Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.246
Filter
1.
Environ Microbiol Rep ; 16(4): e13316, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39097980

ABSTRACT

Symbiotic and pathogenic microorganisms such as bacteria and fungi represent promising alternatives to chemical insecticides to respond to the rapid increase of insecticide resistance and vector-borne disease outbreaks. This study investigated the interaction of two strains of Wolbachia, wAlbB and wAu, with the natural entomopathogenic fungi from Burkina Faso Metarhizium pingshaense, known to be lethal against Anopheles mosquitoes. In addition to showing the potential of Metarhizium against African Aedes aegypti wild-type populations, our study shows that the wAlbB and wAu provide a protective advantage against entomopathogenic fungal infections. Compared to controls, fungal-infected wAu and wAlbB-carrying mosquitoes showed higher longevity, without any significant impact on fecundity and fertility phenotypes. This study provides new insights into the complex multipartite interaction among the mosquito host, the Wolbachia endosymbiont and the entomopathogenic fungus that might be employed to control mosquito populations. Future research should investigate the fitness costs of Wolbachia, as well as its spread and prevalence within mosquito populations. Additionally, evaluating the impact of Wolbachia on interventions involving Metarhizium pingshaense through laboratory and semi-field population studies will provide valuable insights into the effectiveness of this combined approach.


Subject(s)
Aedes , Metarhizium , Wolbachia , Wolbachia/physiology , Wolbachia/genetics , Animals , Metarhizium/physiology , Aedes/microbiology , Symbiosis , Pest Control, Biological , Burkina Faso , Mosquito Control/methods , Fertility , Mosquito Vectors/microbiology , Female , Longevity
2.
Cell Metab ; 36(8): 1795-1805.e6, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39111286

ABSTRACT

A key challenge in aging research is extending lifespan in tandem with slowing down functional decline so that life with good health (healthspan) can be extended. Here, we show that monthly clearance, starting from 20 months, of a small number of cells that highly express p21Cip1 (p21high) improves cardiac and metabolic function and extends both median and maximum lifespans in mice. Importantly, by assessing the health and physical function of these mice monthly until death, we show that clearance of p21high cells improves physical function at all remaining stages of life, suggesting healthspan extension. Mechanistically, p21high cells encompass several cell types with a relatively conserved proinflammatory signature. Clearance of p21high cells reduces inflammation and alleviates age-related transcriptomic signatures of various tissues. These findings demonstrate the feasibility of healthspan extension in mice and indicate p21high cells as a therapeutic target for healthy aging.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21 , Longevity , Mice, Inbred C57BL , Animals , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Mice , Male , Aging/metabolism , Female
3.
Sci Rep ; 14(1): 19013, 2024 08 16.
Article in English | MEDLINE | ID: mdl-39152125

ABSTRACT

The beekeeping industry plays a crucial role in local economies, contributing significantly to their growth. However, bee colonies often face the threat of American foulbrood (AFB), a dangerous disease caused by the Gram-positive bacterium Paenibacillus larvae (P. l.). While the antibiotic Tylosin has been suggested as a treatment, its bacterial resistance necessitates the search for more effective alternatives. This investigation focused on evaluating the potential of bee venom (BV) and silver nanoparticles (Ag NPs) as antibacterial agents against AFB. In vitro treatments were conducted using isolated AFB bacterial samples, with various concentrations of BV and Ag NPs (average size: 25nm) applied individually and in combination. The treatments were administered under both light and dark conditions. The viability of the treatments was assessed by monitoring the lifespans of treated bees and evaluating the treatment's efficiency within bee populations. Promising results were obtained with the use of Ag NPs, which effectively inhibited the progression of AFB. Moreover, the combination of BV and Ag NPs, known as bee venom/silver nanocomposites (BV/Ag NCs), significantly extended the natural lifespan of bees from 27 to 40 days. Notably, oral administration of BV in varying concentrations (1.53, 3.12, and 6.25 mg/mL) through sugary syrup doubled the bees' lifespan compared to the control group. The study established a significant correlation between the concentration of each treatment and the extent of bacterial inhibition. BV/Ag NCs demonstrated 1.4 times greater bactericidal efficiency under photo-stimulation with visible light compared to darkness, suggesting that light exposure enhances the effectiveness of BV/Ag NCs. The combination of BV and Ag NPs demonstrated enhanced antibacterial efficacy and prolonged honeybee lifespan. These results offer insights that can contribute to the development of safer and more efficient antibacterial agents for maintaining honeybee health.


