Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35169076

ABSTRACT

Retrotransposons are genomic DNA sequences that copy themselves to new genomic locations via RNA intermediates; LINE-1 is the only active and autonomous retrotransposon in the human genome. The mobility of LINE-1 is largely repressed in somatic tissues but is derepressed in many cancers, where LINE-1 retrotransposition is correlated with p53 mutation and copy number alteration (CNA). In cell lines, inducing LINE-1 expression can cause double-strand breaks (DSBs) and replication stress. Reanalyzing multiomic data from breast, ovarian, endometrial, and colon cancers, we confirmed correlations between LINE-1 expression, p53 mutation status, and CNA. We observed a consistent correlation between LINE-1 expression and the abundance of DNA replication complex components, indicating that LINE-1 may also induce replication stress in human tumors. In endometrial cancer, high-quality phosphoproteomic data allowed us to identify the DSB-induced ATM-MRN-SMC S phase checkpoint pathway as the primary DNA damage response (DDR) pathway associated with LINE-1 expression. Induction of LINE-1 expression in an in vitro model led to increased phosphorylation of MRN complex member RAD50, suggesting that LINE-1 directly activates this pathway.


Subject(s)
DNA Copy Number Variations/genetics , Long Interspersed Nucleotide Elements/genetics , Tumor Suppressor Protein p53/genetics , Cell Cycle/genetics , Cell Cycle Proteins/metabolism , DNA Breaks, Double-Stranded , DNA Repair/genetics , DNA-Binding Proteins/metabolism , Databases, Genetic , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Long Interspersed Nucleotide Elements/physiology , Neoplasms/genetics , Nuclear Proteins/metabolism , Proteins/genetics , Proteins/metabolism , Retroelements/genetics , S Phase Cell Cycle Checkpoints/genetics , Tumor Suppressor Protein p53/metabolism
2.
Reprod Sci ; 29(2): 328-340, 2022 02.
Article in English | MEDLINE | ID: mdl-33481218

ABSTRACT

Maintenance of genome integrity in the germline and in preimplantation embryos is crucial for mammalian development. Epigenetic remodeling during primordial germ cell (PGC) and preimplantation embryo development may contribute to genomic instability in these cells, since DNA methylation is an important mechanism to silence retrotransposons. Long interspersed elements 1 (LINE-1 or L1) are the most common autonomous retrotransposons in mammals, corresponding to approximately 17% of the human genome. Retrotransposition events are more frequent in germ cells and in early stages of embryo development compared with somatic cells. It has been shown that L1 activation and expression occurs in germline and is essential for preimplantation development. In this review, we focus on the role of L1 retrotransposon in mouse and human germline and early embryo development and discuss the possible relationship between L1 expression and genomic instability during these stages. Although several studies have addressed L1 expression at different stages of development, the developmental consequences of this expression remain poorly understood. Future research is still needed to highlight the relationship between L1 retrotransposition events and genomic instability during germline and early embryo development.


Subject(s)
Embryonic Development/drug effects , Genomic Instability , Germ Cells , Long Interspersed Nucleotide Elements , Animals , Gene Expression Regulation, Developmental , Genomic Instability/genetics , Genomic Instability/physiology , Germ Cells/metabolism , Germ Cells/physiology , Humans , Long Interspersed Nucleotide Elements/physiology , Mice
3.
Mol Biol Rep ; 48(12): 7767-7773, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34669125

ABSTRACT

PURPOSE: Millions of pregnant, HIV-infected women take reverse transcriptase inhibitors, such as zidovudine (azidothymidine or AZT), during pregnancy. Reverse transcription plays important roles in early development, including regulation of telomere length (TL) and activity of transposable elements (TE). So we evaluated the effects of AZT on embryo development, TL, and copy number of an active TE, Long Interspersed Nuclear Element 1 (LINE-1), during early development in a murine model. DESIGN: Experimental study. METHODS: In vivo fertilized mouse zygotes from B6C3F1/B6D2F1 mice were cultured for 48 h in KSOM with no AZT (n = 45), AZT 1 µM (n = 46) or AZT 10 µM (n = 48). TL was measured by single-cell quantitative PCR (SC-pqPCR) and LINE-1 copy number by qPCR. The percentage of morulas at 48 h, TL and LINE-1 copy number were compared among groups. RESULTS: Exposure to AZT 1 µM or 10 µM significantly impairs early embryo development. TL elongates from oocyte to control embryos. TL in AZT 1 µM embryos is shorter than in control embryos. LINE-1 copy number is significantly lower in oocytes than control embryos. AZT 1 µM increases LINE-1 copy number compared to oocytes controls, and AZT 10 µM embryos. CONCLUSION: AZT at concentrations approaching those used to prevent perinatal HIV transmission compromises mouse embryo development, prevents telomere elongation and increases LINE-1 copy number after 48 h treatment. The impact of these effects on the trajectory of aging of children exposed to AZT early during development deserves further investigation.


