Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.494
Filter
1.
Exp Eye Res ; 243: 109904, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642600

ABSTRACT

Aqueous humor (AQH) is a transparent fluid with characteristics similar to those of the interstitial fluid, which fills the eyeball posterior and anterior chambers and circulates in them from the sites of production to those of drainage. The AQH volume and pressure homeostasis is essential for the trophism of the ocular avascular tissues and their normal structure and function. Different AQH outflow pathways exist, including a main pathway, quite well defined anatomically and referred to as the conventional pathway, and some accessory pathways, more recently described and still not fully morphofunctionally understood, generically referred to as unconventional pathways. The conventional pathway is based on the existence of a series of conduits starting with the trabecular meshwork and Schlemm's Canal and continuing with a system of intrascleral and episcleral venules, which are tributaries to veins of the anterior segment of the eyeball. The unconventional pathways are mainly represented by the uveoscleral pathway, in which AQH flows through clefts, interstitial conduits located in the ciliary body and sclera, and then merges into the aforementioned intrascleral and episcleral venules. A further unconventional pathway, the lymphatic pathway, has been supported by the demonstration of lymphatic microvessels in the limbal sclera and, possibly, in the uvea (ciliary body, choroid) as well as by the ocular glymphatic channels, present in the neural retina and optic nerve. It follows that AQH may be drained from the eyeball through blood vessels (TM-SC pathway, US pathway) or lymphatic vessels (lymphatic pathway), and the different pathways may integrate or compensate for each other, optimizing the AQH drainage. The present review aims to define the state-of-the-art concerning the structural organization and the functional anatomy of all the AQH outflow pathways. Particular attention is paid to examining the regulatory mechanisms active in each of them. The new data on the anatomy and physiology of AQH outflow pathways is the key to understanding the pathophysiology of AQH outflow disorders and could open the way for novel approaches to their treatment.


Subject(s)
Aqueous Humor , Lymphatic System , Aqueous Humor/physiology , Aqueous Humor/metabolism , Humans , Lymphatic System/physiology , Sclera/blood supply , Trabecular Meshwork/metabolism , Lymphatic Vessels/physiology , Veins/physiology , Uvea , Animals , Intraocular Pressure/physiology , Lymph/physiology , Ciliary Body/blood supply , Ciliary Body/metabolism
2.
J Vis Exp ; (205)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38587372

ABSTRACT

The lymphatic vasculature, now often referred to as "the third circulation," is located in many vital organ systems. A principal mechanical function of the lymphatic vasculature is to return fluid from extracellular spaces back to the central venous ducts. Lymph transport is mediated by spontaneous rhythmic contractions of lymph vessels (LVs). LV contractions are largely regulated by the cyclic rise and fall of cytosolic, free calcium ([Ca2+]i). This paper presents a method to concurrently calculate changes in absolute concentrations of [Ca2+]i and vessel contractility/rhythmicity in real time in isolated, pressurized LVs. Using isolated rat mesenteric LVs, we studied changes in [Ca2+]i and contractility/rhythmicity in response to drug addition. Isolated LVs were loaded with the ratiometric Ca2+-sensing indicator Fura-2AM, and video microscopy coupled with edge-detection software was used to capture [Ca2+]i and diameter measurements continuously in real time. The Fura-2AM signal from each LV was calibrated to the minimum and maximum signal for each vessel and used to calculate absolute [Ca2+]i. Diameter measurements were used to calculate contractile parameters (amplitude, end diastolic diameter, end systolic diameter, calculated flow) and rhythmicity (frequency, contraction time, relaxation time) and correlated with absolute [Ca2+]i measurements.


Subject(s)
Calcium , Lymphatic Vessels , Rats , Animals , Lymphatic Vessels/physiology , Lymph , Muscle Contraction/physiology
3.
J Biomech Eng ; 146(9)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38558115

ABSTRACT

A previously developed model of a lymphatic vessel as a chain of lymphangions was investigated to determine whether lymphangions of unequal length reduce pumping relative to a similar chain of equal-length ones. The model incorporates passive elastic and active contractile properties taken from ex vivo measurements, and intravascular lymphatic valves as transvalvular pressure-dependent resistances to flow with hysteresis and transmural pressure-dependent bias to the open state as observed experimentally. Coordination of lymphangion contractions is managed by marrying an autonomous transmural pressure-dependent pacemaker for each lymphangion with bidirectional transmission of activation signals between lymphangions, qualitatively matching empirical observations. With eight lymphangions as used here and many nonlinear constraints, the model is capable of complex outcomes. The expected flow-rate advantage conferred by longer lymphangions everywhere was confirmed. However, the anticipated advantage of uniform lymphangions over those of unequal length, compared in chains of equal overall length, was not found. A wide variety of dynamical outcomes was observed, with the most powerful determinant being the adverse pressure difference, rather than the arrangement of long and short lymphangions. This work suggests that the wide variation in lymphangion length which is commonly observed in collecting lymphatic vessels does not confer disadvantage in pumping lymph.


Subject(s)
Lymphatic Vessels , Models, Biological , Lymphatic System/physiology , Lymphatic Vessels/physiology , Lymph/physiology , Pressure , Muscle Contraction
4.
J Control Release ; 369: 146-162, 2024 May.
Article in English | MEDLINE | ID: mdl-38513730

ABSTRACT

Delivery to peripheral lymphatics can be achieved following interstitial administration of nano-sized delivery systems (nanoparticles, liposomes, dendrimers etc) or molecules that hitchhike on endogenous nano-sized carriers (such as albumin). The published work concerning the hitchhiking approach has mostly focussed on the lymphatic uptake of vaccines conjugated directly to albumin binding moieties (ABMs such as lipids, Evans blue dye derivatives or peptides) and their subsequent trafficking into draining lymph nodes. The mechanisms underpinning access and transport of these constructs into lymph fluid, including potential interaction with other endogenous nanocarriers such as lipoproteins, have largely been ignored. Recently, we described a series of brush polyethylene glycol (PEG) polymers containing end terminal short-chain or medium-chain hydrocarbon tails (1C2 or 1C12, respectively), cholesterol moiety (Cho), or medium-chain or long-chain diacylglycerols (2C12 or 2C18, respectively). We evaluated the association of these materials with albumin and lipoprotein in rat plasma, and their intravenous (IV) and subcutaneous (SC) pharmacokinetic profiles. Here we fully detail the association of this suite of polymers with albumin and lipoproteins in rat lymph, which is expected to facilitate lymph transport of the materials from the SC injection site. Additionally, we characterise the thoracic lymph uptake, tissue and lymph node biodistribution of the lipidated brush PEG polymers following SC administration to thoracic lymph cannulated rats. All polymers had moderate lymphatic uptake in rats following SC dosing with the lymph uptake higher for 1C2-PEG, 2C12-PEG and 2C18-PEG (5.8%, 5.9% and 6.7% dose in lymph, respectively) compared with 1C12-PEG and Cho-PEG (both 1.5% dose in lymph). The enhanced lymph uptake of 1C2-PEG, 2C12-PEG and 2C18-PEG appeared related to their association profile with different lipoproteins. The five polymers displayed different biodistribution patterns in major organs and tissues in mice. All polymers reached immune cells deep within the inguinal lymph nodes of mice following SC dosing. The ability to access these immune cells suggests the potential of the polymers as platforms for the delivery of vaccines and immunotherapies. Future studies will focus on evaluating the lymphatic targeting and therapeutic potential of drug or vaccine-loaded polymers in pre-clinical disease models.


Subject(s)
Polyethylene Glycols , Animals , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Tissue Distribution , Male , Rats, Sprague-Dawley , Lipids/chemistry , Lymph Nodes/metabolism , Lymph/metabolism , Mice , Rats , Albumins/administration & dosage , Albumins/pharmacokinetics , Lipoproteins/pharmacokinetics , Lipoproteins/administration & dosage , Female
5.
Sci Rep ; 13(1): 21241, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38040740

ABSTRACT

Lymphedema is a condition in which lymph transport is compromised. The factors that govern the timing of lymphatic contractions are largely unknown; however, these factors likely play a central role in lymphatic health. Computational models have proven useful in quantifying changes in lymph transport; nevertheless, there is still much unknown regarding the regulation of contractions. The purpose of this paper is to utilize computational modeling to examine the role of pacemaking activity in lymph transport. A 1D fluid-solid modeling framework was utilized to describe the interaction between the contracting vessel and the lymph flow. The distribution of contractions along a three-lymphangion chain in time and space was determined by specifying the pacemaking sites and parameters obtained from experimentation. The model effectively replicates the contractility patterns in experiments. Quantitatively, the flow rates were measured at 5.44 and 2.29 [Formula: see text], and the EF values were 78% and less than 33% in the WT and KO models, respectively, which are consistent with the literature. Applying pacemaking parameters in this modeling framework effectively captures lymphatic contractile wave propagations and their relation to lymph transport. It can serve as a motivation for conducting novel studies to evaluate lymphatic pumping function during the development of lymphedema.


Subject(s)
Lymphatic Vessels , Lymphedema , Humans , Lymph/physiology , Lymphatic Vessels/physiology , Muscle Contraction/physiology , Computer Simulation , Lymphatic System/physiology
6.
Bull Exp Biol Med ; 175(6): 785-790, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37979026

ABSTRACT

We studied the effect of a new complex phytocomposition on age-related changes in the composition of biological fluids (blood, lymph, and interstitial fluid) in old (22-24-month-old) white Sprague-Dawley rats. A 3-month course of phytocomposition induced an increase in the volumes of interstitial fluid (IF) and plasma and stimulated lymph outflow and diuresis. In the blood and lymph, the clotting time increased, while the viscosity and all lipid indicators decreased. The phytocomposition increased the number of erythrocytes and leukocytes, the levels of immunoglobulins (except IgG) and lymphocyte subpopulations, which contributed to correction and improvement of the immune properties of the blood and lymph. Increased hydration of the tissues of the body and strengthening of the anti-atherogenic and immune properties of the lymph and blood led to recovery of the drainage and detoxification function of the lymphatic system. Due to the presence of bioflavonoids, microelements, and vitamins, the new complex phytocomposition produces a lymphotropic effect by changing the composition of the blood, lymph, and IF and stimulates fluid transport from IF into the vascular bed, thereby promoting natural lymph detoxification and increasing the immune properties of the blood and lymph.


Subject(s)
Extracellular Fluid , Lymph , Rats , Animals , Rats, Sprague-Dawley , Lymphatic System , Plasma
7.
Expert Opin Drug Deliv ; 20(8): 1145-1155, 2023.
Article in English | MEDLINE | ID: mdl-37535434

ABSTRACT

OBJECTIVES: Drug delivery systems typically show limited access to the lung interstitium and absorption after pulmonary delivery. The aim of this work was to undertake a proof-of-concept investigation into the potential of employing endogenous albumin and albumin absorption mechanisms in the lungs to improve lung interstitial access and absorption of inhaled drug delivery systems that bind albumin. METHODS: The permeability of human albumin (HSA) through monolayers of primary human alveolar epithelia, small airway epithelia, and microvascular endothelium were investigated. The pulmonary pharmacokinetics of bovine serum albumin (BSA) was also investigated in efferent caudal mediastinal lymph duct-cannulated sheep after inhaled aerosol administration. RESULTS: Membrane permeability coefficient values (Papp) of HSA increased in the order alveolar epithelia

Subject(s)
Albumins , Lung , Humans , Animals , Sheep , Lung/metabolism , Albumins/metabolism , Drug Delivery Systems , Aerosols , Lymph/metabolism
8.
Pflugers Arch ; 475(8): 945-960, 2023 08.
Article in English | MEDLINE | ID: mdl-37261509

ABSTRACT

Proper food intake is important for maintaining good health in humans. Chocolate is known to exert anti-inflammatory effects; however, the mechanisms remain unclear. In this study, we aimed to investigate the effects of cocoa butter intake on gut immunity in rats and rabbits. Cocoa butter intake increased the lymph flow, cell density, and IL-1ß, IL-6 and IL-10 levels in mesenteric lymph. Clodronate, a macrophage depletion compound, significantly enhanced the release of all cytokines. The immunoreactivities of macrophage markers CD68 and F4/80 in the jejunal villi were significantly decreased with clodronate. Piceatannol, a selective cell surface ATP synthase inhibitor significantly reduced the cocoa butter intake-mediated releases of IL-1ß, IL-6 and IL-10. The immunoreactivities of cell surface ATP synthase were observed in rat jejunal villi. Shear stress stimulation on the myofibroblast cells isolated from rat jejunum released ATP and carbon dioxide depended with H+ release. In rabbit in vivo experiments, cocoa butter intake increased the concentrations of ATP and H+ in the portal vein. The in vitro experiments with isolated cells of rat jejunal lamina propria the pH of 3.0 and 5.0 in the medium released significantly IL-1ß and IL-6. ATP selectively released IL-10. These findings suggest that cocoa butter intake regulates the gut immunity through the release and transport of IL-1ß, IL-6, and IL-10 into mesenteric lymph vessels in a negative feedback system. In addition, the H+ and ATP released from cell surface ATP synthase in jejunal villi play key roles in the cocoa butter intake-mediated regulation of gut immunity.


Subject(s)
Chocolate , Dietary Fats , Gastrointestinal Tract , Proton-Translocating ATPases , Animals , Rats , Rabbits , Dietary Fats/administration & dosage , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Male , Rats, Sprague-Dawley , Lymph/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Interleukin-10/metabolism , Clodronic Acid , Jejunum/metabolism , Shear Strength , Adenosine Triphosphate/metabolism , Carbon Dioxide/metabolism , Cells, Cultured , Proton-Translocating ATPases/antagonists & inhibitors , Proton-Translocating ATPases/metabolism
9.
Life Sci ; 327: 121818, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37268288

ABSTRACT

Chronic alcohol consumption in rodents induces mesenteric collecting lymphatic vessel hyperpermeability, lymph leakage, and consequent immunometabolic dysregulation of the perilymphatic adipose tissue (PLAT). The specific lymphatic components mediating PLAT immunometabolic dysregulation remain to be identified. Specifically, whether alcohol impacts lymph composition is unknown. This study aimed to determine alcohol associated changes in lymph and plasma proteome. Adult male rats were fed a Lieber-DeCarli liquid diet containing 36 % of calories from alcohol for 10 weeks. Time-matched control animals were pair-fed. At sacrifice lymph was collected for 2 h using the lymph-fistula technique and plasma was collected prior to sacrifice. Quantitative discovery-based proteomics identified a total of 703 proteins. An integrative approach combining Ingenuity Pathway Analysis (IPA) and an unbiased network analysis using WGCNA (Weighted Gene Co-expression Network Analysis) was used to analyze the proteomics data. IPA results identified significant upregulation of a cluster of apolipoproteins in lymph from alcohol-fed animals compared with pair-fed controls and a downregulation of 34 proteins in the plasma from alcohol-fed animals. WGCNA analysis identified several candidate hub proteins in the lymph that were also significantly differentially expressed in lymph from alcohol-fed animals compared to that of pair-fed controls. WGCNA analysis of plasma identified a module without significant enrichment of differentially expressed proteins. Of the 59 proteins contained within this module, only 2 were significantly differentially expressed in plasma from alcohol-fed rats compared to plasma of pair-fed controls. Future studies will investigate further the functionality of the hub proteins affected by alcohol feeding in both lymph and plasma.


Subject(s)
Lymphatic Vessels , Proteome , Rats , Male , Animals , Proteome/metabolism , Rodentia , Ethanol/pharmacology , Lymph
10.
Dermatologie (Heidelb) ; 74(8): 588-593, 2023 Aug.
Article in German | MEDLINE | ID: mdl-37382603

ABSTRACT

Obesity causes all types of lymphedema to deteriorate. Obesity-associated lymphedema is by now the most frequent secondary lymphedema and constitutes an entity in its own right. Obesity and its comorbidities, due to mechanical and inflammatory effects, decrease lymphatic transport and create a vicious circle of lymph stasis, local adipogenesis, and fibrosis. The therapeutic strategy must therefore address both lymphedema and obesity and its comorbidities.


Subject(s)
Lymphatic Vessels , Lymphedema , Humans , Lymphedema/etiology , Obesity/complications , Lymph , Fibrosis , Chronic Disease
12.
Article in English | MEDLINE | ID: mdl-35667711

ABSTRACT

Lymphatic vessels have an active role in draining excess interstitial fluid from organs and serving as conduits for immune cell trafficking to lymph nodes. In the central circulation, the force needed to propel blood forward is generated by the heart. In contrast, lymphatic vessels rely on intrinsic vessel contractions in combination with extrinsic forces for lymph propulsion. The intrinsic pumping features phasic contractions generated by lymphatic smooth muscle. Periodic, bicuspid valves composed of endothelial cells prevent backflow of lymph. This work provides a brief overview of lymph transport, including initial lymph formation along with cellular and molecular mechanisms controlling lymphatic vessel pumping.


Subject(s)
Lymphatic System , Lymphatic Vessels , Humans , Endothelial Cells , Lymph/physiology , Lymphatic System/physiology
13.
J Liposome Res ; 33(1): 65-76, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35521749

ABSTRACT

Abiraterone acetate (ABRTA) is clinically beneficial in management of metastatic castration-resistant prostate cancer (PC-3). With highlighted low solubility and permeability, orally hampered treatment of ABRTA necessitate high dose to achieve therapeutic efficacy. To triumph these challenges, we aimed to develop intestinal lymphatic transport facilitating lipid-based delivery to enhance bioavailability. ABRTA-containing self-nano emulsified drug delivery (ABRTA-SNEDDS) was statistically optimized by D-optimal design using design expert. Optimized formulation was characterized for particle size, thermodynamic stability, in vitro release, in vivo bioavailability, intestinal lymphatic transport, in vitro cytotoxic effect, anti-metastatic activity, and apoptosis study. Moreover, hemolysis and histopathology studies have been performed to assess pre-clinical safety. Nano-sized particles and successful saturated drug loading were obtained for optimized formulation. In vitro release upto 98.61 ± 3.20% reveal effective release of formulation at intestinal pH 6.8. ABRTA-SNEDDS formulation shows enhanced in vivo exposure of Abiraterone (2.5-fold) than ABRTA suspension in Sprague-Dawley rats. In vitro efficacy in PC-3 cell line indicates 3.69-fold higher therapeutic potential of nano drug delivery system. Hemolysis and histopathology study indicates no significant toxicities to red blood cells and tissues, respectively. Apparently, an opportunistic strategy to increasing bioavailability of ABRTA via intestinal lymphatic transport will create a viable platform in rapidly evolving chemotherapy. Enhanced translational utility of delivery was also supported through in vitro therapeutic efficacy and safety assessments. HighlightsAbiraterone acetate is a prostate cancer drug, impeded with low bioavailability.ABRTA loaded in self nano emulsifying drug delivery enhanced its bioavailability.Intestinal lymphatic transport played role in enhanced bioavailability of ABRTA.ABRTA-SNEDDS enhanced in vitro cytotoxic activity of ABRTA.ABRTA-SNEDDS found safe in preclinical safety evaluations.


Subject(s)
Abiraterone Acetate , Antineoplastic Agents , Drug Delivery Systems , Animals , Male , Rats , Abiraterone Acetate/administration & dosage , Administration, Oral , Antineoplastic Agents/administration & dosage , Biological Availability , Hemolysis , Liposomes , Nanoparticles/chemistry , Rats, Sprague-Dawley , Lymph/metabolism , Cell Line, Tumor
14.
J Vis Exp ; (189)2022 11 30.
Article in English | MEDLINE | ID: mdl-36533833

ABSTRACT

Intestinal lipoproteins, especially triglyceride-rich chylomicrons, are a major driver of metabolism, inflammation, and cardiovascular diseases. However, isolating intestinal lipoproteins is very difficult in vivo because they are first secreted from the small intestine into the mesenteric lymphatics. Chylomicron-containing lymph then empties into the subclavian vein from the thoracic duct to deliver components of the meal to the heart, lungs, and, ultimately, whole-body circulation. Isolating naïve chylomicrons is impossible from blood since chylomicron triglyceride undergoes hydrolysis immediately upon interaction with lipoprotein lipase and other lipoprotein receptors in circulation. Therefore, the original 2-day lymph fistula procedure, described by Bollman et al. in rats, has historically been used to isolate fresh mesenteric lymph before its entry into the thoracic vein. That protocol has been improved upon and professionalized by the laboratory of Patrick Tso for the last 45 years, allowing for the analysis of these critical lipoproteins and secretions from the gut. The Tso lymph fistula procedure has now been updated and is presented here visually for the first time. This revised procedure is a single-day surgical technique for installing a duodenal feeding tube, cannulating the mesenteric lymph duct, and collecting lymph after a meal in conscious mice. The major benefits of these new techniques include the ability to reproducibly collect lymph from mice (which harnesses the power of genetic mouse models); the reduced anesthesia time for mice during the implantation of the duodenal infusion tube and the lymph cannula; the ability to continuously sample lymph throughout the feeding and post-prandial period; the ability to quantitatively measure hormones and cytokines before their dilution and enzymatic hydrolysis in blood; and the ability to collect large quantities of lymph for isolating intestinal lipoproteins. This technique is a powerful tool for directly and quantitatively measuring dietary nutrient absorption, intestinal lipoprotein synthesis, and chylomicron secretion.


Subject(s)
Chylomicrons , Dietary Fats , Animals , Mice , Rats , Chylomicrons/metabolism , Kinetics , Lymph , Triglycerides/metabolism , Lipoproteins/metabolism , Intestinal Absorption
15.
Bull Exp Biol Med ; 174(1): 104-108, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36437316

ABSTRACT

We studied the relationship between the level of cytokines in the lymph of the thoracic duct and the morphometric parameters of the mesenteric lymph nodes after surgical treatment of breast cancer, chemotherapy, and administration of fragmented (double-stranded, dsDNA) human DNA. In comparison with surgical treatment and with chemotherapy alone, administration of a human dsDNA has a stimulating effect on the T-cell link of the immune response. In the paracortical zone, the relationship between the chemokine MCP-1 and increased content of small lymphocytes in this zone was revealed. Interrelations of IL-2 cytokines with small lymphocytes and of IL-4 with medium lymphocytes were revealed in germinal centers. We also observed interrelations of IL-7 with small lymphocytes and IL-4 with macrophages in the medullary cords, chemokine MIP-1α with immature and mature plasma cells (the number of these cells is reduced), and of MCP-1 with immunoblasts (the number of which is also reduced) in the medullary sinuses.


Subject(s)
Adjuvants, Immunologic , Breast Neoplasms , Cytokines , DNA , Lymph Nodes , Mammary Neoplasms, Animal , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/surgery , Breast Neoplasms/therapy , Chemokines/metabolism , Cytokines/metabolism , DNA/administration & dosage , Interleukin-4/metabolism , Lymph/metabolism , Lymph Nodes/metabolism , Animals , Rats , Rats, Wistar , Mammary Neoplasms, Animal/drug therapy , Mammary Neoplasms, Animal/surgery , Mammary Neoplasms, Animal/therapy , Adjuvants, Immunologic/administration & dosage , T-Lymphocytes/immunology
16.
J Lipid Res ; 63(11): 100284, 2022 11.
Article in English | MEDLINE | ID: mdl-36152881

ABSTRACT

The intestine plays a crucial role in regulating whole-body lipid metabolism through its unique function of absorbing dietary fat. In the small intestine, absorptive epithelial cells emulsify hydrophobic dietary triglycerides (TAGs) prior to secreting them into mesenteric lymphatic vessels as chylomicrons. Except for short- and medium-chain fatty acids, which are directly absorbed from the intestinal lumen into portal vasculature, the only way for an animal to absorb dietary TAG is through the chylomicron/mesenteric lymphatic pathway. Isolating intestinal lipoproteins, including chylomicrons, is extremely difficult in vivo because of the dilution of postprandial lymph in the peripheral blood. In addition, once postprandial lymph enters the circulation, chylomicron TAGs are rapidly hydrolyzed. To enhance isolation of large quantities of pure postprandial chylomicrons, we have modified the Tso group's highly reproducible gold-standard double-cannulation technique in rats to enable single-day surgery and lymph collection in mice. Our technique has a significantly higher survival rate than the traditional 2-day surgical model and allows for the collection of greater than 400 µl of chylous lymph with high postprandial TAG concentrations. Using this approach, we show that after an intraduodenal lipid bolus, the mesenteric lymph contains naïve CD4+ T-cell populations that can be quantified by flow cytometry. In conclusion, this experimental approach represents a quantitative tool for determining dietary lipid absorption, intestinal lipoprotein dynamics, and mesenteric immunity. Our model may also be a powerful tool for studies of antigens, the microbiome, pharmacokinetics, and dietary compound absorption.


Subject(s)
Chylomicrons , Lymphatic Vessels , Animals , Mice , Rats , Chylomicrons/metabolism , Dietary Fats/metabolism , Intestinal Absorption/physiology , Lipoproteins/metabolism , Lymph/metabolism , Lymphatic Vessels/metabolism , Lymphocytes/metabolism , Triglycerides/metabolism
17.
Am J Physiol Gastrointest Liver Physiol ; 323(4): G331-G340, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35916412

ABSTRACT

A portion of absorbed dietary triglycerides (TG) is retained in the intestine after the postprandial period, within intracellular and extracellular compartments. This pool of TG can be mobilized in response to several stimuli, including oral glucose. The objective of this study was to determine whether oral glucose must be absorbed and metabolized to mobilize TG in rats and whether high-fat feeding, a model of insulin resistance, alters the lipid mobilization response to glucose. Lymph flow, TG concentration, TG output, and apolipoprotein B48 (apoB48) concentration and output were assessed after an intraduodenal lipid bolus in rats exposed to the following intraduodenal administrations 5 h later: saline (placebo), glucose, 2-deoxyglucose (2-DG, absorbed but not metabolized), or glucose + phlorizin (intestinal glucose absorption inhibitor). Glucose alone, but not 2-DG or glucose + phlorizin treatments, stimulated lymph flow, TG output, and apoB48 output compared with placebo. The effects of glucose in high-fat-fed rats were similar to those in chow-fed rats. In conclusion, glucose must be both absorbed and metabolized to enhance lymph flow and intestinal lipid mobilization. This effect is qualitatively and quantitatively similar in high-fat- and chow-fed rats. The precise signaling mechanism whereby enteral glucose enhances lymph flow and mobilizes enteral lipid remains to be determined.NEW & NOTEWORTHY Glucose potently enhances mesenteric lymph flow in chow- and high-fat-fed rats. The magnitude of glucose effect on lymph flow is no different in chow- and high-fat-fed rats. Glucose must be absorbed and metabolized to enhance lymph flow and mobilize intestinal lipid.