Subject(s)
Anti-Bacterial Agents , Bee Venoms , Metal Nanoparticles , Paenibacillus larvae , Silver , Animals , Bees/microbiology , Bee Venoms/pharmacology , Metal Nanoparticles/chemistry , Silver/pharmacology , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Paenibacillus larvae/drug effects , Longevity/drug effects
4.
Arch Insect Biochem Physiol ; 116(4): e22138, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39118528

ABSTRACT

To determine the optimal temperature range for the development and reproduction of three spider mites (Eotetranychus sexmaculatus, Eotetranychus orientalis, and Oligonychus biharensis), this study investigated their developmental period, survival rate, lifespan, and reproduction under five temperatures, 21, 24, 27, 30, and 33°C, to predict and control in the field. With the gathered data, a two-sex life table was constructed for each of them. The results revealed that as the temperature increased, both O. biharensis and E. orientalis displayed a gradual reduction in their generation period. Furthermore, an inverse relationship was observed between lifespan and temperature for all three spider mite species. When examining the survival rates at varying temperatures, E. sexmaculatus exhibited the highest rate (98%) at 33°C, while E. orientalis and O. biharensis demonstrated their highest survival rates at 24°C, reaching 90% and 100% respectively. Regarding reproduction, O. biharensis displayed the highest oviposition rates at 30°C with an average of 17.45 eggs per individual. Conversely, E. sexmaculatus and E. orientalis exhibited the highest oviposition rates at 33°C, averaging at 15.22 and 21.38 eggs per individual respectively. Significantly higher intrinsic growth rates were observed for O. biharensis and E. orientalis at 33°C, with rates of 0.22 and 0.26 respectively. In contrast, E. sexmaculatus demonstrated the highest intrinsic growth rate at 27°C. The temperature of 27°C was more suitable for the growth of the E. sexmaculatus, while 33°C was the optimal temperature for the E. orientalis and O. biharensis. The current findings provide valuable guidance for the control and prevention of these three spider mites.


Subject(s)
Life Tables , Temperature , Tetranychidae , Animals , Tetranychidae/physiology , Tetranychidae/growth & development , Female , Male , Reproduction , Longevity , Oviposition , Hevea/growth & development
5.
BMJ Open ; 14(6): e079534, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39106997

ABSTRACT

OBJECTIVE: To quantify inequalities in lifespan across multiple social determinants of health, how they act in tandem with one another, and to create a scoring system that can accurately identify subgroups of the population at high risk of mortality. DESIGN: Comparison of life tables across 54 subpopulations defined by combinations of four social determinants of health: sex, marital status, education and race, using data from the Multiple Cause of Death dataset and the American Community Survey. SETTING: United States, 2015-2019. MAIN OUTCOME MEASURES: We compared the partial life expectancies (PLEs) between age 30 and 90 years of all subpopulations. We also developed a scoring system to identify subgroups at high risk of mortality. RESULTS: There is an 18.0-year difference between the subpopulations with the lowest and highest PLE. Differences in PLE between subpopulations are not significant in most pairwise comparisons. We visually illustrate how the PLE changes across social determinants of health. There is a complex interaction among social determinants of health, with no single determinant fully explaining the observed variation in lifespan. The proposed scoring system adds clarification to this interaction by yielding a single score that can be used to identify subgroups that might be at high risk of mortality. A similar scoring system by cause of death was also created to identify which subgroups could be considered at high risk of mortality from specific causes. Even if subgroups have similar mortality levels, they are often subject to different cause-specific mortality risks. CONCLUSIONS: Having one characteristic associated with higher mortality is often not sufficient to be considered at high risk of mortality, but the risk increases with the number of such characteristics. Reducing inequalities is vital for societies, and better identifying individuals and subgroups at high risk of mortality is necessary for public health policy.