Subject(s)
RNA-Binding Proteins/genetics , Telomere/metabolism , Zidovudine/pharmacology , Animals , Anti-HIV Agents/pharmacology , Blastocyst/drug effects , DNA Transposable Elements/genetics , Embryonic Development/drug effects , Female , HIV Infections/drug therapy , HIV Infections/genetics , Long Interspersed Nucleotide Elements/genetics , Long Interspersed Nucleotide Elements/physiology , Mice/embryology , Models, Animal , Oocytes/drug effects , Pregnancy , RNA-Binding Proteins/metabolism , Reverse Transcriptase Inhibitors/pharmacology , Telomere/drug effects , Zidovudine/adverse effects , Zidovudine/metabolism , Zygote/drug effects
4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34083437

ABSTRACT

Transposable elements (TEs) are mobile sequences that engender widespread mutations and thus are a major hazard that must be silenced. The most abundant active class of TEs in mammalian genomes is long interspersed element class 1 (LINE1). Here, we report that LINE1 transposition is suppressed in the male germline by transcription factors encoded by a rapidly evolving X-linked homeobox gene cluster. LINE1 transposition is repressed by many members of this RHOX transcription factor family, including those with different patterns of expression during spermatogenesis. One family member-RHOX10-suppresses LINE1 transposition during fetal development in vivo when the germline would otherwise be susceptible to LINE1 activation because of epigenetic reprogramming. We provide evidence that RHOX10 suppresses LINE transposition by inducing Piwil2, which encodes a key component in the Piwi-interacting RNA pathway that protects against TEs. The ability of RHOX transcription factors to suppress LINE1 is conserved in humans but is lost in RHOXF2 mutants from several infertile human patients, raising the possibility that loss of RHOXF2 causes human infertility by allowing uncontrolled LINE1 expression in the germline. Together, our results support a model in which the Rhox gene cluster is in an evolutionary arms race with TEs, resulting in expansion of the Rhox gene cluster to suppress TEs in different biological contexts.


Subject(s)
DNA Transposable Elements/genetics , Germ Cells/metabolism , Long Interspersed Nucleotide Elements/genetics , Long Interspersed Nucleotide Elements/physiology , Multigene Family , Animals , Gene Expression Regulation , Genes, X-Linked , HEK293 Cells , Homeodomain Proteins , Humans , Male , Mice , Mice, Inbred C57BL , Spermatogenesis/genetics , Transcription Factors/metabolism
5.
Nat Commun ; 11(1): 5387, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33144593

ABSTRACT

The Human Silencing Hub (HUSH) complex is necessary for epigenetic repression of LINE-1 elements. We show that HUSH-depletion in human cell lines and primary fibroblasts leads to induction of interferon-stimulated genes (ISGs) through JAK/STAT signaling. This effect is mainly attributed to MDA5 and RIG-I sensing of double-stranded RNAs (dsRNAs). This coincides with upregulation of primate-conserved LINE-1s, as well as increased expression of full-length hominid-specific LINE-1s that produce bidirectional RNAs, which may form dsRNA. Notably, LTRs nearby ISGs are derepressed likely rendering these genes more responsive to interferon. LINE-1 shRNAs can abrogate the HUSH-dependent response, while overexpression of an engineered LINE-1 construct activates interferon signaling. Finally, we show that the HUSH component, MPP8 is frequently downregulated in diverse cancers and that its depletion leads to DNA damage. These results suggest that LINE-1s may drive physiological or autoinflammatory responses through dsRNA sensing and gene-regulatory roles and are controlled by the HUSH complex.


Subject(s)
Epigenesis, Genetic/physiology , Gene Expression Regulation, Neoplastic , Gene Silencing/physiology , Interferon Type I/metabolism , Long Interspersed Nucleotide Elements/physiology , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , DNA Damage , Down-Regulation , Gene Knockout Techniques , HEK293 Cells , HeLa Cells , Humans , Inflammation , Interferon-Induced Helicase, IFIH1/metabolism , Long Interspersed Nucleotide Elements/genetics , Phosphoproteins/metabolism , RNA, Double-Stranded , Receptors, Immunologic , Sequence Analysis, RNA , Signal Transduction
6.
Int J Mol Sci ; 21(18)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911699

