Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Anal Chem ; 96(27): 10927-10934, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38934225

ABSTRACT

Lumpy skin disease virus (LSDV) is a severe and highly contagious form of cowpox. As LSDV continues to mutate and there is no vaccine and treatment in nonendemic countries, early detection of LSDV becomes an important basis for epidemic prevention and control, especially for detection of conserved sequences. A new label-free and sensitive fluorescence method was developed based on a light-up RNA aptamer for detecting LSDV. The method integrated recombinase polymerase amplification (RPA), CRISPR/Cas12a, 10-23 DNAzyme, and Baby Spinach RNA aptamer for triple cascade signal amplification. Based on highly sensitive and specific RPA and CRISPR/Cas12a, DNAzyme achieved a third signal amplification. Additionally, the Baby Spinach RNA aptamer had stronger fluorescence signals and higher quantum yields. The label-free method had ultrahigh sensitivity with the actual detection limit as 1.29 copies·µL-1. The method was 100-fold more sensitive compared to RPA with Cas12a. Moreover, it had no cross-reactivity with viruses belonging to the Capripoxvirus, such as sheep pox virus and goat pox virus with genetic homology as 97%. Furthermore, the method displayed 100% accuracy in 50 actual samples. Therefore, the method based on RPA, Cas12a, and 10-23 DNAzyme had advantages in LSDV detection and provided a new solution for LSD prevention and control.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , DNA, Catalytic , Lumpy skin disease virus , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , Lumpy skin disease virus/genetics , Lumpy skin disease virus/chemistry , Nucleic Acid Amplification Techniques/methods , Signal-To-Noise Ratio , Limit of Detection , Animals , CRISPR-Cas Systems/genetics
2.
Virology ; 596: 110123, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38805805

ABSTRACT

Lumpy Skin Disease (LSD), a poxvirus disease affecting cattle, emerged in India in 2019 and intensified in 2022, resulting in significant economic losses for dairy farmers. There was unusual shift in mortality and morbidity patterns during the second wave. A comprehensive genetic study conducted, analyzing samples from 2019 to 2022 revealed circulation of two distinct subclades (subclade 1.2a and 1.2b) in India, with the latter showing a different pattern in morbidity and mortality. Notably, the Ankyrin repeats gene-based analysis could differentiate animals with varying clinical scores. Genetic variations were significant, with unique deletions identified, including a 12-nucleotide deletion in the GPCR gene in virus isolates collected during 2022 outbreaks, not reported earlier in Indian LSDV strains. A crucial finding was a significant 95-nucleotide deletion in the Functional Resolution Sequence (FRS) repeats of LSDV genomes from 2022 outbreaks, absent in 2019 samples. These deletions may have influenced the virus's virulence in India.


Subject(s)
Genome, Viral , Lumpy Skin Disease , Lumpy skin disease virus , Phylogeny , India/epidemiology , Animals , Lumpy Skin Disease/virology , Lumpy Skin Disease/epidemiology , Lumpy skin disease virus/genetics , Lumpy skin disease virus/pathogenicity , Lumpy skin disease virus/isolation & purification , Virulence/genetics , Cattle , Disease Outbreaks/veterinary , Genetic Variation , Whole Genome Sequencing
3.
Viruses ; 16(5)2024 05 11.
Article in English | MEDLINE | ID: mdl-38793643

