP6MU1 and determined its olfactory function in the recognition of the main host plant volatiles which induced LmCYP6MU1 expression. The results showed that LmCYP6MU1 was antenna-rich and highly expressed throughout the antennal developmental stages of locusts. LmCYP6MU1 played important roles in the recognition of trans-2-hexen-1-al and nonanal. Insect CncC regulates the expression of P450 genes. We tested whether LmCncC regulates LmCYP6MU1 expression. It was found that LmCncC knockdown in the antennae resulted in the downregulation of LmCYP6MU1 and repressed the volatiles-mediated induction of LmCYP6MU1. LmCncC knockdown reduced the electroantennogram (EAG) and behavioral responses of locusts to volatiles. These results suggested that LmCncC could regulate the basal and volatiles-mediated inducible expression of LmCYP6MU1 responsible for the recognition of trans-2-hexen-1-al and nonanal. These findings provide an original basis for understanding the regulation mechanisms of LmCncC on LmCYP6MU1 expression and help us better understand the LmCncC-mediated olfactory plasticity.


Subject(s)
Locusta migratoria , Animals , Locusta migratoria/genetics , Locusta migratoria/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome , Gene Expression Regulation , Insect Proteins/genetics , Insect Proteins/metabolism , Arthropod Antennae/metabolism
10.
Pestic Biochem Physiol ; 196: 105627, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945261

ABSTRACT

BACKGROUND: The cap 'n' collar (Cnc) belongs to the Basic Leucine Zipper (bZIP) transcription factor super family. Cap 'n' collar isoform C (CncC) is highly conserved in the animal kingdom. CncC contributes to the regulation of growth, development, and aging and takes part in the maintenance of homeostasis and the defense against endogenous and environmental stress. Insect CncC participates in the regulation of various kinds of stress-responsive genes and is involved in the development of insecticide resistance. RESULTS: In this study, one full-length CncC sequence of Locusta migratoria was identified and characterized. Upon RNAi silencing of LmCncC, insecticide bioassays showed that LmCncC played an essential role in deltamethrin and imidacloprid susceptibility. To fully investigate the downstream genes regulated by LmCncC and further identify the LmCncC-regulated genes involved in deltamethrin and imidacloprid susceptibility, a comparative transcriptome was constructed. Thirty-five up-regulated genes and 73 down-regulated genes were screened from dsLmCncC-knockdown individuals. We selected 22 LmCncC-regulated genes and verified their gene expression levels using RT-qPCR. Finally, six LmCYP450 genes belonging to the CYP6 family were selected as candidate detoxification genes, and LmCYP6FD1 and LmCYP6FE1 were further validated as detoxification genes of insecticides via RNAi, insecticide bioassays, and metabolite identification. CONCLUSIONS: Our data suggest that the locust CncC gene is associated with deltamethrin and imidacloprid susceptibility via the regulation of LmCYP6FD1 and LmCYP6FE1, respectively.


Subject(s)
Insecticides , Locusta migratoria , Humans , Animals , Insecticides/pharmacology , Insecticides/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Locusta migratoria/genetics , Locusta migratoria/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism
11.
Arch Insect Biochem Physiol ; 114(4): e22055, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37786392

ABSTRACT

Paranosema locustae is an entomopathogenic microsporidia with promising potential for controlling agricultural pests, including Locusta migratoria manilensis. However, it has the disadvantage of having a slow insecticidal rate, and how P. locustae infection impacts the host immune response is currently unknown. The present study investigated the effect of P. locustae on the natural immune response of L. migratoria and the activities of enzymes that protect against oxidative stress. Infection with P. locustae increased the hemocytes and nodulation number of L. migratoria at the initial stage of infection. The hemocyte-mediated modulation of immune response was also affected by a decrease in the number of hemocytes 12 days postinfection. Superoxide dismutase activity in locusts increased in the early stages of infection but decreased in the later stages, whereas the activities of peroxidase (POD) and catalase (CAT) showed opposite trends may be due to their different mechanisms of action. Furthermore, the transcription levels of mRNA of antimicrobial peptide-related genes and phenoloxidase activity in hemolymph in L. migratoria were suppressed within 15 days of P. locustae infection. Overall, our data suggest that P. locustae create a conducive environment for its own proliferation in the host by disrupting the immune defense against it. These findings provide useful information for the potential application of P. locustae as a biocontrol agent.