ABSTRACT

Long interspersed element-1 (LINE-1/L1s) contributes 17% of the human genome with more than 1 million elements present; however, fewer than 100 of these have evidence for being retrotransposition competent (RC). In addition to those RC-L1s present in the reference genome, there are a small number of known non-reference L1 insertions that are also retrotransposition competent. L1 activity, whether through the potentially detrimental effects of their mRNA or protein expression or somatic retrotransposition events, has been linked to several neurological conditions. The polymorphic nature of both reference and non-reference RC-L1s in terms of their presence or absence will result in individuals harboring a different combination of these elements and it is currently unknown if this type of germline variation contributes to the risk of neurological disease. Here, we utilized whole-genome sequencing data from 178 healthy controls and 372 Parkinson's disease (PD) subjects from the Parkinson's Progression Markers Initiative (PPMI) to investigate the role of RC-L1s in PD. In the PPMI cohort, we identified 22 reference and 50 non-reference polymorphic RC-L1 loci. Focusing on 16 highly active RC-L1 loci, an increased burden of these elements (≥9) was associated with PD (OR 1.25, 95% CI 1.03-1.51, p = 0.02). In addition, we identified significant associations of progression markers of PD and the burden of highly active RC-L1s. This study has identified a novel type of genetic element associated with PD risk and disease progression.


Subject(s)
Long Interspersed Nucleotide Elements/genetics , Parkinson Disease/genetics , Retroelements/genetics , Adult , Aged , Aged, 80 and over , Cohort Studies , Databases, Genetic , Disease Progression , Female , Genome, Human , Germ Cells/metabolism , Humans , Long Interspersed Nucleotide Elements/physiology , Male , Middle Aged , Parkinson Disease/metabolism , RNA, Messenger , Risk Factors
7.
Anal Biochem ; 603: 113809, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32511965

ABSTRACT

Long interspersed elements (LINEs) replicate by target primed reverse transcription (TPRT). Insertion involves two half reactions. Each half reaction involves DNA cleavage followed by DNA synthesis. The linker region, located just beyond the reverse transcriptase in the LINE open reading frame, contains a set of predicted helices that may form an α-finger, followed by a gag-like zinc-knuckle. Point mutations of moderately conserved amino-acid residues in the presumptive α-finger severely impair the DNA endonuclease and reverse transcriptase activities of the integration reaction during both half reactions. Mutations in the gag-like zinc-knuckle also impair DNA cleavage and DNA synthesis in some instances. Mutations in core residues that presumably disrupt the protein structure of the presumptive α-finger and the gag-like zinc-knuckle lead to a promiscuous DNA endonuclease and protein-nucleic acid complexes that get stuck in the well during analysis. The linker region appears to function as a protein, DNA, and RNA conformational switching area. The linker is used to properly position nucleic acid substrates into the active sites of the reverse transcriptase and of the DNA endonuclease.


Subject(s)
DNA/chemistry , DNA/metabolism , Long Interspersed Nucleotide Elements/physiology , Amino Acid Motifs , Binding Sites , Conserved Sequence , DNA/biosynthesis , DNA Cleavage , Deoxyribonuclease I/metabolism , Insect Proteins , Point Mutation , Polymerization , Protein Structure, Secondary , Protein Structure, Tertiary , RNA-Directed DNA Polymerase/metabolism
8.
Mol Cell Neurosci ; 105: 103494, 2020 06.
Article in English | MEDLINE | ID: mdl-32387751

ABSTRACT

Long interspersed nuclear elements-1 (LINE-1) are mobile DNA elements that comprise the majority of interspersed repeats in the mammalian genome. During the last decade, these transposable sequences have been described as controlling elements involved in transcriptional regulation and genome plasticity. Recently, LINE-1 have been implicated in neurogenesis, but to date little is known about their nuclear organization in neurons. The olfactory epithelium is a site of continuous neurogenesis, and loci of olfactory receptor genes are enriched in LINE-1 copies. Olfactory neurons have a unique inverted nuclear architecture and constitutive heterochromatin forms a block in the center of the nuclei. Our DNA FISH images show that, even though LINE-1 copies are dispersed throughout the mice genome, they are clustered forming a cap around the central heterochromatin block and frequently occupy the same position as facultative heterochromatin in olfactory neurons nuclei. This specific LINE-1 organization could not be observed in other olfactory epithelium cell types. Analyses of H3K27me3 and H3K9me3 ChIP-seq data from olfactory epithelium revealed that LINE-1 copies located at OR gene loci show different enrichment for these heterochromatin marks. We also found that LINE-1 are transcribed in mouse olfactory epithelium. These results suggest that LINE-1 play a role in the olfactory neurons' nuclear architecture. SIGNIFICANCE STATEMENT: LINE-1 are mobile DNA elements and comprise almost 20% of mice and human genomes. These retrotransposons have been implicated in neurogenesis. We show for the first time that LINE-1 retrotransposons have a specific nuclear organization in olfactory neurons, forming aggregates concentric to the heterochromatin block and frequently occupying the same region as facultative heterochromatin. We found that LINE-1 at olfactory receptor gene loci are differently enriched for H3K9me3 and H3K27me3, but LINE-1 transcripts could be detected in the olfactory epithelium. We speculate that these retrotransposons play an active role in olfactory neurons' nuclear architecture.