Subject(s)
Health Status Disparities , Life Expectancy , Social Determinants of Health , Humans , United States/epidemiology , Aged , Male , Female , Middle Aged , Adult , Life Expectancy/trends , Cross-Sectional Studies , Aged, 80 and over , Mortality/trends , Cause of Death , Longevity
6.
Sci Rep ; 14(1): 18121, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103441

ABSTRACT

Presbycusis, or age-related hearing loss, affects both elderly humans and dogs, significantly impairing their social interactions and cognition. In humans, presbycusis involves changes in peripheral and central auditory systems, with central changes potentially occurring independently. While peripheral presbycusis in dogs is well-documented, research on central changes remains limited. Diffusion tensor imaging (DTI) is a useful tool for detecting and quantifying cerebral white matter abnormalities. This study used DTI to explore the central auditory pathway of senior dogs, aiming to enhance our understanding of canine presbycusis. Dogs beyond 75% of their expected lifespan were recruited and screened with brainstem auditory evoked response testing to select dogs without severe peripheral hearing loss. Sixteen dogs meeting the criteria were scanned using a 3 T magnetic resonance scanner. Tract-based spatial statistics was used to analyze the central auditory pathways. A significant negative correlation between fractional lifespan and fractional anisotropy was found in the acoustic radiation, suggesting age-related white matter changes in the central auditory system. These changes, observed in dogs without severe peripheral hearing loss, may contribute to central presbycusis development.


Subject(s)
Auditory Pathways , Diffusion Tensor Imaging , Evoked Potentials, Auditory, Brain Stem , Presbycusis , Animals , Dogs , Diffusion Tensor Imaging/methods , Auditory Pathways/physiopathology , Auditory Pathways/diagnostic imaging , Presbycusis/physiopathology , Presbycusis/diagnostic imaging , Male , Female , Evoked Potentials, Auditory, Brain Stem/physiology , Longevity , Aging/physiology , White Matter/diagnostic imaging , White Matter/physiopathology , White Matter/pathology , Anisotropy
7.
Nat Commun ; 15(1): 6748, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117606

ABSTRACT

To survive extreme desiccation, seeds enter a period of quiescence that can last millennia. Seed quiescence involves the accumulation of protective storage proteins and lipids through unknown adjustments in protein homeostasis (proteostasis). Here, we show that mutation of all six type-II metacaspase (MCA-II) proteases in Arabidopsis thaliana disturbs proteostasis in seeds. MCA-II mutant seeds fail to restrict the AAA ATPase CELL DIVISION CYCLE 48 (CDC48) at the endoplasmic reticulum to discard misfolded proteins, compromising seed storability. Endoplasmic reticulum (ER) localization of CDC48 relies on the MCA-IIs-dependent cleavage of PUX10 (ubiquitination regulatory X domain-containing 10), the adaptor protein responsible for titrating CDC48 to lipid droplets. PUX10 cleavage enables the shuttling of CDC48 between lipid droplets and the ER, providing an important regulatory mechanism sustaining spatiotemporal proteolysis, lipid droplet dynamics, and protein homeostasis. In turn, the removal of the PUX10 adaptor in MCA-II mutant seeds partially restores proteostasis, CDC48 localization, and lipid droplet dynamics prolonging seed lifespan. Taken together, we uncover a proteolytic module conferring seed longevity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Endoplasmic Reticulum , Lipid Droplets , Mutation , Seeds , Valosin Containing Protein , Arabidopsis/genetics , Arabidopsis/metabolism , Seeds/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Endoplasmic Reticulum/metabolism , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Lipid Droplets/metabolism , Proteostasis , Proteolysis , Gene Expression Regulation, Plant , Longevity/physiology , Longevity/genetics
8.
Sci Rep ; 14(1): 17789, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090347

ABSTRACT

There is experimental evidence that microbiomes have a strong influence on a range of host traits. Understanding the basis and importance of symbiosis between host and associated microorganisms is a rapidly developing research field, and we still lack a mechanistic understanding of ecological and genetic pressures affecting host-microbiome associations. Here Drosophila melanogaster lines from a large-scale artificial selection experiment were used to investigate whether the microbiota differ in lines selected for different stress resistance traits and longevity. Following multiple generations of artificial selection all selection regimes and corresponding controls had their microbiomes assessed. The microbiome was interrogated based on 16S rRNA sequencing. We found that the microbiome of flies from the different selection regimes differed markedly from that of the unselected control regime, and microbial diversity was consistently higher in selected relative to control regimes. Several common Drosophila bacterial species showed differentially abundance in the different selection regimes despite flies being exposed to similar environmental conditions for two generations prior to assessment. Our findings provide strong evidence for symbiosis between host and microbiomes but we cannot reveal whether the interactions are adaptive, nor whether they are caused by genetic or ecological factors.


Subject(s)
Drosophila melanogaster , Longevity , Microbiota , RNA, Ribosomal, 16S , Stress, Physiological , Animals , Drosophila melanogaster/microbiology , Drosophila melanogaster/physiology , RNA, Ribosomal, 16S/genetics , Symbiosis , Selection, Genetic , Bacteria/genetics , Bacteria/classification
9.
Z Gerontol Geriatr ; 57(5): 355-360, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39088048

ABSTRACT

As scientists investigated the molecular mechanisms of the biology of aging, they discovered that these are malleable and can enhance healthy longevity by intervening in the drivers of aging, which are leading to disease, dysfunction and death. These exciting observations gave birth to the field of geroscience. As the mechanisms of aging affect almost all mechanisms of life, detailed molecular mechanistic knowledge must be gained or expanded by considering and integrating as many types of data as possible, from genes and transcripts to socioenvironmental factors. Such a large-scale integration of large amounts of data will in turn profit from "deep" bioinformatics analyses that provide insights beyond contextualizing and interpreting the data in the light of knowledge from databases such as the Gene Ontology. The authors suggest that "deep" bioinformatics, employing methods based on artificial intelligence, will be a key ingredient of future analyses.


Subject(s)
Computational Biology , Geriatrics , Humans , Aging/genetics , Aged , Artificial Intelligence , Longevity/genetics
10.
Z Gerontol Geriatr ; 57(5): 361-364, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39102046

ABSTRACT

The socioeconomic and technological developments of the past decades have enabled unique progress associated to increased life expectancy and better health for a large part of the world's population; however, multimorbidity, frailty and disability are also on the rise. Geroscience as the new biology of aging is based on the evidence that the main risk factor for noncommunicable chronic diseases (NCD) is the aging process; however, its technology is mostly used for the scientific study of longevity and its interaction with aging medicine and geriatrics is still limited. In this perspective, the need for a tighter exchange between geroscience and geriatrics for longer health span and intrinsic capacity is discussed in the context of existing evidence and knowledge gaps.


Subject(s)
Frail Elderly , Longevity , Humans , Aged , Geriatrics , Aged, 80 and over , Frailty , Life Expectancy/trends , Healthy Aging/physiology , Chronic Disease/epidemiology , Female , Male , Geriatric Assessment , Aging/physiology
11.
J Biochem Mol Toxicol ; 38(9): e23812, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39163126

ABSTRACT

Aging is a process of time-associated depletion in the physiological functions, essential for the survival and reproducibility of living beings. Some age-related disorders can be successfully controlled with some biomedical techniques or pharmaceutical approaches. There are some precise remedies that demonstrate conspicuous promise in the preclinical and clinical setup of extending lifespan or enhancing health by altering natural senescence. The sirtuin family of proteins is one of the most favorable targets for antiaging strategies. Sirtuins were initially identified as transcription repressors in yeast, but today they are known to exist in bacteria and eukaryotes, as well as humans. The SIRT (1-7) family of proteins in humans is made up of seven members, each of which has either mono-ADP ribosyl transferase or deacetylase activity. Researchers suggest that sirtuins are essential for cell metabolism and play a major role in how cells react to various stimuli, such as oxidative or genotoxic stress. A healthy lifestyle, which includes exercise and a balanced diet, has been demonstrated to impact health span by adjusting the levels of sirtuins, suggesting the involvement of sirtuins in extending human longevity. The hunt for sirtuin activators is among the most extensive and comprehensive research subjects in the present scenario. Some optimism has been generated to investigate antiaging therapies by natural compounds, such as curcumin and others. This review article highlights the role of sirtuins in native senescence and their primordial roles in the progression of several life-threatening diseases. Further, it also provides recent information on the sirtuin activators and inhibitors and their therapeutic benefits.


Subject(s)
Aging , Sirtuins , Humans , Sirtuins/metabolism , Aging/metabolism , Animals , Cellular Senescence , Longevity
12.
Bone Res ; 12(1): 45, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39164234

ABSTRACT

Bone marrow stromal/stem cells (BMSCs) are generally considered as common progenitors for both osteoblasts and adipocytes in the bone marrow, but show preferential differentiation into adipocytes rather than osteoblasts under aging, thus leading to senile osteoporosis. Accumulated evidences indicate that rejuvenation of BMSCs by autophagic enhancement delays bone aging. Here we synthetized and demonstrated a novel autophagy activator, CXM102 that could induce autophagy in aged BMSCs, resulting in rejuvenation and preferential differentiation into osteoblasts of BMSCs. Furthermore, CXM102 significantly stimulated bone anabolism, reduced marrow adipocytes, and delayed bone loss in middle-age male mice. Mechanistically, CXM102 promoted transcription factor EB (TFEB) nuclear translocation and favored osteoblasts formation both in vitro and in vivo. Moreover, CXM102 decreased serum levels of inflammation and reduced organ fibrosis, leading to a prolonger lifespan in male mice. Our results indicated that CXM102 could be used as an autophagy inducer to rejuvenate BMSCs and shed new lights on strategies for senile osteoporosis and healthyspan improvement.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Mesenchymal Stem Cells , Osteoporosis , Animals , Autophagy/drug effects , Male , Mesenchymal Stem Cells/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Mice , Osteoporosis/pathology , Osteoporosis/metabolism , Longevity , Cell Differentiation , Aging/physiology , Mice, Inbred C57BL , Cellular Senescence/drug effects , Rejuvenation , Osteoblasts/metabolism , Osteoblasts/drug effects , Osteogenesis/drug effects
13.
Sci Rep ; 14(1): 19277, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39164272

ABSTRACT

Due to their potential impact on the host's phenotype, organ-specific microbiotas are receiving increasing attention in several animal species, including cattle. Specifically, the vaginal microbiota of ruminants is attracting growing interest, due to its predicted critical role on cows' reproductive functions in livestock contexts. Notably, fertility disorders represent a leading cause for culling, and additional research would help to fill relevant knowledge gaps. In the present study, we aimed to characterize the vaginal microbiota of a large cohort of 1171 female dairy cattle from 19 commercial herds in Northern France. Vaginal samples were collected using a swab and the composition of the microbiota was determined through 16S rRNA sequencing targeting the V3-V4 hypervariable regions. Initial analyses allowed us to define the core bacterial vaginal microbiota, comprising all the taxa observed in more than 90% of the animals. Consequently, four phyla, 16 families, 14 genera and a single amplicon sequence variant (ASV) met the criteria, suggesting a high diversity of bacterial vaginal microbiota within the studied population. This variability was partially attributed to various environmental factors such as the herd, sampling season, parity, and lactation stage. Next, we identified numerous significant associations between the diversity and composition of the vaginal microbiota and several traits related to host's production and reproduction performance, as well as reproductive tract health. Specifically, 169 genera were associated with at least one trait, with 69% of them significantly associated with multiple traits. Among these, the abundances of Negativibacillus and Ruminobacter were positively correlated with the cows' performances (i.e., longevity, production performances). Other genera showed mixed relationships with the phenotypes, such as Leptotrichia being overabundant in cows with improved fertility records and reproductive tract health, but also in cows with lower production levels. Overall, the numerous associations underscored the complex interactions between the vaginal microbiota and its host. Given the large number of samples collected from commercial farms and the diversity of the phenotypes considered, this study marks an initial step towards a better understanding of the intimate relationship between the vaginal microbiota and the dairy cow's phenotypes.


Subject(s)
Fertility , Longevity , Microbiota , RNA, Ribosomal, 16S , Vagina , Animals , Female , Cattle , Vagina/microbiology , RNA, Ribosomal, 16S/genetics , Fertility/genetics , Microbiota/genetics , Bacteria/genetics , Bacteria/classification , Reproduction
14.
Nat Commun ; 15(1): 7144, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39164296

ABSTRACT

FOXO transcription factors modulate aging-related pathways and influence longevity in multiple species, but the transcriptional targets that mediate these effects remain largely unknown. Here, we identify an evolutionarily conserved FOXO target gene, Oxidative stress-responsive serine-rich protein 1 (OSER1), whose overexpression extends lifespan in silkworms, nematodes, and flies, while its depletion correspondingly shortens lifespan. In flies, overexpression of OSER1 increases resistance to oxidative stress, starvation, and heat shock, while OSER1-depleted flies are more vulnerable to these stressors. In silkworms, hydrogen peroxide both induces and is scavenged by OSER1 in vitro and in vivo. Knockdown of OSER1 in Caenorhabditis elegans leads to increased ROS production and shorter lifespan, mitochondrial fragmentation, decreased ATP production, and altered transcription of mitochondrial genes. Human proteomic analysis suggests that OSER1 plays roles in oxidative stress response, cellular senescence, and reproduction, which is consistent with the data and suggests that OSER1 could play a role in fertility in silkworms and nematodes. Human studies demonstrate that polymorphic variants in OSER1 are associated with human longevity. In summary, OSER1 is an evolutionarily conserved FOXO-regulated protein that improves resistance to oxidative stress, maintains mitochondrial functional integrity, and increases lifespan in multiple species. Additional studies will clarify the role of OSER1 as a critical effector of healthy aging.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Drosophila Proteins , Forkhead Transcription Factors , Longevity , Oxidative Stress , Animals , Longevity/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans/metabolism , Humans , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Bombyx/genetics , Bombyx/metabolism , Bombyx/physiology , Drosophila melanogaster/genetics , Mitochondria/metabolism , Mitochondria/genetics , Reactive Oxygen Species/metabolism , Gene Expression Regulation
15.
Ecol Lett ; 27(8): e14485, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39140409

ABSTRACT

Protecting populations contending with co-occurring stressors requires a better understanding of how multiple early-life stressors affect the fitness of natural systems. However, the complexity of such research has limited its advancement and prevented us from answering new questions. In human studies, cumulative risk models predict adult health risk based on early adversity exposure. We apply a similar framework in wild yellow-bellied marmots (Marmota flaviventer). We tested cumulative adversity indices (CAIs) across different adversity types and time windows. All CAIs were associated with decreased pup survival and were well supported. Moderate and acute, but not standardized CAIs were associated with decreased lifespan, supporting the cumulative stress hypothesis and the endurance of early adversity. Multivariate models showed that differences in lifespan were driven by weaning date, precipitation, and maternal loss, but they performed poorly compared with CAI models. We highlight the development, utility, and insights of CAI approaches for ecology and conservation.


Subject(s)
Marmota , Animals , Marmota/physiology , Stress, Physiological , Longevity , Female , Male , Models, Biological
17.
Article in English | MEDLINE | ID: mdl-39126345

ABSTRACT

Given the unprecedented rate of global aging, advancing aging research and drug discovery to support healthy and productive longevity is a pressing socioeconomic need. Holistic models of human and population aging that account for biomedical background, environmental context, and lifestyle choices are fundamental to address these needs, but integration of diverse data sources and large data sets into comprehensive models is challenging using traditional approaches. Recent advances in artificial intelligence and machine learning, and specifically multimodal transformer-based neural networks, have enabled the development of highly capable systems that can generalize across multiple data types. As such, multimodal transformers can generate systemic models of aging that can predict health status and disease risks, identify drivers, or breaks of physiological aging, and aid in target discovery against age-related disease. The unprecedented capacity of transformers to extract and integrate information from large and diverse data modalities, combined with the ever-increasing availability of biological and medical data, has the potential to revolutionize healthcare, promoting healthy longevity and mitigating the societal and economic impacts of global aging.


Subject(s)
Aging , Drug Discovery , Humans , Aging/physiology , Drug Discovery/methods , Artificial Intelligence , Longevity/drug effects , Machine Learning , Neural Networks, Computer
18.
Nat Commun ; 15(1): 6357, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39069555

ABSTRACT

DNA hydroxymethylation (5hmC), the most abundant oxidative derivative of DNA methylation, is typically enriched at enhancers and gene bodies of transcriptionally active and tissue-specific genes. Although aberrant genomic 5hmC has been implicated in age-related diseases, its functional role in aging remains unknown. Here, using mouse liver and cerebellum as model organs, we show that 5hmC accumulates in gene bodies associated with tissue-specific function and restricts the magnitude of gene expression changes with age. Mechanistically, 5hmC decreases the binding of splicing associated factors and correlates with age-related alternative splicing events. We found that various age-related contexts, such as prolonged quiescence and senescence, drive the accumulation of 5hmC with age. We provide evidence that this age-related transcriptionally restrictive function is conserved in mouse and human tissues. Our findings reveal that 5hmC regulates tissue-specific function and may play a role in longevity.


Subject(s)
5-Methylcytosine , Aging , Cerebellum , DNA Methylation , Liver , Animals , Aging/genetics , Aging/metabolism , 5-Methylcytosine/metabolism , 5-Methylcytosine/analogs & derivatives , Liver/metabolism , Mice , Humans , Cerebellum/metabolism , Mice, Inbred C57BL , Longevity/genetics , Male , Alternative Splicing , Transcription, Genetic , Female , Gene Expression Regulation
19.
PLoS Genet ; 20(7): e1011371, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39083540

ABSTRACT

The ubiquitin-proteasome system (UPS) is critical for maintaining proteostasis, influencing stress resilience, lifespan, and thermal adaptability in organisms. In Caenorhabditis elegans, specific proteasome subunits and activators, such as RPN-6, PBS-6, and PSME-3, are associated with heat resistance, survival at cold (4°C), and enhanced longevity at moderate temperatures (15°C). Previously linked to improving proteostasis, we investigated the impact of sterility-inducing floxuridine (FUdR) on UPS functionality under proteasome dysfunction and its potential to improve cold survival. Our findings reveal that FUdR significantly enhances UPS activity and resilience during proteasome inhibition or subunit deficiency, supporting worms' normal lifespan and adaptation to cold. Importantly, FUdR effect on UPS activity occurs independently of major proteostasis regulators and does not rely on the germ cells proliferation or spermatogenesis. Instead, FUdR activates a distinct detoxification pathway that supports UPS function, with GST-24 appearing to be one of the factors contributing to the enhanced activity of the UPS upon knockdown of the SKN-1-mediated proteasome surveillance pathway. Our study highlights FUdR unique role in the UPS modulation and its crucial contribution to enhancing survival under low-temperature stress, providing new insights into its mechanisms of action and potential therapeutic applications.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Floxuridine , Germ Cells , Proteasome Endopeptidase Complex , Proteostasis , Signal Transduction , Ubiquitin , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Animals , Proteasome Endopeptidase Complex/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Germ Cells/metabolism , Floxuridine/pharmacology , Ubiquitin/metabolism , Longevity/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cold Temperature , Inactivation, Metabolic/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics
20.
Sci Rep ; 14(1): 17200, 2024 07 26.
Article in English | MEDLINE | ID: mdl-39060323

ABSTRACT

Nutrition is a limiting feature of species evolution. The differences in nutritional requirements are the evolutionary result of differential adaptations to environmental changes, explaining differences in their ecological traits. Cnaphalocrocis medinalis and Cnaphalocrocis exigua, two related species of rice leaffolders, have similar morphology and feeding properties but different migration and overwintering behaviors. However, it is unclear whether they have evolved adult nutritional differentiation traits to coexist. To explore this issue, this study examined the effects of carbohydrates and amino acids on their reproductive and demographic parameters. The findings indicate that carbohydrate intake prolonged the longevity and population growth of two rice leaffolders, but amino acid intake promoted egg hatching only. However, nutrient deficiency made it impossible for C. medinalis to reproduce successfully and survive, but it did not affect C. exigua. The population expansion and survival of migratory C. medinalis relied on adult nutritional intake. Conversely, the nutrients necessary for C. exigua overwintering activity mostly came from the storage of larvae. The difference in nutritional requirements for population growth and survival between the two rice leaffolders partially explained their differences in migration and overwintering.


Subject(s)
Oryza , Animals , Oryza/growth & development , Amino Acids/metabolism , Population Growth , Nutritional Requirements , Moths/physiology , Moths/growth & development , Larva/physiology , Female , Longevity/physiology , Male , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL