Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 529
Filter
1.
BMC Pulm Med ; 24(1): 404, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174992

ABSTRACT

BACKGROUND: The serum markers Krebs von den Lungen-6 (KL-6), surfactant protein A (SP-A), and surfactant protein D (SP-D) have been used for the diagnosis, differential diagnosis, and prognosis prediction of interstitial pneumonia. However, the significance of measuring the serum and bronchoalveolar lavage fluid (BALF) KL-6, SP-D, and SP-A levels in predicting the prognosis of chronic fibrosing interstitial pneumonia (CFIP), idiopathic pulmonary fibrosis, and idiopathic nonspecific interstitial pneumonia remains unclear. We aimed to clarify the significance of measuring the serum and BALF KL-6, SP-A, and SP-D levels in predicting the prognosis of patients with CFIP. METHODS: Among 173 patients who were diagnosed with CFIP between September 2008 and February 2021, 39 who underwent bronchoalveolar lavage were included in this study. Among these, patients experiencing an annual decrease in forced vital capacity (FVC) of ≥10% or those facing challenges in undergoing follow-up pulmonary function tests owing to significant deterioration in pulmonary function were categorized as the rapidly progress group. Conversely, individuals with an annual decrease in the FVC of <10% were classified into the slowly progress group. The serum and BALF KL-6, SP-D, and SP-A levels, as well as BALF/serum SP-D and SP-A ratios were compared between the two groups. RESULTS: Among the patients with CFIP, the BALF SP-D level (p=0.0111), BALF SP-A level (p<0.0010), BALF/serum SP-D ratio (p=0.0051), and BALF/serum SP-A ratio (p<0.0010) were significantly lower in the rapidly than in the slowly progress group (p<0.0010). The receiver operating characteristics analysis results demonstrated excellent performance for diagnosing patients with CFIP, with the BALF SP-D level (area under the curve [AUC], 0.7424), BALF SP-A level (AUC, 0.8842), BALF/serum SP-D ratio (AUC, 0.7673), and BALF/serum SP-A ratio (AUC, 0.8556). Moreover, the BALF SP-A level showed a notably superior CFIP diagnostic capability. Survival analysis using the Kaplan-Meier method revealed that patients with a BALF SP-A level of <1500 ng/mL and BALF/serum SP-A ratio of <15.0 had poor prognoses. CONCLUSIONS: Our results suggest that BALF SP-A measurement may be useful for predicting the prognosis in patients with CFIP.


Subject(s)
Biomarkers , Bronchoalveolar Lavage Fluid , Mucin-1 , Pulmonary Surfactant-Associated Protein A , Pulmonary Surfactant-Associated Protein D , Humans , Pulmonary Surfactant-Associated Protein D/blood , Pulmonary Surfactant-Associated Protein D/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Mucin-1/blood , Mucin-1/analysis , Female , Male , Retrospective Studies , Pulmonary Surfactant-Associated Protein A/blood , Pulmonary Surfactant-Associated Protein A/metabolism , Pulmonary Surfactant-Associated Protein A/analysis , Aged , Middle Aged , Prognosis , Biomarkers/blood , Biomarkers/analysis , Idiopathic Pulmonary Fibrosis/blood , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/metabolism , Lung Diseases, Interstitial/blood , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/metabolism , ROC Curve , Vital Capacity , Chronic Disease
2.
Respir Med ; 233: 107781, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39182853

ABSTRACT

AIM: Pepsin is an enzyme that helps digest protein secreted only from the gastric chief cell in an inactive state. Pepsin is a good marker for acidic gastroesophageal reflux (GER). Its presence in sputum or saliva is considered pathologic. In GER, cough is stimulated by broncho-esophageal neurogenic reflex and aspiration of gastric contents into the airways. GER is the most common cause of cough. Gastric acid reflux is also thought to play a role in Interstitial Lung Disease (ILD) etiology. In many studies, pepsin and bile acid levels in bronchial lavage were high in patients with interstitial lung disease and chronic cough. In our study, we aimed to evaluate pepsin levels in bronchial lavage in patients with ILD and chronic cough and to investigate the relationship between symptoms and reflux treatment. METHODS: Between January 2021 and February 2022, 212 patients who underwent bronchoscopy in our tertiary clinic were evaluated. These patients were divided into three groups: 52 patients with interstitial lung disease, 81 patients with chronic cough, and 79 patients who underwent bronchoscopy with a pre-diagnosis of lung cancer as the control group. Bronchial lavage obtained by bronchoscopy was analyzed for pepsin levels. RESULTS: Shortness of breath and cough were the most common symptoms in all three groups. Pepsin levels were 16.71 ± 8.6 ng/ml in the chronic cough group, 15.6 ± 8.9 ng/ml in the ILD group, and 10.58 ± 5.4 ng/ml in the lung cancer (control) group. Pepsin levels in the ILD and chronic cough group were statistically significantly higher than in the lung cancer group (p:0.00). There was no statistical difference between the ILD group and the chronic cough group regarding pepsin levels. It was found that pepsin levels were lower in the three groups who received anti-reflux treatment. There was no difference in pepsin levels between ILD subgroups. CONCLUSION: Pepsin levels in bronchial lavage were higher in the ILD and chronic cough groups. This suggests that reflux may be involved in the etiology of chronic cough and ILD. Low pepsin values in patients receiving anti-reflux therapy have shown that occult reflux may occur. In our study, the high level of pepsin in bronchial lavage, especially in the chronic cough and ILD group, may be instructive in the etiology and treatment planning of the disease.