Subject(s)
Long Interspersed Nucleotide Elements/physiology , Olfactory Mucosa/metabolism , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/metabolism , Animals , Cell Nucleus/metabolism , Gene Expression Regulation/physiology , Heterochromatin/metabolism , Histones/metabolism , Male , Mice, Inbred C57BL , Receptors, Odorant/genetics
9.
Mol Neurobiol ; 57(6): 2600-2619, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32253733

ABSTRACT

cGAS is a sensor of cytosolic DNA and responds equally to exogenous and endogenous DNA. After recognition of cytosolic dsDNA or ssDNA, cGAS synthesizes the second messenger 2'3'-cGAMP, which then binds to and activates stimulator of interferon genes (STING). STING plays an essential role in responding to pathogenic DNA and self-DNA in the context of autoimmunity. In pathologic conditions, such as stroke or hypoxia-ischemia (HI), DNA can gain access into the cytoplasm of the cell and leak from the dying cells into the extracellular environment, which potentially activates cGAS/STING. Recent in vivo studies of myocardial ischemia, traumatic brain injury, and liver damage models suggest that activation of cGAS/STING is not only a side-effect of the injury, but it can also actively contribute to cell death and apoptosis. We found, for the first time, that cGAS/STING pathway becomes activated between 24 and 48 h after HI in a 10-day-old rat model. Silencing STING with siRNA resulted in decreased infarction area, reduced cortical neurodegeneration, and improved neurobehavior at 48 h, suggesting that STING can contribute to injury progression after HI. STING colocalized with lysosomal marker LAMP-1 and blocking STING reduced the expression of cathepsin B and decreased the expression of Bax and caspase 3 cleavage. We observed similar protective effects after intranasal treatment with cGAS inhibitor RU.521, which were reversed by administration of STING agonist 2'3'-cGAMP. Additionally, we showed that long interspersed element 1 (LINE-1) retrotransposon, a potential upstream activator of cGAS/STING pathway was induced at 48 h after HI, which was evidenced by increased expression of ORF1p and ORF2p proteins and increased LINE-1 DNA content in the cytosol. Blocking LINE-1 with the nucleoside analog reverse-transcriptase inhibitor (NRTI) stavudine reduced infarction area, neuronal degeneration in the cerebral cortex, and reduced the expression of Bax and cleaved caspase 3. Thus, our results identify the cGAS/STING pathway as a potential therapeutic target to inhibit delayed neuronal death after HI.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Hypoxia-Ischemia, Brain/metabolism , Long Interspersed Nucleotide Elements/physiology , Membrane Proteins/metabolism , Nerve Degeneration/metabolism , Nucleotidyltransferases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cathepsin B/metabolism , Cell Death/physiology , Disease Models, Animal , Gene Silencing , Hypoxia-Ischemia, Brain/pathology , Lysosomal Membrane Proteins/metabolism , Membrane Proteins/genetics , Nerve Degeneration/pathology , Nucleotides, Cyclic/metabolism , Nucleotidyltransferases/genetics , RNA, Small Interfering , Rats , Signal Transduction/physiology , bcl-2-Associated X Protein/metabolism
10.
Biochem Pharmacol ; 175: 113904, 2020 05.
Article in English | MEDLINE | ID: mdl-32156659

ABSTRACT

Breast cancer is the most common cancer type in females worldwide. Environmental exposure to pesticides affecting hormonal homeostasis does not necessarily induce DNA mutations but may influence gene expression by disturbances in epigenetic regulation. Expression of long interspersed nuclear element-1 (LINE-1) has been associated with tumorigenesis in several cancers. In nearly all somatic cells, LINE-1 is silenced by DNA methylation in the 5́'UTR and reactivated during disease initiation and/or progression. Strong ligands of aryl hydrocarbon receptor (AhR) activate LINE-1 through the transforming growth factor-ß1 (TGF-ß1)/Smad pathway. Hexachlorobenzene (HCB) and chlorpyrifos (CPF), both weak AhR ligands, promote cell proliferation and migration in breast cancer cells, as well as tumor growth in rat models. In this context, our aim was to examine the effect of these pesticides on LINE-1 expression and ORF1p localization in the triple-negative breast cancer cell line MDA-MB-231 and the non-tumorigenic epithelial breast cell line NMuMG, and to evaluate the role of TGF-ß1 and AhR pathways. Results show that 0.5 µM CPF and 0.005 µM HCB increased LINE-1 mRNA expression through Smad and AhR signaling in MDA-MB-231. In addition, the methylation of the first sites in 5́'UTR of LINE-1 was reduced by pesticide exposure, although the farther sites remained unaffected. Pesticides modulated ORF1p localization in MDA-MB-231: 0.005 µM HCB and 50 µM CPF increased nuclear translocation, while both induced cytoplasmic retention at 0.5 and 5 µM. Moreover, both stimulated double-strand breaks, enhancing H2AX phosphorylation, coincidentally with ORF1p nuclear localization. In NMuMG similar results were observed, since they heighten LINE-1 mRNA levels. CPF effect was through AhR and TGF-ß1 signaling, whereas HCB action depends only of AhR. In addition, both pesticides increase ORF1p expression and nuclear localization. Our results provide experimental evidence that HCB and CPF exposure modify LINE-1 methylation levels and induce LINE-1 reactivation, suggesting that epigenetic mechanisms could contribute to pesticide-induced breast cancer progression.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Epithelial Cells/metabolism , Long Interspersed Nucleotide Elements/physiology , Receptors, Aryl Hydrocarbon/metabolism , Retroelements/physiology , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Epithelial Cells/pathology , Female , Hexachlorobenzene/metabolism , Hexachlorobenzene/toxicity , Humans , Ligands , Long Interspersed Nucleotide Elements/drug effects , Retroelements/drug effects , Triple Negative Breast Neoplasms/pathology
11.
Reprod Biol Endocrinol ; 18(1): 6, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31964400

ABSTRACT

LINE1 retrotransposons are mobile DNA elements that copy and paste themselves into new sites in the genome. To ensure their evolutionary success, heritable new LINE-1 insertions accumulate in cells that can transmit genetic information to the next generation (i.e., germ cells and embryonic stem cells). It is our hypothesis that LINE1 retrotransposons, insertional mutagens that affect expression of genes, may be causal agents of early miscarriage in humans. The cell has evolved various defenses restricting retrotransposition-caused mutation, but these are occasionally relaxed in certain somatic cell types, including those of the early embryo. We predict that reduced suppression of L1s in germ cells or early-stage embryos may lead to excessive genome mutation by retrotransposon insertion, or to the induction of an inflammatory response or apoptosis due to increased expression of L1-derived nucleic acids and proteins, and so disrupt gene function important for embryogenesis. If correct, a novel threat to normal human development is revealed, and reverse transcriptase therapy could be one future strategy for controlling this cause of embryonic damage in patients with recurrent miscarriages.


Subject(s)
Abortion, Spontaneous/genetics , Abortion, Spontaneous/metabolism , Long Interspersed Nucleotide Elements/physiology , Retroelements/physiology , Abortion, Spontaneous/etiology , Animals , Female , Humans , Pregnancy
12.
Nat Commun ; 11(1): 330, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949138

ABSTRACT

Female reproductive success critically depends on the size and quality of a finite ovarian reserve. Paradoxically, mammals eliminate up to 80% of the initial oocyte pool through the enigmatic process of fetal oocyte attrition (FOA). Here, we interrogate the striking correlation of FOA with retrotransposon LINE-1 (L1) expression in mice to understand how L1 activity influences FOA and its biological relevance. We report that L1 activity triggers FOA through DNA damage-driven apoptosis and the complement system of immunity. We demonstrate this by combined inhibition of L1 reverse transcriptase activity and the Chk2-dependent DNA damage checkpoint to prevent FOA. Remarkably, reverse transcriptase inhibitor AZT-treated Chk2 mutant oocytes that evade FOA initially accumulate, but subsequently resolve, L1-instigated genotoxic threats independent of piRNAs and differentiate, resulting in an increased functional ovarian reserve. We conclude that FOA serves as quality control for oocyte genome integrity, and is not obligatory for oogenesis nor fertility.


Subject(s)
Ovarian Reserve/drug effects , Ovarian Reserve/physiology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/toxicity , Animals , Apoptosis , Argonaute Proteins/genetics , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , DNA Damage , Female , Fertility , Fetus , Long Interspersed Nucleotide Elements/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutagenicity Tests , Oocytes/metabolism , Oogenesis , Ovarian Reserve/genetics
13.
J Vis Exp ; (149)2019 07 27.
Article in English | MEDLINE | ID: mdl-31403628

ABSTRACT

Long interspersed nuclear elements 1 (LINE-1s) are the only family of mobile genetic elements in the human genome that can move autonomously. They do so by a process called retrotransposition wherein they transcribe to form an mRNA intermediate which is then consequently inserted into the genome by reverse transcription. Despite being silent in normal cells, LINE-1s are highly active in different epithelial tumors. De novo LINE-1 insertions can potentially drive tumorigenesis, and hence it is important to systematically study LINE-1 retrotransposition in cancer. Out of ~150 retrotransposition-competent LINE-1s present in the human genome, only a handful of LINE-1 loci, also referred to as "hot" LINE-1s, account for the majority of de novo LINE-1 insertion in different cancer types. We have developed a simple polymerase chain reaction (PCR)-based method to monitor retrotransposition activity of these hot LINE-1s. This method, based on long-distance inverse (LDI)-PCR, takes advantage of 3´ transduction, a mechanism by which a LINE-1 mobilizes its flanking non-repetitive region, which can subsequently be used to identify de novo LINE-1 3´ transduction events stemming from a particular hot LINE-1.


Subject(s)
Genome, Human , Long Interspersed Nucleotide Elements/physiology , Polymerase Chain Reaction , Reverse Transcription/physiology , Cell Nucleus , Gene Expression Regulation/physiology , Humans
14.
Nutrients ; 11(8)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31395820

ABSTRACT

Bioactive food compounds have different effects on global DNA methylation, an epigenetic mechanism associated with chromosomal stability and genome function. Since the diet is characterized by a mixture of foods, we aimed to identify dietary patterns in women, and to evaluate their association with long interspersed nuclear elements (LINE-1) methylation, a surrogate marker of global DNA methylation. We conducted an observational cross-sectional study of 349 women from Southern Italy, with no history of severe diseases. Dietary patterns were derived by food frequency questionnaire and principal component analysis. LINE-1 methylation of leukocyte DNA was assessed by pyrosequencing. We observed that intake of wholemeal bread, cereals, fish, fruit, raw and cooked vegetables, legumes, soup, potatoes, fries, rice, and pizza positively correlated with LINE-1 methylation levels. By contrast, vegetable oil negatively correlated with LINE-1 methylation levels. Next, we demonstrated that adherence to a prudent dietary pattern-characterized by high intake of potatoes, cooked and raw vegetables, legumes, soup and fish-was positively associated with LINE-1 methylation. In particular, women in the 3rd tertile exhibited higher LINE-1 methylation level than those in the 1st tertile (median = 66.7 %5mC; IQR = 4.67 %5mC vs. median = 63.1 %5mC; IQR = 12.3 %5mC; p < 0.001). Linear regression confirmed that women in the 3rd tertile had higher LINE-1 methylation than those in the 1st tertile (ß = 0.022; SE = 0.003; p < 0.001), after adjusting for age, educational level, employment status, smoking status, use of folic acid supplement, total energy intake and body mass index. By contrast, no differences in LINE-1 methylation across tertiles of adherence to the Western dietary pattern were evident. Interestingly, women who exclusively adhered to the prudent dietary pattern had a higher average LINE-1 methylation level than those who exclusively or preferably adhered to the Western dietary pattern (ß = 0.030; SE = 0.004; p < 0.001; ß = 0.023; SE = 0.004; p < 0.001; respectively), or those with no preference for a specific dietary pattern (ß = 0.013; SE = 0.004; p = 0.002). Our study suggested a remarkable link between diet and DNA methylation; however, further mechanistic studies should be encouraged to understand the causal relationship between dietary intake and DNA methylation.


Subject(s)
Diet, Healthy , Long Interspersed Nucleotide Elements/physiology , Adolescent , Adult , Aged , Child , Cross-Sectional Studies , Feeding Behavior , Female , Fruit , Humans , Italy , Methylation , Middle Aged , Vegetables , Young Adult
15.
Am J Physiol Regul Integr Comp Physiol ; 317(3): R397-R406, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31188650

ABSTRACT

Long interspersed element-1 (LINE-1) is a retrotransposon capable of replicating and inserting LINE-1 copies into the genome. Others have reported skeletal muscle LINE-1 markers are higher in older versus younger mice, but data are lacking in other species. Herein, gastrocnemius muscle from male Fischer 344 rats that were 3, 12, and 24 mo old (n = 9 per group) were analyzed for LINE-1 mRNA, DNA, promoter methylation and DNA accessibility. qPCR primers were designed for active (L1.3) and inactive (L1.Tot) LINE-1 elements as well as part of the ORF1 sequence. L1.3, L1.Tot, and ORF1 mRNAs were higher (P < 0.05) in 12/24 versus 3-mo-old rats. L1.3 DNA was higher in the 24-mo-old rats versus other groups, and ORF1 DNA was greater in 12/24 versus 3-mo-old rats. ORF1 protein was higher in 12/24 versus 3-mo-old rats. RNA-sequencing indicated mRNAs related to DNA methylation (Tet1) and histone acetylation (Hdac2) were lower in 24 versus 3-mo-old rats. L1.3 DNA accessibility was higher in 24-mo-old versus 3-mo-old rats. No age-related differences in nuclear histone deacetylase (HDAC) activity existed, although nuclear DNA methyltransferase (DNMT) activity was lower in 12/24 versus 3-mo-old rats (P < 0.05). In summary, markers of skeletal muscle LINE-1 activity increase across the age spectrum of rats, and this may be related to deficits in DNMT activity and/or increased LINE-1 DNA accessibility.