ABSTRACT

Lumpy skin disease is one of the fast-spreading viral diseases of cattle and buffalo that can potentially cause severe economic impact. Lesotho experienced LSD for the first time in 1947 and episodes of outbreaks occurred throughout the decades. In this study, eighteen specimens were collected from LSD-clinically diseased cattle between 2020 and 2022 from Mafeteng, Leribe, Maseru, Berea, and Mohales' Hoek districts of Lesotho. A total of 11 DNA samples were analyzed by PCR and sequencing of the extracellular enveloped virus (EEV) glycoprotein, G-protein-coupled chemokine receptor (GPCR), 30 kDa RNA polymerase subunit (RPO30), and B22R genes. All nucleotide sequences of the above-mentioned genes confirmed that the PCR amplicons of clinical samples are truly LSDV, as they were identical to respective LSDV isolates on the NCBI GenBank. Two of the elevem samples were further characterized by whole-genome sequencing. The analysis, based on both CaPV marker genes and complete genome sequences, revealed that the LSDV isolates from Lesotho cluster with the NW-like LSDVs, which includes the commonly circulating LSDV field isolates from Africa, the Middle East, the Balkans, Turkey, and Eastern Europe.


Subject(s)
Lumpy Skin Disease , Lumpy skin disease virus , Phylogeny , Animals , Cattle , Lumpy Skin Disease/virology , Lumpy Skin Disease/epidemiology , Lesotho/epidemiology , Lumpy skin disease virus/genetics , Lumpy skin disease virus/isolation & purification , Lumpy skin disease virus/classification , Whole Genome Sequencing , Genome, Viral
4.
Vet Microbiol ; 294: 110122, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772074

ABSTRACT

Lumpy skin disease virus (LSDV) is a rapidly emerging pathogen in Asia, including China. Genetic manipulation of the LSDV is essential for the elucidation of the pathogenic mechanism and biological function of the LSDV-encoded protein. In this study, we established a platform for the Cre-loxP recombination system under a modified early-late H5 promoter of the VACV for quick construction of the recombinant LSDV virus. The recombinant virus, LSDV-EGFP-ΔTK, was purified and obtained using serial limited dilution and picking the single cells methods. Using the lentiviral package system, a Cre recombinase enzyme stable expression MDBK cell line was established to supply the Cre recombinase for the reporter gene excision. A genetically stable, safe TK gene-deleted LSDV (LSDV-ΔTK) was constructed using homologous recombination and the Cre-loxP system. It was purified using limited dilution in the MDBK-Cre cell line. Establishing the Cre-loxP recombination system will enable sequential deletion of the interested genes from the LSDV genome and genetic manipulation of the LSDV genome, providing technical support and a platform for developing the attenuated LSDV vaccine.


Subject(s)
Integrases , Lumpy skin disease virus , Recombination, Genetic , Integrases/genetics , Animals , Lumpy skin disease virus/genetics , Cell Line , Homologous Recombination , Genetic Vectors/genetics
5.
Vet Ital ; 60(1)2024 04 11.
Article in English | MEDLINE | ID: mdl-38602499

ABSTRACT

In October 2020, the first outbreaks of lumpy skin disease (LSD) in Lang Son Province, Vietnam were reported by our laboratory. The disease had rapidly spread to the South, and it was reported in 55 of 63 provinces and cities of Vietnam by the end of 2021. The most economic loss caused by this disease occurred in the north-central region in 2021 where approximately 46,788 LSD virus (LSDV) infected cattle and buffaloes have been reported and 8,976 animals have been culled. However, the information on this pathogen circulating in this region is missing. Here, we describe the molecular characterization of LSDV circulating in north-central Vietnam in 2021 and early 2022. In total, 155 LSDV samples were collected during this period and three of these samples from each province were further characterized by Sanger sequencing analysis based on three key maker genes (GPCR, RPO30, and p32). Sequence comparison and phylogenetic analysis based on GPCR, RPO30, and p32 genes indicated that LSDV strains circulating in north-central Vietnam are closely related to previously reported strains in Vietnam regions which bordered China and all LSDV strains were 100% identical. These results show the importance of continuous monitoring and characterization of circulating LSDV strains and are important for vaccine development for the control and eradication of LSD in Vietnam.