Subject(s)
Cough , Gastroesophageal Reflux , Lung Diseases, Interstitial , Pepsin A , Humans , Cough/metabolism , Cough/etiology , Pepsin A/analysis , Pepsin A/metabolism , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/complications , Chronic Disease , Male , Female , Middle Aged , Gastroesophageal Reflux/complications , Gastroesophageal Reflux/metabolism , Aged , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage/methods , Bronchoscopy/methods , Biomarkers/metabolism , Biomarkers/analysis , Chronic Cough
3.
J Autoimmun ; 148: 103297, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098251

ABSTRACT

OBJECTIVE: Systemic sclerosis-interstitial lung disease (SSc-ILD) is the leading cause of death in SSc, affecting around 50 % of the patients. Lung tissue of patients with early-stage SSc-ILD is characterized by a predominant inflammatory response with inconspicuous fibrosis, which may progress to honeycombing fibrosis. Hence, a better understanding of the molecular mechanisms underpinning SSc-ILD pathogenesis is needed to improve treatment options and progression prediction. This transcriptomic study aims to reveal the differential gene expression between control (ctrl) lung tissue and inflammatory, prefibrotic and fibrotic lung tissue to capture progression of early to late phase SSc-ILD. METHODS: Twelve explanted lungs from patients with SSc-ILD were used to analyze gene expression from formalin-fixed paraffin-embedded lung tissues with varying stages of ILD (n = 18) and control lung tissue (n = 6). The SSc-ILD tissues were stratified into three ROIs: inflammatory, prefibrotic, and fibrotic using histological assessments to define a longitudinal simulation of early to late phases of SSc-ILD. The nanoString (nS) nCounter Human Fibrosis Panel was used to profile the transcriptome in the regions of interest. Validation of potential targetswas performed with immunohistochemistry in the same tissues that were used for transcriptome analysis. RESULTS: To validate our simulation model, we performed subgroup analysis that showed an incremental increase in pathway scores related to the severity of fibrosis. Ctrl vs SSc-ILD comparison demonstrated 24 differentially expressed genes, two of which had the most pronounced p-values. Cyclin-dependent kinase inhibitor (cdkn2c) was overexpressed (P = 0.00052) in SSc-ILD compared to ctrl, while expression of Pellino E3 ubiquitin-protein ligase 1 (peli1) showed lower expression (P = 0.0012). Additionally, in all four groups, cdkn2c and peli1 gene expression showed an incremental increase and decrease, respectively. Immunohistochemistry of cdkn2c showed consistent results with the nS analysis. CONCLUSION: More cdkn2c and less peli1 expression were associated with more advanced stages of SSc-ILD on histologic assessment. We report the potential of the cell cycle inhibitor and senescence marker, cdkn2c (p18) to be associated with fibrosis progression.


Subject(s)
Disease Progression , Gene Expression Profiling , Lung Diseases, Interstitial , Lung , Scleroderma, Systemic , Transcriptome , Humans , Scleroderma, Systemic/genetics , Scleroderma, Systemic/pathology , Scleroderma, Systemic/metabolism , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/metabolism , Lung/pathology , Lung/metabolism , Male , Female , Middle Aged , Adult , Biomarkers
4.
JCI Insight ; 9(15)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012714

ABSTRACT

Antifibrotic therapy with nintedanib is the clinical mainstay in the treatment of progressive fibrosing interstitial lung disease (ILD). High-dimensional medical image analysis, known as radiomics, provides quantitative insights into organ-scale pathophysiology, generating digital disease fingerprints. Here, we performed an integrative analysis of radiomic and proteomic profiles (radioproteomics) to assess whether changes in radiomic signatures can stratify the degree of antifibrotic response to nintedanib in (experimental) fibrosing ILD. Unsupervised clustering of delta radiomic profiles revealed 2 distinct imaging phenotypes in mice treated with nintedanib, contrary to conventional densitometry readouts, which showed a more uniform response. Integrative analysis of delta radiomics and proteomics demonstrated that these phenotypes reflected different treatment response states, as further evidenced on transcriptional and cellular levels. Importantly, radioproteomics signatures paralleled disease- and drug-related biological pathway activity with high specificity, including extracellular matrix (ECM) remodeling, cell cycle activity, wound healing, and metabolic activity. Evaluation of the preclinical molecular response-defining features, particularly those linked to ECM remodeling, in a cohort of nintedanib-treated fibrosing patients with ILD, accurately stratified patients based on their extent of lung function decline. In conclusion, delta radiomics has great potential to serve as a noninvasive and readily accessible surrogate of molecular response phenotypes in fibrosing ILD. This could pave the way for personalized treatment strategies and improved patient outcomes.