Subject(s)
Locusta migratoria , Microsporidia , Animals , Locusta migratoria/genetics , Microsporidia/physiology , Peroxidase
12.
Molecules ; 28(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37836800

ABSTRACT

(1) Background: Few studies have been carried out to appraise abamectin toxicity toward Locusta migratoria nymphs. (2) Methods: This study aimed to evaluate the cytotoxic effect of abamectin as an insecticide through examining the changes and damage caused by this drug, in both neurosecretory cells and midgut, using L. migratoria nymphs as a model of the cytotoxic effect. Histopathological change in the brain was examined in both normal and abamectin-treated fifth-instar nymphs. Neurosecretory cells (NSCs) were also examined where there were loosely disintegrated cells or vacuolated cytoplasm. (3) Results: The results showed distinct histological changes in the gastrointestinal tract of L. migratoria nymphs treated with abamectin, with significant cellular damage and disorganization, i.e., characteristic symptoms of cell necrosis, a destroyed epithelium, enlarged cells, and reduced nuclei. The observed biochemical changes included an elevation in all measured oxidative stress parameters compared to untreated controls. The malondialdehyde activities (MDAs) of the treated nymphs had a five- to six-fold increase, with a ten-fold increase in superoxide dismutase (SOD), nine-fold increase in glutathione-S-transferase (GST), and four-fold increase in nitric oxide (NO). (4) Conclusions: To further investigate the theoretical method of action, a molecular docking simulation was performed, examining the possibility that abamectin is an inhibitor of the fatty acid-binding protein Lm-FABP (2FLJ) and that it binds with two successive electrostatic hydrogen bonds.


Subject(s)
Insecticides , Locusta migratoria , Animals , Molecular Docking Simulation , Locusta migratoria/metabolism , Insecticides/toxicity , Insecticides/metabolism , Oxidative Stress , Insect Proteins/chemistry
13.
Int J Biol Macromol ; 253(Pt 6): 127389, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37827395

ABSTRACT

Locusts (Locusta migratoria) are one of the most destructive insect pests worldwide. Entomopathogenic fungi can infect and kill locusts, with Metarhizium acridum having evolved as a specialized acridid pathogen. However, locusts have evolved countermeasures to limit or avoid microbial pathogens, although the underlying molecular mechanisms behind these defenses remain obscure. Here, we demonstrate that L. migratoria exhibit avoidance behaviors towards M. acridum contaminated food via recognition of fungal volatiles, with locust perception of the volatile mediated by the LmigCSP60 chemosensory protein. RNAi-knockdown of LmigCSP60 lowered locust M. acridum avoidance behavior and increased infection and mortality. The fungal volatile, 2-phenylethanol (PEA), was identified to participate in locust behavioral avoidance. RNAi-knockdown of LmigCSP60 reduced antennal electrophysiological responses to PEA and impaired locust avoidance to the compound. Purified LmigCSP60 was able to bind a set of fungal volatiles including PEA. Furthermore, reduction of PEA emission by M. acridum via construction of a targeted gene knockout mutant of the alcohol dehydrogenase gene (ΔMaAdh strain) that contributes to PEA production reduced locust avoidance behavior towards the pathogen. These findings identify an olfactory circuit used by locusts to detect and avoid potential microbial pathogens before they are capable of initiating infection and highlight behavioral and olfactory adaptations affecting the co-evolution of host-pathogen interactions.


Subject(s)
Grasshoppers , Locusta migratoria , Animals , Grasshoppers/genetics , Insect Proteins/genetics , Locusta migratoria/genetics , Smell , Food
14.
Pestic Biochem Physiol ; 195: 105515, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37666582

ABSTRACT

Locusta migratoria is one of the most destructive pests that threaten crop growth and food production security in China. Metarhizium anisopliae has been widely used to control locusts around the world. Previous laboratory studies have revealed that LmFKBP24 is significantly upregulated after M. anisopliae infection, suggesting that it may play a role in immune regulation, yet the mechanism remains largely unknown. To gain further insight, we conducted an RNA interference (RNAi) study to investigate the function of LmFKBP24 in the regulation of antifungal immunity and analyzed the expression patterns of immune-induced genes. Our research revealed that LmFKBP24 is activated and upregulated when locusts are infected by M. anisopliae, and it inhibits the expression of antimicrobial peptide (AMP) defensin in the downstream of Toll pathway by combining with LmEaster rather than LmCyPA, thus exerting an immunosuppressive effect. To further investigate this, we conducted yeast two-hybrid (Y2H) and pull down assays to identify the proteins interacting with LmFKBP24. Our results provided compelling evidence for revealing the immune mechanism of L. migratoria and uncovered an innovative target for the development of new biological pesticides. Furthermore, our research indicates that LmFKBP24 interacts with LmEaster through its intact structure, providing a strong foundation for further exploration.