Subject(s)
Lumpy skin disease virus , Animals , Cattle , Lumpy skin disease virus/genetics , Phylogeny , Vietnam/epidemiology , Buffaloes , Disease Outbreaks/veterinary
6.
Viruses ; 16(4)2024 04 03.
Article in English | MEDLINE | ID: mdl-38675899

ABSTRACT

Lumpy skin disease virus (LSDV) is a member of the capripoxvirus (CPPV) genus of the Poxviridae family. LSDV is a rapidly emerging, high-consequence pathogen of cattle, recently spreading from Africa and the Middle East into Europe and Asia. We have sequenced the whole genome of historical LSDV isolates from the Pirbright Institute virus archive, and field isolates from recent disease outbreaks in Sri Lanka, Mongolia, Nigeria and Ethiopia. These genome sequences were compared to published genomes and classified into different subgroups. Two subgroups contained vaccine or vaccine-like samples ("Neethling-like" clade 1.1 and "Kenya-like" subgroup, clade 1.2.2). One subgroup was associated with outbreaks of LSD in the Middle East/Europe (clade 1.2.1) and a previously unreported subgroup originated from cases of LSD in west and central Africa (clade 1.2.3). Isolates were also identified that contained a mix of genes from both wildtype and vaccine samples (vaccine-like recombinants, grouped in clade 2). Whole genome sequencing and analysis of LSDV strains isolated from different regions of Africa, Europe and Asia have provided new knowledge of the drivers of LSDV emergence, and will inform future disease control strategies.


Subject(s)
Genome, Viral , Lumpy Skin Disease , Lumpy skin disease virus , Phylogeny , Whole Genome Sequencing , Lumpy skin disease virus/genetics , Lumpy skin disease virus/classification , Lumpy skin disease virus/isolation & purification , Animals , Lumpy Skin Disease/virology , Lumpy Skin Disease/epidemiology , Cattle , Africa, Central/epidemiology , Africa, Western/epidemiology , Disease Outbreaks
7.
Arch Microbiol ; 206(5): 210, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592503

ABSTRACT

Lumpy skin disease (LSD) is a highly infectious and economically devastating viral disease of cattle. It is caused by Lumpy Skin Disease Virus (LSDV) belonging to the genus Capripoxvirus and family Poxviridae. The origin of lumpy skin disease has been traced to Zambia, (an African nation) in Southern part during the year 1929. The first reported case of LSD besides Africa was from Israel, a Middle Eastern nation, thus proving inter-continental spread. Subsequently, the disease entered Middle East, Eastern Europe and Asia with numerous outbreaks in the recent years. LSD has emerged as a significant concern in the Indian sub-continent, due to outbreaks reported in countries such as Bangladesh, India, China in 2019. In the following years, other South and East Asian countries like Taipei, Nepal, Sri Lanka, Myanmar, Bhutan, Vietnam, Hong Kong, Thailand, Malaysia, Laos, Cambodia, Pakistan, Indonesia and Singapore also faced severe outbreaks. At present, LSD is considered to be an emerging disease in the Indian sub-continent due to the recent status of disease. Considering the global scenario, LSDV is changing its transmission dynamics as evidenced by a shift in its epidemiology. As a result of high morbidity and mortality rate among cattle, the current outbreaks have been a major cause of socio-economic catastrophe. This contagious viral disease has eminent repercussions as the estimated monetary damage incurred is quite high. Despite having networked surveillance and comprehensive databases, the recurring outbreaks have raised major concern among researchers. Therefore, this review offers brief insights into the emergence of LSDV by amalgamating the newest literature related to its biology, transmission, clinico-pathology, epidemiology, prevention strategies, and economic consequences. Additionally, we have also provided the epidemiological insights of the recent outbreaks with detailed state wise studies.


Subject(s)
Lumpy Skin Disease , Lumpy skin disease virus , Cattle , Animals , Lumpy skin disease virus/genetics , Lumpy Skin Disease/epidemiology , Disease Outbreaks/veterinary , China , India/epidemiology
8.
Virulence ; 15(1): 2324711, 2024 12.
Article in English | MEDLINE | ID: mdl-38527940

ABSTRACT

Micro RNAs (miRNAs) have been implicated in the regulation of maturation, proliferation, differentiation, and activation of immune cells. In this study, we demonstrated that miR-29a antagonizes IFN-γ production at early times post-LSDV infection in cattle. miR-29a was predicted to target upstream IFN-γ regulators, and its inhibition resulted in enhanced IFN-γ production in sensitized peripheral blood mononuclear cells (PBMCs). Further, stimulation of PBMCs with LSDV antigen exhibited lower levels of miR-29a, concomitant with a potent cell-mediated immune response (CMI), characterized by an increase in LSDV-specific CD8+ T cell counts and enhanced levels of IFN-γ, which eventually facilitated virus clearance. In addition, a few immunocompromised cattle (developed secondary LSDV infection at ~ 6 months) that failed to mount a potent cell-mediated immune response, were shown to maintain higher miR-29a levels. Furthermore, as compared to the sensitized crossbred cattle, PBMCs from sensitized Rathi (a native Indian breed) animals exhibited lower levels of miR-29a along with an increase in CD8+ T cell counts and enhanced levels of IFN-γ. Finally, we analysed that a ≥ 60% decrease in miR-29a expression levels in the PBMCs of sensitized cattle correlated with a potent CMI response. In conclusion, miR-29a expression is involved in antagonizing the IFN-γ response in LSDV-infected cattle and may serve as a novel biomarker for the acute phase of LSDV infection, as well as predicting the functionality of T cells in sensitized cattle. In addition, Rathi cattle mount a more potent CMI response against LSDV than crossbred cattle.


Subject(s)
Cattle Diseases , Lumpy skin disease virus , MicroRNAs , Animals , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/genetics , CD8-Positive T-Lymphocytes , Leukocytes, Mononuclear , Lumpy skin disease virus/genetics , MicroRNAs/genetics , Polymerase Chain Reaction , Biomarkers
9.
Virus Genes ; 60(2): 159-172, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38347303

ABSTRACT

Lumpy skin disease (LSD) caused by LSD virus is a WOAH notifiable, high-impact, transboundary poxviral disease of bovines. The first official report of LSDV in India is from Odisha state during August 2019. Since then, cases have been reported from many states including Tamil Nadu, a Southern state of India. The present study deals with isolation and molecular characterization of LSDV from Tamil Nadu during the period August 2020 to July 2022. LSDV was isolated in embryonated chicken eggs (ECE) and BHK 21 cells and was characterized based on P32, RPO30, and GPCR genes. The phylogenetic analysis revealed that Tamil Nadu isolates from India are closely related to other Indian strains, Kenyan strains and strains from neighboring countries such as Bangladesh, Nepal, and Myanmar confirming the common exotic source for the transboundary spread across borders. The presence of unique signature of amino acid (aa) at specific positions (A11, T12, T34, S99, and P199) in the GPCR sequence confirmed the identity of LSDV. A twelve nucleotide (nt94-105) insertion and corresponding aa (TILS) at 30-33 position was found in GPCR sequence and characteristic amino acid proline at 98 position (P98) in the RPO30 gene sequence of our isolates was similar to strains from Bangladesh, Nepal, and Myanmar. Further, dissimilarity of our isolates from Neethling like vaccine strains confirms the circulation of virulent filed strains responsible for the outbreaks.


Subject(s)
Lumpy skin disease virus , Animals , Cattle , Lumpy skin disease virus/genetics , India/epidemiology , Phylogeny , Kenya , Disease Outbreaks , Amino Acids/genetics
10.
Viruses ; 16(2)2024 01 24.
Article in English | MEDLINE | ID: mdl-38399948

ABSTRACT

Lumpy skin disease virus (LSDV) has recently undergone rapid spread, now being reported from more than 80 countries, affecting predominantly cattle and to a lesser extent, water buffalo. This poxvirus was previously considered to be highly host-range restricted. However, there is an increasing number of published reports on the detection of the virus from different game animal species. The virus has not only been shown to infect a wide range of game species under experimental conditions, but has also been naturally detected in oryx, giraffe, camels and gazelle. In addition, clinical lumpy skin disease has previously been described in springbok (Antidorcas marsupialis), an African antelope species, in South Africa. This report describes the characterization of lumpy skin disease virus belonging to cluster 1.2, from field samples from springbok, impala (Aepyceros melampus) and a giraffe (Giraffa camelopardalis) in South Africa using PCR, Sanger and whole genome sequencing. Most of these samples were submitted from wild animals in nature reserves or game parks, indicating that the disease is not restricted to captive-bred animals on game farms or zoological gardens. The potential role of wildlife species in the transmission and maintenance of LSDV is further discussed and requires continuing investigation, as the virus and disease may pose a serious threat to endangered species.


Subject(s)
Antelopes , Giraffes , Lumpy Skin Disease , Lumpy skin disease virus , Animals , Cattle , Lumpy skin disease virus/genetics , Lumpy Skin Disease/epidemiology , Animals, Wild , South Africa , Disease Outbreaks/veterinary
11.
BMC Genomics ; 25(1): 196, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373902

ABSTRACT

Lumpy skin disease virus (LSDV) belongs to the genus Capripoxvirus and family Poxviridae. LSDV was endemic in most of Africa, the Middle East and Turkey, but since 2015, several outbreaks have been reported in other countries. In this study, we used whole genome sequencing approach to investigate the origin of the outbreak and understand the genomic landscape of the virus. Our study showed that the LSDV strain of 2022 outbreak exhibited many genetic variations compared to the Reference Neethling strain sequence and the previous field strains. A total of 1819 variations were found in 22 genome sequences, which includes 399 extragenic mutations, 153 insertion frameshift mutations, 234 deletion frameshift mutations, 271 Single nucleotide polymorphisms (SNPs) and 762 silent SNPs. Thirty-eight genes have more than 2 variations per gene, and these genes belong to viral-core proteins, viral binding proteins, replication, and RNA polymerase proteins. We highlight the importance of several SNPs in various genes, which may play an essential role in the pathogenesis of LSDV. Phylogenetic analysis performed on all whole genome sequences of LSDV showed two types of variants in India. One group of the variant with fewer mutations was found to lie closer to the LSDV 2019 strain from Ranchi while the other group clustered with previous Russian outbreaks from 2015. Our study highlights the importance of genomic characterization of viral outbreaks to not only monitor the frequency of mutations but also address its role in pathogenesis of LSDV as the outbreak continues.


Subject(s)
Lumpy Skin Disease , Lumpy skin disease virus , Animals , Cattle , Lumpy skin disease virus/genetics , Lumpy Skin Disease/epidemiology , Lumpy Skin Disease/genetics , Phylogeny , Genomics , Disease Outbreaks
12.
Arch Virol ; 169(2): 23, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38193946

ABSTRACT

In 2018, the molecular epidemiology of lumpy skin disease in Russia was characterized by a surge in novel recombinant vaccine-like strains causing outbreaks along the southern border, spreading in an easterly direction. Currently, five distinct novel recombinant vaccine-like lineages have been described, designated as clusters 2.1 to 2.5. Based on the complete genome sequence analysis of the causative lumpy skin disease virus (Kurgan/Russia/2018), obtained from an eponymous outbreak, the genome was shown to be composed of a Neethling vaccine strain virus as the dominant parental strain and KSGPO vaccine virus as its minor parental strain. These features are similar to those of Saratov/Russia/2017 and Tyumen/Russia/2018, representing clusters 2.1 and 2.4, respectively. However, Kurgan/Russia/2018 has 16 statistically significant recombination events unique to this sequence, contributing to the phylogenetic clustering of Kurgan/Russia/2018 in yet another cluster designed cluster 2.6, based on analysis involving the complete genome sequences.


Subject(s)
Lumpy Skin Disease , Lumpy skin disease virus , Animals , Cattle , Lumpy skin disease virus/genetics , Phylogeny , Vaccines, Synthetic , Lumpy Skin Disease/epidemiology , Lumpy Skin Disease/prevention & control , Disease Outbreaks
13.
Microb Pathog ; 186: 106485, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38052279

ABSTRACT

Lumpy skin disease (LSD) is an emerging transboundary viral disease of livestock animals which was first reported in 1929 in Zambia. Although LSD is a neglected disease of economic importance, it extends a direct impact on the international trade and economy in livestock-dependent countries. Lumpy skin disease virus (LSDV) has been endemic in African countries, where several outbreaks have been reported previously. However, the virus has spread rapidly across the Middle East in the past two decades, reaching Russia and, recently, the Asian subcontinent. With unprecedented cluster outbreaks being reported across Asian countries like India, China, Nepal, Bangladesh, and Pakistan, LSDV is certainly undergoing an epidemiological shift and expanding its geographical footprint worldwide. Due to high mortality among livestock animals, the recent LSD outbreaks have gained attention from global regulatory authorities and raised serious concerns among epidemiologists and veterinary researchers. Despite networked global surveillance of the disease, recurrent LSD cases pose a threat to the livestock industry. Hence, this review provides recent insights into the LSDV biology by augmenting the latest literature associated with its pathogenesis, transmission, current intervention strategies, and economic implications. The review critically examines the changing epidemiological footprint of LSDV globally, especially in relation to developing countries of the Asian subcontinent. We also speculate the possible reasons contributing to the ongoing LSD outbreaks, including illegal animal trade, climate change, genetic recombination events between wild-type and vaccine strains, reversion of vaccine strains to virulent phenotype, and deficiencies in active monitoring during the COVID-19 pandemic.


Subject(s)
Lumpy Skin Disease , Lumpy skin disease virus , Animals , Cattle , Humans , Lumpy Skin Disease/epidemiology , Lumpy Skin Disease/prevention & control , Commerce , Pandemics , Internationality , Lumpy skin disease virus/genetics , Disease Outbreaks/veterinary , Vaccines, Attenuated , Pakistan , Phylogeny
14.
Viruses ; 15(12)2023 11 25.
Article in English | MEDLINE | ID: mdl-38140559

ABSTRACT

Sheeppox, goatpox, and lumpy skin disease caused by the sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV), respectively, are diseases that affect millions of ruminants and many low-income households in endemic countries, leading to great economic losses for the ruminant industry. The three viruses are members of the Capripoxvirus genus of the Poxviridae family. Live attenuated vaccines remain the only efficient means for controlling capripox diseases. However, serological tools have not been available to differentiate infected from vaccinated animals (DIVA), though crucial for proper disease surveillance, control, and eradication efforts. We analysed the sequences of variola virus B22R homologue gene for SPPV, GTPV, and LSDV and observed significant differences between field and vaccine strains in all three capripoxvirus species, resulting in the truncation and absence of the B22R protein in major vaccines within each of the viral species. We selected and expressed a protein fragment present in wildtype viruses but absent in selected vaccine strains of all three species, taking advantage of these alterations in the B22R gene. An indirect ELISA (iELISA) developed using this protein fragment was evaluated on well-characterized sera from vaccinated, naturally and experimentally infected, and negative cattle and sheep. The developed wildtype-specific capripox DIVA iELISA showed >99% sensitivity and specificity for serum collected from animals infected with the wildtype virus. To the best of our knowledge, this is the first wildtype-specific, DIVA-capable iELISA for poxvirus diseases exploiting changes in nucleotide sequence alterations in vaccine strains.


Subject(s)
Capripoxvirus , Lumpy skin disease virus , Poxviridae Infections , Sheep Diseases , Viral Vaccines , Sheep , Cattle , Animals , Capripoxvirus/genetics , Mutation , Genome, Viral , Lumpy skin disease virus/genetics , Poxviridae Infections/diagnosis , Poxviridae Infections/prevention & control , Poxviridae Infections/veterinary , Viral Vaccines/genetics , Sheep Diseases/epidemiology , Goats
15.
Arch Virol ; 168(12): 297, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38007412

ABSTRACT

Lumpy skin disease (LSD) is a contagious viral transboundary disease listed as a notifiable disease by the World Organization of Animal Health (WOAH). The first case of this disease was reported in Pakistan in late 2021. Since then, numerous outbreaks have been documented in various regions and provinces across the country. The current study primarily aimed to analyze samples collected during LSD outbreaks in cattle populations in the Sindh and Punjab provinces of Pakistan. Phylogenetic analysis was conducted using partial sequences of the GPCR, p32, and RP030 genes. Collectively, the LSDV strains originating from outbreaks in Pakistan exhibited a noticeable clustering pattern with LSDV strains reported in African, Middle Eastern, and Asian countries, including Egypt, the Kingdom of Saudi Arabia, India, China, and Thailand. The precise reasons behind the origin of the virus strain and its subsequent spread to Pakistan remain unknown. This underscores the need for further investigations into outbreaks across the country. The findings of the current study can contribute to the establishment of effective disease control strategies, including the implementation of a mass vaccination campaign in disease-endemic countries such as Pakistan.


Subject(s)
Lumpy Skin Disease , Lumpy skin disease virus , Animals , Cattle , Disease Outbreaks/veterinary , Lumpy Skin Disease/epidemiology , Lumpy skin disease virus/genetics , Pakistan/epidemiology , Phylogeny
16.
J Virol ; 97(11): e0139423, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37905838

ABSTRACT

IMPORTANCE: Lumpy skin disease virus (LSDV) has a complex epidemiology involving multiple strains, recombination, and vaccination. Its DNA genome provides limited genetic variation to trace outbreaks in space and time. Sequencing of LSDV whole genomes has also been patchy at global and regional scales. Here, we provide the first fine-grained whole genome sequence sampling of a constrained LSDV outbreak (southeastern Europe, 2015-2017), which we analyze along with global publicly available genomes. We formally evaluate the past occurrence of recombination events as well as the temporal signal that is required for calibrating molecular clock models and subsequently conduct a time-calibrated spatially explicit phylogeographic reconstruction. Our study further illustrates the importance of accounting for recombination events before reconstructing global and regional dynamics of DNA viruses. More LSDV whole genomes from endemic areas are needed to obtain a comprehensive understanding of global LSDV dispersal dynamics.


Subject(s)
Genome, Viral , Lumpy Skin Disease , Lumpy skin disease virus , Animals , Cattle , Disease Outbreaks , DNA, Viral/genetics , Europe/epidemiology , Lumpy Skin Disease/epidemiology , Lumpy Skin Disease/virology , Lumpy skin disease virus/genetics , Phylogeny
17.
BMC Res Notes ; 16(1): 247, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37777780

ABSTRACT

Lumpy skin disease (LSD) outbreaks in Southeast and South Asia are attributed to different lineages of LSD virus (LSDV). Variants belonging to the novel recombinant cluster 2.5 circulate in China and Thailand, while a Kenyan sheep and goat pox (KSGP) strain from cluster 1.1 circulates in India, Pakistan, and Bangladesh. The clusters representing these circulating strains are vastly different. However, if their distribution encroaches into each other's ranges, it will be impossible to differentiate between them due to the lack of suitable molecular tools. Thus, fit-for-purpose molecular tools are in demand to effectively and timeously diagnose and investigate the epidemiology of LSDVs in a region. These could significantly contribute to the phylogenetic delineation of LSDVs and the development of preventive measures against transboundary spillovers. This work aimed to develop a real-time polymerase chain reaction assay targeting open reading frame LW032, capable of specifically detecting KSGP-related isolates and recombinant LSDV strains containing the KSGP backbone. The analytical specificity was proven against the widest possible panel of recombinant vaccine-like LSDV strains known to date. The amplification efficiency was 91.08%, and the assay repeatability had a cycle threshold variation of 0.56-1.1 over five repetitions across three runs. This KSGP-specific assay is reliable and fast and is recommended for use in LSDV epidemiological studies where the accurate detection of KSGP genetic signatures is a priority, particularly in regions where KSGP-like and other lineages are circulating.


Subject(s)
Lumpy skin disease virus , Poxviridae Infections , Cattle , Animals , Sheep/genetics , Lumpy skin disease virus/genetics , Kenya , Real-Time Polymerase Chain Reaction , Phylogeny , Poxviridae Infections/diagnosis , Poxviridae Infections/epidemiology , Poxviridae Infections/veterinary , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Goats/genetics
18.
Viruses ; 15(9)2023 09 05.
Article in English | MEDLINE | ID: mdl-37766289

ABSTRACT

The pathology caused by three different isolates of lumpy skin disease virus, classical field cluster 1.2 strain Dagestan/2015, recombinant vaccine-like cluster 2.1 strain Saratov/2017, and cluster 2.2 strain Udmurtiya/2019, in cattle was compared from experimental infections. The infection of cattle was performed using intravenous administration of 2 mL of 105 TCID50/mL of each specific LSDV. Both classical and recombinant forms of LSDV cause pathological changes in the skin and lymph nodes, as well as the trachea and lungs. Due to circulatory disorders in the affected organs, multiple areas of tissue necrosis were observed, which, with the resurgence of secondary microflora, led to the development of purulent inflammation. Observed pathological changes caused by the recombinant vaccine-like strain Udmurtiya/2019 were characterized by a more pronounced manifestation of the pathoanatomical picture compared to the classical field strains Dagestan/2015 and Saratov/2017. Interestingly, Dagestan/2015 and Udmurtiya/2019 caused damage to the lymph nodes, characterized by serous inflammation and focal purulent lymphadenitis caused by purulent microflora. "Saratov/2017" did not cause pathology in the lymph nodes. All LSDVs were virulent and caused pathology, which was not distinguishable between viruses. This data set will serve as the experimentally validated basis for the comparative examination of novel LSDV strains in gross pathology.


Subject(s)
Cardiovascular Diseases , Lumpy Skin Disease , Lumpy skin disease virus , Animals , Cattle , Lumpy skin disease virus/genetics , Administration, Intravenous , Inflammation
20.
Comp Immunol Microbiol Infect Dis ; 99: 102008, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37467568

ABSTRACT

Lumpy skin disease (LSD) was firstly reported in Thailand in 2021 which affected the cattle industry. However, there is limited information on the immune response of LSDV infection in Thailand where recombinant vaccine strain circulated. The aim of this research was to study the duration of LSD immune response of subclinical and clinical animals after natural infection in dairy cattle. Sixty-six dairy cattle from ten farms in central and western regions of Thailand were investigated. Antibody was detected by virus neutralization test and ELISA. Cell mediated immunity (CMI)-related cytokine gene expressions were evaluated. Antibody was detected until at least 15 months after the noticeable symptom. Cattle with subclinical disease had lower antibody levels compared to animals which had clinical disease. IFN-γ and TNF-α levels were increased, while IL-10 level was decreased in the infected animals compared to the controls. This study elucidated immune responses in dairy cattle herd affected by recombinant LSDV.


Subject(s)
Cattle Diseases , Lumpy Skin Disease , Lumpy skin disease virus , Cattle , Animals , Lumpy skin disease virus/genetics , Lumpy Skin Disease/epidemiology , Lumpy Skin Disease/prevention & control , Farms , Thailand/epidemiology , Vaccines, Attenuated , Immunity , Disease Outbreaks/veterinary , Cattle Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...