Subject(s)
Chylomicrons , Glucose , Animals , Apolipoprotein B-48 , Chylomicrons/metabolism , Deoxyglucose/metabolism , Deoxyglucose/pharmacology , Glucose/metabolism , Lymph/metabolism , Phlorhizin/metabolism , Phlorhizin/pharmacology , Rats , Triglycerides/metabolism
18.
Proc Natl Acad Sci U S A ; 119(32): e2111726119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914162

ABSTRACT

A large number of neutrophils infiltrate the lymph node (LN) within 4 h after Staphylococcus aureus skin infection (4 h postinfection [hpi]) and prevent systemic S. aureus dissemination. It is not clear how infection in the skin can remotely and effectively recruit neutrophils to the LN. Here, we found that lymphatic vessel occlusion substantially reduced neutrophil recruitment to the LN. Lymphatic vessels effectively transported bacteria and proinflammatory chemokines (i.e., Chemokine [C-X-C motif] motif 1 [CXCL1] and CXCL2) to the LN. However, in the absence of lymph flow, S. aureus alone in the LN was insufficient to recruit neutrophils to the LN at 4 hpi. Instead, lymph flow facilitated the earliest neutrophil recruitment to the LN by delivering chemokines (i.e., CXCL1, CXCL2) from the site of infection. Lymphatic dysfunction is often found during inflammation. During oxazolone (OX)-induced skin inflammation, CXCL1/2 in the LN was reduced after infection. The interrupted LN conduits further disrupted the flow of lymph and impeded its communication with high endothelial venules (HEVs), resulting in impaired neutrophil migration. The impaired neutrophil interaction with bacteria contributed to persistent infection in the LN. Our studies showed that both the flow of lymph from lymphatic vessels to the LN and the distribution of lymph in the LN are critical to ensure optimal neutrophil migration and timely innate immune protection in S. aureus infection.


Subject(s)
Chemokines , Neutrophil Infiltration , Skin Diseases, Bacterial , Staphylococcal Infections , Animals , Chemokines/immunology , Immunity, Innate , Inflammation/pathology , Lymph/immunology , Lymph Nodes/cytology , Mice , Mice, Inbred C57BL , Neutrophils/cytology , Skin Diseases, Bacterial/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus
19.
Lymphat Res Biol ; 20(3): 247, 2022 06.
Article in English | MEDLINE | ID: mdl-35687829

Subject(s)
Lymph , Mesentery , Humans
20.
J Control Release ; 348: 420-430, 2022 08.
Article in English | MEDLINE | ID: mdl-35636618

ABSTRACT

As a malignant tumour of lymphatic origin, B-cell lymphoma represents a significant challenge for drug delivery, where effective therapies must access malignant cells in the blood, organs and lymphatics while avoiding off-target toxicity. Subcutaneous (SC) administration of nanomedicines allows preferential access to both the lymphatic and blood systems and may therefore provide a route to enhanced drug exposure to lymphomas. Here we examine the impact of SC dosing on lymphatic exposure, pharmacokinetics (PK), and efficacy of AZD0466, a small molecule dual Bcl-2/Bcl-xL inhibitor conjugated to a 'DEP®' G5 poly-l-lysine dendrimer. PK studies reveal that the plasma half-life of the dendrimer-drug conjugate is 8-times longer than that of drug alone, providing evidence of slow release from the circulating dendrimer nanocarrier. The SC dosed construct also shows preferential lymphatic transport, with over 50% of the bioavailable dose recovered in thoracic lymph. Increases in dose (up to 400 mg/kg) are well tolerated after SC administration and studies in a model of disseminated lymphoma in mice show that high dose SC treatment outperforms IV administration using doses that lead to similar total plasma exposure (lower peak concentrations but extended exposure after SC). These data show that the DEP® dendrimer can act as a circulating drug depot accessing both the lymphatic and blood circulatory systems. SC administration improves lymphatic exposure and facilitates higher dose administration due to improved tolerability. Higher dose SC administration also results in improved efficacy, suggesting that drug delivery systems that access both plasma and lymph hold significant potential for the treatment of haematological cancers where lymphatic and extranodal dissemination are poor prognostic factors.


Subject(s)
Antineoplastic Agents , Dendrimers , Lymphoma , Animals , Dendrimers/chemistry , Injections, Subcutaneous , Lymph , Lymphatic System , Lymphoma/drug therapy , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...