Subject(s)
Locusta migratoria , Animals , Antifungal Agents/pharmacology , Biological Assay , Biological Control Agents , China , Saccharomyces cerevisiae
15.
Article in English | MEDLINE | ID: mdl-37690599

ABSTRACT

Insects experience different kinds of environmental stresses that can impair neural performance, leading to spreading depolarization (SD) of nerve cells and neural shutdown underlying coma. SD is associated with a sudden loss of ion, notably K+, homeostasis in the central nervous system. The sensitivity of an insect's nervous system to stress (e.g., anoxia) can be modulated by acute pre-treatment. Rapid cold hardening (RCH) is a form of preconditioning, in which a brief exposure to low temperature can enhance the stress tolerance of insects. We used a pharmacological approach to investigate whether RCH affects anoxia-induced SD in the locust, Locusta migratoria, via one or more of the following homeostatic mechanisms: (1) Na+/K+-ATPase (NKA), (2) Na+/K+/2Cl- co-transporter (NKCC), and (3) voltage-gated K+ (Kv) channels. We also assessed abundance and phosphorylation of NKCC using immunoblotting. We found that inhibition of NKA or Kv channels delayed the onset of anoxia-induced SD in both control and RCH preparations. However, NKCC inhibition preferentially abrogated the effect of RCH. Additionally, we observed a higher abundance of NKCC in RCH preps but no statistical difference in its phosphorylation level, indicating the involvement of NKCC expression or degradation as part of the RCH mechanism.


Subject(s)
Central Nervous System , Locusta migratoria , Animals , Hypoxia , Adenosine Triphosphatases , Cold Temperature
16.
J Insect Sci ; 23(5)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37656823

ABSTRACT

Microsporidia are a group of eukaryotic intracellular parasitic organisms that infect almost all vertebrates and invertebrates. Paranosema locustae are specialized parasites of Orthoptera that are often used as biological controls of locusts, with slow effects of action. In this study, we found that after infection with P. locustae, changes in energy metabolism in male and female Locusta migratoria as were consistent, with no gender differences. During the first 8 days of infection, L. migratoria used sugar as a source of energy. After 8 days, lipids and proteins were consumed to provide energy when the spore load was considerably heavy, and energy supply was insufficient. With increasing infection concentration and time, energy conversion from sugar, fats, and proteins was improved, which may explain why high mortality did not occur until about 15 days after P. locustae infection. The tandem mass tag-based quantitative proteomics analysis revealed that most altered metabolism-related proteins were upregulated (27 of 29 in the metabolic pathway). This result suggests that P. locustae infection accelerated metabolism in L. migratoria, which facilitated the pathogen's life cycle, inhibiting the growth and development of the locusts and eventually killing them. Our findings will be useful to better understand of the chronic pathogenic mechanisms of P. locustae and inform on applications of P. locustae to control locusts.


Subject(s)
Locusta migratoria , Microsporidia , Orthoptera , Female , Male , Animals , Sugars
17.
Micron ; 172: 103502, 2023 09.
Article in English | MEDLINE | ID: mdl-37422968

ABSTRACT

The migratory locust, Locusta migratoria (Linnaeus, 1758), is one of the most destructive agricultural pests globally, and this species is particularly localized in several regions of Egypt. However, so far, very little attention has been paid to the characteristics of the testes. Furthermore, spermatogenesis requires careful analysis to characterize and track developmental episodes. We thus investigated, for the first time, the histological and ultrastructural properties of the testis in L. migratoria employing a light microscope, a scanning electron microscope (SEM), and a transmission electron microscope (TEM). Our results revealed that the testis comprises several follicles, emerging with distinct outer surface wrinkle patterns for each follicle throughout the length of the follicular wall. Furthermore, histological examination of the follicles showed that each has three developmental zones. Each zone has cysts with characteristic spermatogenic elements, beginning with the spermatogonia at the distal end of each follicle and ending with the spermatozoa at the proximal end. Moreover, spermatozoa are arranged in spermatozoa bundles called spermatodesms. Overall, this research provides novel insights into the structure of the testes of L. migratoria, which will significantly contribute to formulating effective pesticides against locusts.


Subject(s)
Locusta migratoria , Orthoptera , Male , Animals , Testis/ultrastructure , Spermatogenesis , Spermatozoa
18.
Genes (Basel) ; 14(7)2023 07 11.
Article in English | MEDLINE | ID: mdl-37510331

ABSTRACT

The TRP channel superfamily was widely found in multiple species. They were involved in many extrasensory perceptions and were important for adapting to the environment. The migratory locust was one of the worldwide agricultural pests due to huge damage. In this study, we identified 13 TRP superfamily genes in the locust genome. The number of LmTRP superfamily genes was consistent with most insects. The phylogenetic tree showed that LmTRP superfamily genes could be divided into seven subfamilies. The conserved motifs and domains analysis documented that LmTRP superfamily genes contained unique characteristics of the TRP superfamily. The expression profiles in different organs identified LmTRP superfamily genes in the head and antennae, which were involved in sensory function. The expression pattern of different life phases also demonstrated that LmTRP superfamily genes were mainly expressed in third-instar nymphs and male adults. Our findings could contribute to a better understanding of the TRP channel superfamily gene and provide potential targets for insect control.


Subject(s)
Locusta migratoria , Animals , Locusta migratoria/genetics , Locusta migratoria/metabolism , Phylogeny , Gene Expression Profiling , Insecta/genetics
19.
J Exp Biol ; 226(16)2023 08 15.
Article in English | MEDLINE | ID: mdl-37493046

ABSTRACT

The insect gut, which plays a role in ion and water balance, has been shown to leak solutes in the cold. Cold stress can also activate insect immune systems, but it is unknown whether the leak of the gut microbiome is a possible immune trigger in the cold. We developed a novel feeding protocol to load the gut of locusts (Locusta migratoria) with fluorescent bacteria before exposing them to -2°C for up to 48 h. No bacteria were recovered from the hemolymph of cold-exposed locusts, regardless of exposure duration. To examine this further, we used an ex vivo gut sac preparation to re-test cold-induced fluorescent FITC-dextran leak across the gut and found no increased rate of leak. These results question not only the validity of FITC-dextran as a marker of paracellular barrier permeability in the gut, but also to what extent the insect gut becomes leaky in the cold.


Subject(s)
Dextrans , Locusta migratoria , Animals , Locusta migratoria/physiology , Cold-Shock Response , Fluorescein-5-isothiocyanate , Cold Temperature
20.
RNA Biol ; 20(1): 323-333, 2023 01.
Article in English | MEDLINE | ID: mdl-37310197

ABSTRACT

RNA interference (RNAi) is a specific post-transcriptional gene-silencing phenomenon, which plays an important role in the regulation of gene expression and the protection from transposable elements in eukaryotic organisms. In Drosophila melanogaster, RNAi can be induced by microRNA (miRNA), endogenous small interfering RNA (siRNA), or exogenous siRNA. However, the biogenesis of miRNA and siRNA in these RNAi pathways is aided by the double-stranded RNA binding proteins (dsRBPs) Loquacious (Loqs)-PB, Loqs-PD or R2D2. In this study, we identified three alternative splicing variants of Loqs, namely Loqs-PA, -PB, and -PC in the orthopteran Locusta migratoria. We performed in vitro and in vivo experiments to study the roles of the three Loqs variants in the miRNA- and siRNA-mediated RNAi pathways. Our results show that Loqs-PB assists the binding of pre-miRNA to Dicer-1 to lead to the cleavage of pre-miRNA to yield matured miRNA in the miRNA-mediated RNAi pathway. In contrast, different Loqs proteins participate in different siRNA-mediated RNAi pathways. In exogenous siRNA-mediated RNAi pathway, binding of Loqs-PA or LmLoqs-PB to exogenous dsRNA facilitates the cleavage of dsRNA by Dicer-2, whereas in endogenous siRNA-mediated RNAi pathway, binding of Loqs-PB or Loqs-PC to endogenous dsRNA facilitates the cleavage of dsRNA by Dicer-2. Our findings provide new insights into the functional importance of different Loqs proteins derived from alternative splicing variants of Loqs in achieving high RNAi efficiency in different RNAi pathways in insects.


Subject(s)
Alternative Splicing , Locusta migratoria , MicroRNAs , RNA, Small Interfering , Animals , Locusta migratoria/genetics , MicroRNAs/genetics , RNA Interference , RNA, Double-Stranded/genetics , RNA, Small Interfering/genetics , RNA-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...