Subject(s)
Aging/physiology , Gene Expression Regulation/physiology , Long Interspersed Nucleotide Elements/physiology , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Animals , Biomarkers , Citrate (si)-Synthase/genetics , Citrate (si)-Synthase/metabolism , Collagen/genetics , Collagen/metabolism , Male , Muscle Proteins/genetics , Muscle, Skeletal/anatomy & histology , Rats , Rats, Inbred F344 , Triglycerides/blood , Up-Regulation
16.
Med Sci Monit ; 25: 3354-3365, 2019 May 07.
Article in English | MEDLINE | ID: mdl-31061382

ABSTRACT

BACKGROUND Maternal folate deficiency-mediated metabolic disruption is considered to be associated with the risk of intrauterine growth retardation (IUGR), but the exact mechanism remains unclear. The retrotransposon long interspersed nucleotide element-1 (LINE-1), which can induce birth defects via RNA intermediates, plays crucial roles during embryonic development. We investigated potential relationships between maternal folate and DNA methylation, and possible roles of LINE-1 in IUGR. MATERIAL AND METHODS The IUGR model was established by feeding female mice 1 of 3 diets - control diet (CD), folate-deficient diet for 2 weeks (FD2w), and folate-deficient diet for 4 weeks (FD4w) - prior to mating. Maternal serum folate, 5-methyltetrahydrofolate (5-MeTHF), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) concentrations and global DNA methylation were assessed by LC/MS/MS method. LINE-1 methylation levels in fetuses were examined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. LINE-1 expression levels were validated by real-time PCR. RESULTS Maternal folate deficiency caused plasma folate and 5-MeTHF levels to decrease and SAH level to increase in the FD4w group. Compared with the CD group, methylation levels of genomic DNA and LINE-1 decreased significantly in placenta and fetal tissues from the FD4w group. Expression of LINE-1 open reading frame 1 (ORF1) protein was elevated in fetal liver tissues. Furthermore, a strong correlation was found between methylation and disrupted one-carbon metabolism, implying that dietary folate plays important roles during embryogenesis. CONCLUSIONS Maternal dietary folate deficiency impaired one-carbon metabolism, leading to global DNA and LINE-1 hypomethylation, and then increased retrotransposition in fetuses, which can lead to IUGR.


Subject(s)
Fetal Growth Retardation/genetics , Folic Acid Deficiency/genetics , Folic Acid Deficiency/metabolism , Animals , DNA Methylation/genetics , Disease Models, Animal , Female , Fetal Growth Retardation/metabolism , Fetus/metabolism , Folic Acid/blood , Folic Acid/metabolism , Long Interspersed Nucleotide Elements/genetics , Long Interspersed Nucleotide Elements/physiology , Male , Maternal-Fetal Exchange/physiology , Mice , Mice, Inbred C57BL , Placenta/metabolism , Pregnancy , S-Adenosylhomocysteine/metabolism , S-Adenosylmethionine/metabolism , Tetrahydrofolates/metabolism
17.
Mol Cell Biol ; 39(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30692270

ABSTRACT

The retrotransposon LINE-1 (L1) is a significant source of endogenous mutagenesis in humans. In each individual genome, a few retrotransposition-competent L1s (RC-L1s) can generate new heritable L1 insertions in the early embryo, primordial germ line, and germ cells. L1 retrotransposition can also occur in the neuronal lineage and cause somatic mosaicism. Although DNA methylation mediates L1 promoter repression, the temporal pattern of methylation applied to individual RC-L1s during neurogenesis is unclear. Here, we identified a de novo L1 insertion in a human induced pluripotent stem cell (hiPSC) line via retrotransposon capture sequencing (RC-seq). The L1 insertion was full-length and carried 5' and 3' transductions. The corresponding donor RC-L1 was part of a large and recently active L1 transduction family and was highly mobile in a cultured-cell L1 retrotransposition reporter assay. Notably, we observed distinct and dynamic DNA methylation profiles for the de novo L1 and members of its extended transduction family during neuronal differentiation. These experiments reveal how a de novo L1 insertion in a pluripotent stem cell is rapidly recognized and repressed, albeit incompletely, by the host genome during neurodifferentiation, while retaining potential for further retrotransposition.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Long Interspersed Nucleotide Elements/genetics , Neurogenesis/genetics , Cells, Cultured , DNA Methylation/genetics , Embryo, Mammalian/metabolism , Germ Cells/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Long Interspersed Nucleotide Elements/physiology , Neurons/metabolism , Promoter Regions, Genetic/genetics , Retroelements/genetics
19.
Med Sci Monit ; 24: 3644-3652, 2018 May 31.
Article in English | MEDLINE | ID: mdl-29851926