Subject(s)
Indoles , Proteomics , Pulmonary Fibrosis , Animals , Indoles/therapeutic use , Indoles/pharmacology , Mice , Humans , Proteomics/methods , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/pathology , Antifibrotic Agents/pharmacology , Antifibrotic Agents/therapeutic use , Disease Models, Animal , Female , Male , Lung/diagnostic imaging , Lung/pathology , Lung/metabolism , Lung/drug effects , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/metabolism , Extracellular Matrix/metabolism
5.
Respir Med ; 231: 107721, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972608

ABSTRACT

BACKGROUND AND OBJECTIVE: Acute exacerbation of fibrosing interstitial lung disease (AE-FILD) is a serious condition with a high mortality rate. We aimed to comprehensively analyze cytokines in bronchoalveolar lavage fluid and their association with the clinical course of AE-FILD. METHODS: We retrospectively enrolled 60 patients with AE-FILD who underwent bronchoalveolar lavage. We comprehensively measured 44 cytokines and chemokines in the obtained bronchoalveolar lavage fluid using a Luminex analyzer. Patients were grouped into those who died within 90 days (non-survival group) and survived beyond 90 days (survival group) to investigate the association of the levels of cytokines and chemokines with mortality. RESULTS: The levels of matrix metalloproteinase 1 (p = 0.003), granulocyte-macrophage colony-stimulating factor (p = 0.040), interleukin 6 (p = 0.047), interleukin 8 (p = 0.050), monocyte chemoattractant protein-1 (p = 0.043), and eotaxin (p = 0.044) were significantly higher in the non-survival group than in the survival group. In the receiver operating characteristic analysis, their areas under the curve were 0.80, 0.68, 0.71, 0.70, 0.70, and 0.72, respectively. Using machine learning with these six cytokines and chemokines, the predictive accuracy for the survival group was 0.94. CONCLUSIONS: Our study demonstrated that several cytokines and chemokines in bronchoalveolar lavage fluid could be prognostic predictors in patients with AE-FILD.


Subject(s)
Bronchoalveolar Lavage Fluid , Chemokines , Cytokines , Disease Progression , Lung Diseases, Interstitial , Humans , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Female , Male , Prognosis , Cytokines/metabolism , Aged , Retrospective Studies , Lung Diseases, Interstitial/mortality , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/immunology , Lung Diseases, Interstitial/diagnosis , Chemokines/metabolism , Chemokines/analysis , Middle Aged , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Chemokine CCL2/metabolism , Chemokine CCL2/analysis , Interleukin-6/metabolism , Interleukin-6/analysis , Interleukin-8/metabolism , Interleukin-8/analysis , Chemokine CCL11/metabolism , Chemokine CCL11/analysis , Biomarkers/metabolism , Biomarkers/analysis
6.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928165

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune condition frequently found in rheumatological patients that sometimes raises diagnosis and management problems. The pathogenesis of the disease is complex and involves the activation of many cells and intracellular signaling pathways, ultimately leading to the activation of the innate and acquired immune system and producing extensive tissue damage. Along with joint involvement, RA can have numerous extra-articular manifestations (EAMs), among which lung damage, especially interstitial lung disease (ILD), negatively influences the evolution and survival of these patients. Although there are more and more RA-ILD cases, the pathogenesis is incompletely understood. In terms of genetic predisposition, external environmental factors act and subsequently determine the activation of immune system cells such as macrophages, neutrophils, B and T lymphocytes, fibroblasts, and dendritic cells. These, in turn, show the ability to secrete molecules with a proinflammatory role (cytokines, chemokines, growth factors) that will produce important visceral injuries, including pulmonary changes. Currently, there is new evidence that supports the initiation of the systemic immune response at the level of pulmonary mucosa where the citrullination process occurs, whereby the autoantibodies subsequently migrate from the lung to the synovial membrane. The aim of this paper is to provide current data regarding the pathogenesis of RA-associated ILD, starting from environmental triggers and reaching the cellular, humoral, and molecular changes involved in the onset of the disease.


Subject(s)
Arthritis, Rheumatoid , Lung Diseases, Interstitial , Humans , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/etiology , Lung Diseases, Interstitial/etiology , Lung Diseases, Interstitial/immunology , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/pathology , Lung/pathology , Lung/immunology , Lung/metabolism , Animals , Autoantibodies/immunology
7.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 505-511, 2024 Jun 18.
Article in Chinese | MEDLINE | ID: mdl-38864137

ABSTRACT

OBJECTIVE: To investigate the effect of tofacitinib, a pan-Janus kinase (JAK) inhibitor, on transforming growth factor-beta 1 (TGF-ß1)-induced fibroblast to myofibroblast transition (FMT) and to explore its mechanism. To provide a theoretical basis for the clinical treatment of connective tissue disease-related interstitial lung disease (CTD-ILD). METHODS: (1) Human fetal lung fibroblast 1 (HFL-1) were cultured in vitro, and 6 groups were established: DMSO blank control group, TGF-ß1 induction group, and TGF-ß1 with different concentrations of tofacitinib (0.5, 1.0, 2.0, 5.0 µmol/L) drug intervention experimental groups. CCK-8 was used to measure the cell viability, and wound-healing assay was performed to measure cell migration ability. After 48 h of combined treatment, quantitative real-time PCR (RT-PCR) and Western blotting were used to detect the gene and protein expression levels of α-smooth muscle actin (α-SMA), fibronectin (FN), and collagen type Ⅰ (COL1). (2) RT-PCR and enzyme-linked immunosorbnent assay (ELISA) were used to detect the interleukin-6 (IL-6) gene and protein expression changes, respectively. (3) DMSO carrier controls, 1.0 µmol/L and 5.0 µmol/L tofacitinib were added to the cell culture media of different groups for pre-incubation for 30 min, and then TGF-ß1 was added to treat for 1 h, 6 h and 24 h. The phosphorylation levels of Smad2/3 and signal transducer and activator of transcription 3 (STAT3) protein were detected by Western blotting. RESULTS: (1) Tofacitinib inhibited the viability and migration ability of HFL-1 cells after TGF-ß1 induction. (2) The expression of α-SMA, COL1A1 and FN1 genes of HFL-1 in the TGF-ß1-induced groups was significantly up-regulated compared with the blank control group (P < 0.05). Compared with the TGF-ß1 induction group, α-SMA expression in the 5.0 µmol/L tofacitinib intervention group was significantly inhi-bited (P < 0.05). Compared with the TGF-ß1-induced group, FN1 gene was significantly inhibited in each intervention group at a concentration of 0.5-5.0 µmol/L (P < 0.05). Compared with the TGF-ß1-induced group, the COL1A1 gene expression in each intervention group did not change significantly. (3) Western blotting results showed that the protein levels of α-SMA and FN1 in the TGF-ß1-induced group were significantly higher than those in the control group (P < 0.05), and there was no significant difference in the expression of COL1A1. Compared with the TGF-ß1-induced group, the α-SMA protein level in the intervention groups with different concentrations decreased. And the differences between the TGF-ß1-induced group and 2.0 µmol/L or 5.0 µmol/L intervention groups were statistically significant (P < 0.05). Compared with the TGF-ß1-induced group, the FN1 protein levels in the intervention groups with different concentrations showed a downward trend, but the difference was not statistically significant. There was no difference in COL1A1 protein expression between the intervention groups compared with the TGF-ß1-induced group. (4) After TGF-ß1 acted on HFL-1 cells for 48 h, the gene expression of the IL-6 was up-regulated and IL-6 in culture supernatant was increased, the intervention with tofacitinib partly inhibited the TGF-ß1-induced IL-6 gene expression and IL-6 in culture supernatant. TGF-ß1 induced the increase of Smad2/3 protein phosphorylation in HFL-1 cells for 1 h and 6 h, STAT3 protein phosphorylation increased at 1 h, 6 h and 24 h, the pre-intervention with tofacitinib inhibited the TGF-ß1-induced Smad2/3 phosphorylation at 6 h and inhibited TGF-ß1-induced STAT3 phosphorylation at 1 h, 6 h and 24 h. CONCLUSION: Tofacitinib can inhibit the transformation of HFL-1 cells into myofibroblasts induced by TGF-ß1, and the mechanism may be through inhibiting the classic Smad2/3 pathway as well as the phosphorylation of STAT3 induced by TGF-ß1, thereby protecting the disease progression of pulmonary fibrosis.


Subject(s)
Fibroblasts , Myofibroblasts , Piperidines , Pyrimidines , STAT3 Transcription Factor , Signal Transduction , Humans , Actins/metabolism , Cell Movement/drug effects , Cell Survival/drug effects , Cells, Cultured , Collagen Type I/metabolism , Collagen Type I/genetics , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibronectins/metabolism , Interleukin-6/metabolism , Janus Kinases/metabolism , Lung/cytology , Lung Diseases, Interstitial/metabolism , Myofibroblasts/cytology , Myofibroblasts/metabolism , Piperidines/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Signal Transduction/drug effects , Smad2 Protein/metabolism , Smad3 Protein/metabolism , STAT3 Transcription Factor/metabolism , Transforming Growth Factor beta1/metabolism
8.
JCI Insight ; 9(11)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855869

ABSTRACT

Progressive pulmonary fibrosis (PPF), defined as the worsening of various interstitial lung diseases (ILDs), currently lacks useful biomarkers. To identify novel biomarkers for early detection of patients at risk of PPF, we performed a proteomic analysis of serum extracellular vesicles (EVs). Notably, the identified candidate biomarkers were enriched for lung-derived proteins participating in fibrosis-related pathways. Among them, pulmonary surfactant-associated protein B (SFTPB) in serum EVs could predict ILD progression better than the known biomarkers, serum KL-6 and SP-D, and it was identified as an independent prognostic factor from ILD-gender-age-physiology index. Subsequently, the utility of SFTPB for predicting ILD progression was evaluated further in 2 cohorts using serum EVs and serum, respectively, suggesting that SFTPB in serum EVs but not in serum was helpful. Among SFTPB forms, pro-SFTPB levels were increased in both serum EVs and lungs of patients with PPF compared with those of the control. Consistently, in a mouse model, the levels of pro-SFTPB, primarily originating from alveolar epithelial type 2 cells, were increased similarly in serum EVs and lungs, reflecting pro-fibrotic changes in the lungs, as supported by single-cell RNA sequencing. SFTPB, especially its pro-form, in serum EVs could serve as a biomarker for predicting ILD progression.


Subject(s)
Biomarkers , Disease Progression , Extracellular Vesicles , Pulmonary Fibrosis , Pulmonary Surfactant-Associated Protein B , Extracellular Vesicles/metabolism , Humans , Animals , Biomarkers/blood , Mice , Male , Female , Pulmonary Fibrosis/blood , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Surfactant-Associated Protein B/blood , Pulmonary Surfactant-Associated Protein B/metabolism , Middle Aged , Aged , Lung Diseases, Interstitial/blood , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/metabolism , Lung/pathology , Lung/metabolism , Proteomics/methods , Disease Models, Animal , Prognosis , Protein Precursors , Pulmonary Surfactant-Associated Proteins
9.
BMJ Open ; 14(5): e081103, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816048