ABSTRACT

BACKGROUND Recent studies have shown that increased mobilization of Long Interspersed Nuclear Elements-1 (L1) can promote the pathophysiology of multiple neurological diseases. However, its role in Huntington's disease (HD) remains unknown. MATERIAL AND METHODS R6/2 mice - a common mouse model of HD - were used to evaluate changes in L1 mobilization. Pyrosequencing was used to evaluate methylation content changes. L1-ORF1 and L1-ORF2 expression analysis were evaluated by RT-PCR and immunoblotting. Changes in pro-survival signaling were evaluated by L1-ORF overexpression studies and validated in the mouse model by immunohistochemistry and immunoblotting. RESULTS We found an increased mobilization of L1 elements in the caudate genome of R6/2 mice (p<0.05) - a common mouse model of HD - but not in wild-type mice. Subsequent pyrosequencing and expression analysis showed that the L1 elements were hypomethylated and their respective ORFs were overexpressed in the affected tissues. In addition, a significant decrease in the pro-survival proteins such as the phosphoproteins of AKT target proteins, mTORC1 activity, and AMPK alpha levels was observed with the increase in the expression L1-ORF2. CONCLUSIONS These findings indicate that hyperactive retrotransposition of L1 triggers a downstream signaling pathway affecting the neuronal survival pathways via downregulation of mTORC1 activity and AMPKalpha and increasing apoptosis in neurons.


Subject(s)
Huntington Disease/genetics , Long Interspersed Nucleotide Elements/physiology , Animals , DNA Methylation , Disease Models, Animal , Disease Progression , Endonucleases/analysis , Endonucleases/genetics , Female , Humans , Long Interspersed Nucleotide Elements/genetics , Male , Mice , Mice, Transgenic , Neurons/metabolism , Phosphoproteins/genetics , RNA-Directed DNA Polymerase/analysis , RNA-Directed DNA Polymerase/genetics , Retroelements/genetics , Signal Transduction , Transcription Factors/analysis , Transcription Factors/genetics
20.
Mol Neurobiol ; 55(2): 1740-1749, 2018 02.
Article in English | MEDLINE | ID: mdl-28220356

ABSTRACT

Long interspersed nuclear elements-1 (LINE-1 or L1) are mobile DNA sequences that are capable of duplication and insertion (retrotransposition) within the genome. Recently, retrotransposition of L1 was shown to occur within human brain leading to somatic mosaicism in hippocampus and cerebellum. Because unregulated L1 activity can promote genomic instability and mutagenesis, multiple mechanisms including epigenetic chromatin condensation have evolved to effectively repress L1 expression. Nonetheless, L1 expression has been shown to be increased in patients with Rett syndrome and schizophrenia. Based on this evidence and our reports of oxidative stress and epigenetic dysregulation in autism cerebellum, we sought to determine whether L1 expression was increased in autism brain. The results indicated that L1 expression was significantly elevated in the autism cerebellum but not in BA9, BA22, or BA24. The binding of repressive MeCP2 and histone H3K9me3 to L1 sequences was significantly lower in autism cerebellum suggesting that relaxation of epigenetic repression may have contributed to increased expression. Further, the increase in L1 expression was inversely correlated with glutathione redox status consistent with reports indicating that L1 expression is increased under pro-oxidant conditions. Finally, the expression of transcription factor FOXO3, sensor of oxidative stress, was significantly increased and positively associated with L1 expression and negatively associated with glutathione redox status. While these novel results are an important first step, future understanding of the contribution of elevated L1 expression to neuronal CNVs and genomic instability in autism will depend on emerging cell-specific genomic technologies, a challenge that warrants future investigation.


Subject(s)
Autistic Disorder/metabolism , Brain/metabolism , Long Interspersed Nucleotide Elements/physiology , Neurons/metabolism , Autistic Disorder/genetics , Autistic Disorder/pathology , Brain/pathology , Forkhead Box Protein O3/metabolism , Glutathione/metabolism , Humans , Neurons/pathology , Oxidative Stress/physiology , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...