ABSTRACT

BACKGROUND: 18Fluorine-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) CT imaging has been used in many inflammatory and infectious conditions to differentiate areas of increased metabolic activity. FDG uptake differs between areas of normal lung parenchyma and interstitial lung disease (ILD). OBJECTIVES: In this study, we investigated whether FDG-PET/CT parameters were associated with a change in the quality of life (QoL) in patients with ILD over 4 years of follow-up. METHODS: Patients underwent PET-CT imaging at diagnosis and were followed up with annual QoL assessment using the St George's Respiratory Questionnaire (SGRQ) until death or 4 years of follow-up. Maximum standard uptake value (SUVmax) and Tissue-to-Background Ratio (TBR) were assessed against SGRQ overall and subscale scores. RESULTS: 193 patients (94 patients in the idiopathic pulmonary fibrosis (IPF) subgroup and 99 patients in the non-IPF subgroup) underwent baseline FDG-PET/CT imaging and QoL assessment. Weak-to-moderate correlation was observed between baseline SUVmax and SGRQ scores in both ILD subgroups. No relationship was observed between baseline SUVmax or TBR and change in SGRQ scores over 4 years of follow-up. In the IPF subgroup, surviving patients reported a decline in QoL at 4 years post diagnosis whereas an improvement in QoL was seen in surviving patients with non-IPF ILD. CONCLUSIONS: Weak-to-moderate positive correlation between baseline SUVmax and SGRQ scores was observed in both ILD subgroups (IPF:rs=0.187, p=0.047, non-IPF: rs=0.320, p=0.001). However, baseline SUVmax and TBR were not associated with change in QoL in patients with IPF and non-IPF ILD over 4 years of follow-up. At 4 years post diagnosis, surviving patients with IPF reported declining QoL whereas improvement was seen in patients with ILD who did not have IPF.


Subject(s)
Fluorodeoxyglucose F18 , Lung Diseases, Interstitial , Positron Emission Tomography Computed Tomography , Quality of Life , Radiopharmaceuticals , Humans , Positron Emission Tomography Computed Tomography/methods , Male , Female , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/metabolism , Prospective Studies , Aged , Middle Aged , United Kingdom , Surveys and Questionnaires , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/metabolism
10.
J Transl Med ; 22(1): 457, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745204

ABSTRACT

BACKGROUND AND PURPOSE: Interstitial lung disease (ILD) represents a significant complication of rheumatoid arthritis (RA) that lacks effective treatment options. This study aimed to investigate the intrinsic mechanism by which resveratrol attenuates rheumatoid arthritis complicated with interstitial lung disease through the AKT/TMEM175 pathway. METHODS: We established an arthritis model by combining chicken type II collagen and complete Freund's adjuvant. Resveratrol treatment was administered via tube feeding for 10 days. Pathological changes in both the joints and lungs were evaluated using HE and Masson staining techniques. Protein expression of TGF-ß1, AKT, and TMEM175 was examined in lung tissue. MRC-5 cells were stimulated using IL-1ß in combination with TGF-ß1 as an in vitro model of RA-ILD, and agonists of AKT, metabolic inhibitors, and SiRNA of TMEM175 were used to explore the regulation and mechanism of action of resveratrol RA-ILD. RESULTS: Resveratrol mitigates fibrosis in rheumatoid arthritis-associated interstitial lung disease and reduces oxidative stress and inflammation in RA-ILD. Furthermore, resveratrol restored cellular autophagy. When combined with the in vitro model, it was further demonstrated that resveratrol could suppress TGF-ß1 expression, and reduce AKT metamorphic activation, consequently inhibiting the opening of AKT/MEM175 ion channels. This, in turn, lowers lysosomal pH and enhances the fusion of autophagosomes with lysosomes, ultimately ameliorating the progression of RA-ILD. CONCLUSION: In this study, we demonstrated that resveratrol restores autophagic flux through the AKT/MEM175 pathway to attenuate inflammation as well as fibrosis in RA-ILD by combining in vivo and in vitro experiments. It further provides a theoretical basis for the selection of therapeutic targets for RA-ILD.


Subject(s)
Arthritis, Rheumatoid , Fibrosis , Inflammation , Lung Diseases, Interstitial , Potassium Channels , Proto-Oncogene Proteins c-akt , Resveratrol , Signal Transduction , Animals , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Autophagy/drug effects , Cell Line , Inflammation/pathology , Inflammation/drug therapy , Lung/pathology , Lung/drug effects , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/metabolism , Membrane Proteins/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Mice , Potassium Channels/drug effects , Potassium Channels/metabolism
11.
Int J Rheum Dis ; 27(5): e15174, 2024 May.
Article in English | MEDLINE | ID: mdl-38720423

ABSTRACT

OBJECTIVES: This study investigates the role of TNF-induced protein 3 (TNFAIP3) and CCAAT/enhancer-binding protein ß (C/EBPß) in alveolar macrophages (AMs) of patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD) and their influence on pulmonary fibrosis. METHODS: Transfection of HEK293T cells and AMs with plasmids carrying TNFAIP3 and C/EBPß was performed, followed by co-culturing AMs with pulmonary fibroblasts. Immunoblotting analysis was then utilized to assess the expression of TNFAIP3, C/EBPß, and collagen type 1 (Col1). Quantitative PCR analysis was conducted to quantify the mRNA levels of C/EBPß, IL-10, and TGF-ß1. STRING database analysis, and immunoprecipitation assays were employed to investigate the interactions between TNFAIP3 and C/EBPß. RESULTS: TNFAIP3 expression was significantly reduced in SSc-ILD AMs, correlating with increased Col1 production in fibroblasts. Overexpression of TNFAIP3 inhibited this pro-fibrotic activity. Conversely, C/EBPß expression was elevated in SSc-ILD AMs, and its reduction through TNFAIP3 restoration decreased pro-fibrotic cytokines IL-10 and TGFß1 levels. Protein-protein interaction studies confirmed the regulatory relationship between TNFAIP3 and C/EBPß. CONCLUSIONS: This study highlights the important role of TNFAIP3 in regulating pulmonary fibrosis in SSc-ILD by modulating C/EBPß expression in AMs. These findings suggest that targeting TNFAIP3 could be a potential therapeutic strategy for managing SSc-ILD patients.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta , Coculture Techniques , Fibroblasts , Lung Diseases, Interstitial , Macrophages, Alveolar , Scleroderma, Systemic , Tumor Necrosis Factor alpha-Induced Protein 3 , Female , Humans , Male , Middle Aged , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Collagen Type I/metabolism , Collagen Type I/genetics , Fibroblasts/metabolism , HEK293 Cells , Interleukin-10/metabolism , Interleukin-10/genetics , Lung/metabolism , Lung/pathology , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/etiology , Macrophages, Alveolar/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/etiology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/complications , Signal Transduction , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Adult , Aged
12.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673881

ABSTRACT

Interstitial lung diseases (ILDs) are characterized by inflammation or fibrosis of the pulmonary parenchyma. Despite the involvement of immune cells and soluble mediators in pulmonary fibrosis, the influence of antimicrobial peptides (AMPs) remains underexplored. These effector molecules display a range of activities, which include immunomodulation and wound repair. Here, we investigate the role of AMPs in the development of fibrosis in ILD. We compare the concentration of different AMPs and different cytokines in 46 fibrotic (F-ILD) and 17 non-fibrotic (NF-ILD) patients by ELISA and using peripheral blood mononuclear cells from in vitro stimulation in the presence of lysozyme or secretory leukocyte protease inhibitor (SLPI) from 10 healthy donors. We observed that bronchoalveolar lavage (BAL) levels of AMPs were decreased in F-ILD patients (lysozyme: p < 0.001; SLPI: p < 0.001; LL-37: p < 0.001; lactoferrin: p = 0.47) and were negatively correlated with levels of TGF-ß (lysozyme: p = 0.02; SLPI: p < 0.001) and IL-17 (lysozyme: p < 0.001; SLPI: p < 0.001). We observed that lysozyme increased the percentage of CD86+ macrophages (p < 0.001) and the production of TNF-α (p < 0.001). We showed that lysozyme and SLPI were associated with clinical parameters (lysozyme: p < 0.001; SLPI: p < 0.001) and disease progression (lysozyme: p < 0.001; SLPI: p = 0.01). These results suggest that AMPs may play an important role in the anti-fibrotic response, regulating the effect of pro-fibrotic cytokines. In addition, levels of lysozyme in BAL may be a potential biomarker to predict the progression in F-ILD patients.


Subject(s)
Bronchoalveolar Lavage Fluid , Lung Diseases, Interstitial , Muramidase , Secretory Leukocyte Peptidase Inhibitor , Humans , Muramidase/metabolism , Male , Female , Middle Aged , Secretory Leukocyte Peptidase Inhibitor/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/pathology , Aged , Cytokines/metabolism , Adult , Biomarkers , Bronchoalveolar Lavage , Leukocytes, Mononuclear/metabolism
13.
Cell Rep ; 43(4): 114114, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625791

ABSTRACT

Patients afflicted with Stimulator of interferon gene (STING) gain-of-function mutations frequently present with debilitating interstitial lung disease (ILD) that is recapitulated in mice expressing the STINGV154M mutation (VM). Prior radiation chimera studies revealed an unexpected and critical role for non-hematopoietic cells in initiating ILD. To identify STING-expressing non-hematopoietic cell types required for the development of ILD, we use a conditional knockin (CKI) model and direct expression of the VM allele to hematopoietic cells, fibroblasts, epithelial cells, or endothelial cells. Only endothelial cell-targeted VM expression results in enhanced recruitment of immune cells to the lung associated with elevated chemokine expression and the formation of bronchus-associated lymphoid tissue, as seen in the parental VM strain. These findings reveal the importance of endothelial cells as instigators of STING-driven lung disease and suggest that therapeutic targeting of STING inhibitors to endothelial cells could potentially mitigate inflammation in the lungs of STING-associated vasculopathy with onset in infancy (SAVI) patients or patients afflicted with other ILD-related disorders.


Subject(s)
Endothelial Cells , Gain of Function Mutation , Lung , Membrane Proteins , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Mice , Lung/pathology , Lung/metabolism , Lymphocytes/metabolism , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/metabolism , Mice, Inbred C57BL , Humans
14.
Med Biol Eng Comput ; 62(8): 2557-2570, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38644448

ABSTRACT

Combined pulmonary fibrosis and emphysema (CPFE) presents a unique challenge in respiratory disorders, merging features of interstitial lung disease (ILD) and chronic obstructive pulmonary disease (COPD). Using the random forest algorithm, our study thoroughly examines the molecular details of CPFE. Analyzing gene expression datasets from GSE47460 (ILD: 254, COPD: 220, control: 108), we identify key genes namely ADRB2, CDH3, IRS2, MATN3, CD38, PDIA4, VEGFC, and among twenty others, crucial in airway regulation, lung function, and apoptosis, shaping the complex pathogenesis of CPFE. Additionally, miRNAs (hsa-mir-101-3p, hsa-mir-1343-3p, hsa-mir-27a-3p, and miR-16-5p) showcase regulatory impacts on CPFE-related molecular pathways. Our machine learning model unveils these intricate interactions, offering a comprehensive insight into CPFE's molecular mechanisms. This research not only pinpoints potential therapeutic targets and biomarkers but also opens avenues for innovative approaches in managing CPFE, linking ILD and COPD within this complex respiratory condition.


Subject(s)
Artificial Intelligence , Lung , MicroRNAs , Pulmonary Disease, Chronic Obstructive , Pulmonary Fibrosis , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Lung/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/metabolism , Pulmonary Emphysema/genetics , Pulmonary Emphysema/metabolism , RNA/genetics , RNA/metabolism , Gene Expression Profiling , Machine Learning
15.
Front Immunol ; 15: 1328781, 2024.
Article in English | MEDLINE | ID: mdl-38550597

ABSTRACT

Metabolic changes are coupled with alteration in protein glycosylation. In this review, we will focus on macrophages that are pivotal in the pathogenesis of pulmonary fibrosis and sarcoidosis and thanks to their adaptable metabolism are an attractive therapeutic target. Examples presented in this review demonstrate that protein glycosylation regulates metabolism-driven immune responses in macrophages, with implications for fibrotic processes and granuloma formation. Targeting proteins that regulate glycosylation, such as fucosyltransferases, neuraminidase 1 and chitinase 1 could effectively block immunometabolic changes driving inflammation and fibrosis, providing novel avenues for therapeutic interventions.


Subject(s)
Lung Diseases, Interstitial , Pulmonary Fibrosis , Sarcoidosis , Humans , Glycosylation , Lung Diseases, Interstitial/metabolism , Pulmonary Fibrosis/etiology , Sarcoidosis/metabolism , Fibrosis
16.
J Clin Invest ; 134(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38226623

ABSTRACT

Mutations in ATP-binding cassette A3 (ABCA3), a phospholipid transporter critical for surfactant homeostasis in pulmonary alveolar type II epithelial cells (AEC2s), are the most common genetic causes of childhood interstitial lung disease (chILD). Treatments for patients with pathological variants of ABCA3 mutations are limited, in part due to a lack of understanding of disease pathogenesis resulting from an inability to access primary AEC2s from affected children. Here, we report the generation of AEC2s from affected patient induced pluripotent stem cells (iPSCs) carrying homozygous versions of multiple ABCA3 mutations. We generated syngeneic CRISPR/Cas9 gene-corrected and uncorrected iPSCs and ABCA3-mutant knockin ABCA3:GFP fusion reporter lines for in vitro disease modeling. We observed an expected decreased capacity for surfactant secretion in ABCA3-mutant iPSC-derived AEC2s (iAEC2s), but we also found an unexpected epithelial-intrinsic aberrant phenotype in mutant iAEC2s, presenting as diminished progenitor potential, increased NFκB signaling, and the production of pro-inflammatory cytokines. The ABCA3:GFP fusion reporter permitted mutant-specific, quantifiable characterization of lamellar body size and ABCA3 protein trafficking, functional features that are perturbed depending on ABCA3 mutation type. Our disease model provides a platform for understanding ABCA3 mutation-mediated mechanisms of alveolar epithelial cell dysfunction that may trigger chILD pathogenesis.


Subject(s)
ATP-Binding Cassette Transporters , Lung Diseases, Interstitial , Pluripotent Stem Cells , Humans , Alveolar Epithelial Cells/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Lung/pathology , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/pathology , Mutation , Pluripotent Stem Cells/metabolism , Surface-Active Agents/metabolism
17.
Respir Res ; 24(1): 320, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38111019

ABSTRACT

BACKGROUND: Pulmonary Langerhans cell histiocytosis (PLCH) is a rare interstitial lung disease (ILD) associated with smoking, whose definitive diagnosis requires the exclusion of other forms of ILD and a compatible surgical lung biopsy. Bronchoalveolar lavage (BAL) is commonly proposed for the diagnosis of ILD, including PLCH, but the diagnostic value of this technique is limited. Here, we have analyzed the levels of a panel of cytokines and chemokines in BAL from PLCH patients, in order to identify a distinct immune profile to discriminate PLCH from other smoking related-ILD (SR-ILD), and comparing the results with idiopathic pulmonary fibrosis (IPF) as another disease in which smoking is considered a risk factor. METHODS: BAL samples were collected from thirty-six patients with different ILD, including seven patients with PLCH, sixteen with SR-ILD and thirteen with IPF. Inflammatory profiles were analyzed using the Human Cytokine Membrane Antibody Array. Principal component analysis (PCA) was performed to reduce dimensionality and protein-protein interaction (PPI) network analysis using STRING 11.5 database were conducted. Finally, Random forest (RF) method was used to build a prediction model. RESULTS: We have found significant differences (p < 0.05) on thirty-two cytokines/chemokines when comparing BAL from PLCH patients with at least one of the other ILD. Four main groups of similarly regulated cytokines were established, identifying distinct sets of markers for each cluster. Exploratory analysis using PCA (principal component analysis) showed clustering and separation of patients, with the two first components capturing 69.69% of the total variance. Levels of TARC/CCL17, leptin, oncostatin M (OSM) and IP-10/CXCL10 were associated with lung function parameters, showing positive correlation with FVC. Finally, random forest (RF) algorithm demonstrates that PLCH patients can be differentiated from the other ILDs based solely on inflammatory profile (accuracy 96.25%). CONCLUSIONS: Our results show that patients with PLCH exhibit a distinct BAL immune profile to SR-ILD and IPF. PCA analysis and RF model identify a specific immune profile useful for discriminating PLCH.


Subject(s)
Histiocytosis, Langerhans-Cell , Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Humans , Bronchoalveolar Lavage Fluid , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/etiology , Lung Diseases, Interstitial/metabolism , Histiocytosis, Langerhans-Cell/diagnosis , Histiocytosis, Langerhans-Cell/pathology , Smoking/adverse effects , Cytokines , Immunoglobulins , Chemokines
18.
Respir Res ; 24(1): 318, 2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38105232

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease (ILD) with unknown etiology, characterized by sustained damage repair of epithelial cells and abnormal activation of fibroblasts, the underlying mechanism of the disease remains elusive. METHODS: To evaluate the role of Tuftelin1 (TUFT1) in IPF and elucidate its molecular mechanism. We investigated the level of TUFT1 in the IPF and bleomycin-induced mouse models and explored the influence of TUFT1 deficiency on pulmonary fibrosis. Additionally, we explored the effect of TUFT1 on the cytoskeleton and illustrated the relationship between stress fiber and pulmonary fibrosis. RESULTS: Our results demonstrated a significant upregulation of TUFT1 in IPF and the bleomycin (BLM)-induced fibrosis model. Disruption of TUFT1 exerted inhibitory effects on pulmonary fibrosis in both in vivo and in vitro. TUFT1 facilitated the assembly of microfilaments in A549 and MRC-5 cells, with a pronounced association between TUFT1 and Neuronal Wiskott-Aldrich syndrome protein (N-WASP) observed during microfilament formation. TUFT1 can promote the phosphorylation of tyrosine residue 256 (Y256) of the N-WASP (pY256N-WASP). Furthermore, TUFT1 promoted transforming growth factor-ß1 (TGF-ß1) induced fibroblast activation by increasing nuclear translocation of pY256N-WASP in fibroblasts, while wiskostatin (Wis), an N-WASP inhibitor, suppressed these processes. CONCLUSIONS: Our findings suggested that TUFT1 plays a critical role in pulmonary fibrosis via its influence on stress fiber, and blockade of TUFT1 effectively reduces pro-fibrotic phenotypes. Pharmacological targeting of the TUFT1-N-WASP axis may represent a promising therapeutic approach for pulmonary fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Animals , Mice , Bleomycin/toxicity , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Lung Diseases, Interstitial/metabolism , Mice, Inbred C57BL , Stress Fibers/metabolism , Transforming Growth Factor beta1/pharmacology
19.
J Transl Med ; 21(1): 857, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38012636

ABSTRACT

BACKGROUND: The prognosis of patients with lung cancer accompanied by interstitial pneumonia is poorer than that of patients with lung cancer but without interstitial pneumonia. Moreover, the available therapeutic interventions for lung cancer patients with interstitial pneumonia are limited. Therefore, a new treatment strategy for these patients is required. The aim of the present study was to investigate the pathophysiological relationship between interstitial pneumonia and lung cancer and explore potential therapeutic agents. METHODS: A novel hybrid murine model of lung cancer with interstitial pneumonia was established via bleomycin-induced pulmonary fibrosis followed by orthotopic lung cancer cell transplantation into the lungs. Changes in tumor progression, lung fibrosis, RNA expression, cytokine levels, and tumor microenvironment in the lung cancer with interstitial pneumonia model were investigated, and therapeutic agents were examined. Additionally, clinical data and samples from patients with lung cancer accompanied by interstitial pneumonia were analyzed to explore the potential clinical significance of the findings. RESULTS: In the lung cancer with interstitial pneumonia model, accelerated tumor growth was observed based on an altered tumor microenvironment. RNA sequencing analysis revealed upregulation of the hypoxia-inducible factor 1 signaling pathway. These findings were consistent with those obtained for human samples. Moreover, we explored whether ascorbic acid could be an alternative treatment for lung cancer with interstitial pneumonia to avoid the disadvantages of hypoxia-inducible factor 1 inhibitors. Ascorbic acid successfully downregulated the hypoxia-inducible factor 1 signaling pathway and inhibited tumor progression and lung fibrosis. CONCLUSIONS: The hypoxia-inducible factor 1 pathway is critical in lung cancer with interstitial pneumonia and could be a therapeutic target for mitigating interstitial pneumonia-mediated lung cancer progression.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Lung Diseases, Interstitial , Lung Neoplasms , Pneumonia , Pulmonary Fibrosis , Animals , Humans , Mice , Ascorbic Acid , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung/pathology , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/pathology , Lung Neoplasms/genetics , Pulmonary Fibrosis/pathology , Tumor Microenvironment
20.
Matrix Biol ; 124: 1-7, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37922998

ABSTRACT

Elastin is a long-lived fibrous protein that is abundant in the extracellular matrix of the lung. Elastic fibers provide the lung the characteristic elasticity during inhalation with recoil during exhalation thereby ensuring efficient gas exchange. Excessive deposition of elastin and other extracellular matrix proteins reduces lung compliance by impairing ventilation and compromising gas exchange. Notably, the degree of elastosis is associated with the progressive decline in lung function and survival in patients with interstitial lung diseases. Currently there are no proven therapies which effectively reduce the elastin burden in the lung nor prevent dysregulated elastosis. This review describes elastin's role in the healthy lung, summarizes elastosis in pulmonary diseases, and evaluates the current understanding of elastin regulation and dysregulation with the goal of guiding future research efforts to develop novel and effective therapies.


Subject(s)
Lung Diseases, Interstitial , Lung , Humans , Lung/metabolism , Lung Diseases, Interstitial/metabolism , Fibrosis , Elastin , Elastic Tissue/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL