Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.520
Filter
1.
Chirality ; 36(5): e23670, 2024 May.
Article in English | MEDLINE | ID: mdl-38716587

ABSTRACT

Metal clusters have drawn considerable research attention over the years due to their fascinating optical properties. Owing to their appealing photophysical characteristics, these materials have drawn attention as potential candidates for various application in diverse fields, including disease detection, biosensing, chemical sensing, and the fabrication of light-harvesting materials. Presently, there is an increasing research focus on the use of clusters in biomedical research, both as biodetection platform and as bioimaging agents. Of special interest are chiral clusters, which can selectively interact with chiral biomolecules owing to their optical activity. Herein, we showcase the use of a pair of chiroptically active copper clusters for the enantioselective detection of lysine, an amino acid of vast biological relevance. Two techniques are concurrently employed for the detection of lysine at varying concentrations. Circular dichroism serves as a potent tool for detecting lysine at low concentrations, whereas luminescence is effectively employed as a detection method for high analyte concentrations. The combined electronic impact of clusters and lysine resulted in the emergence of an enhanced enantioselective Cotton effect at specific wavelength.


Subject(s)
Copper , Lysine , Lysine/chemistry , Lysine/analysis , Copper/chemistry , Copper/analysis , Stereoisomerism , Circular Dichroism/methods
2.
Molecules ; 29(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542940

ABSTRACT

There is little data on directly measured carboxymethyl lysine (CML) content in Indonesian foods. This study aimed to generate a database of CML values in foods commonly consumed in West Java and West Sumatra. The results were to be used to update our previous estimated CML values. CML values in food samples were measured using high-pressure liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Food protein content was analyzed by Kjeldahl's method or inferred from the nutrition facts' label. A total of 210 food samples were examined, with the food groups of meat and poultry (1.06 mg CML/100 g edible food), and starchy foods (0.21 mg/100 g edible food) having the highest and lowest mean CML levels, respectively. We found that the foods with the top three highest CML content were fried starch dough (cimol), fried fish crackers, and chicken gulai. The mean of the estimated values (0.80 mg CML/100 g edible food) was higher than the directly measured values (0.66 mg CML/100 g edible food), [p < 0.035]. Conclusion: This database provides information on CML values in Indonesian foods, and can be further used to make a guide policy for the selection of foods to reduce non-communicable diseases. Further measurements are needed on Indonesian dishes to complete the database.


Subject(s)
Lysine , Tandem Mass Spectrometry , Animals , Tandem Mass Spectrometry/methods , Indonesia , Lysine/analysis , Chromatography, Liquid/methods , Meat/analysis
3.
BMC Biotechnol ; 24(1): 12, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454400

ABSTRACT

OBJECTIVE: The objective of this study was to establish a methodology for determining carboxymethyl lysine (CML) and carboxyethyl lysine (CEL) concentrations in human plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The test results were also used for clinical aging research. METHODS: Human plasma samples were incubated with aqueous perfluorovaleric acid (NFPA), succeeded by precipitation utilizing trichloroacetic acid, hydrolysis facilitated by hydrochloric acid, nitrogen drying, and ultimate re-dissolution utilizing NFPA, followed by filtration. Cotinine-D3 was added as an internal standard. The separation was performed on an Agela Venusil ASB C18 column (50 mm × 4.6 mm, 5 µm) with a 5 mmol/L NFPA and acetonitrile/water of 60:40 (v/v) containing 0.15% formic acid. The multiple reaction monitoring mode was used for detecting CML, CEL, and cotinine-D3, with ion pairs m/z 205.2 > 84.1 (for quantitative) and m/z 205.2 > m/z 130.0 for CML, m/z 219.1 > 84.1 (for quantitative) and m/z 219.1 > m/z 130.1 for CEL, and m/z 180.1 > 80.1 for cotinine-D3, respectively. RESULTS: The separation of CML and CEL was accomplished within a total analysis time of 6 minutes. The retention times of CML, CEL, and cotinine-D3 were 3.43 minutes, 3.46 minutes, and 4.50 minutes, respectively. The assay exhibited linearity in the concentration range of 0.025-1.500 µmol/L, with a lower limit of quantification of 0.025 µmol/L for both compounds. The relative standard deviations of intra-day and inter-day were both below 9%, and the relative errors were both within the range of ±4%. The average recoveries were 94.24% for CML and 97.89% for CEL. CONCLUSION: The results indicate that the developed methodology is fast, highly sensitive, highly specific, reproducible, and suitable for the rapid detection of CML and CEL in clinical human plasma samples. The outcomes of the clinical research project on aging underscored the important indicative significance of these two indicators for research on human aging.


Subject(s)
Lysine , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Lysine/analysis , Lysine/chemistry , Cotinine , Geroscience , Glycation End Products, Advanced/analysis , Glycation End Products, Advanced/chemistry , Chromatography, High Pressure Liquid
4.
J Agric Food Chem ; 72(4): 2300-2308, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38235666

ABSTRACT

During the last years, a strong increase in the sales volume and consumption of plant-based drinks was observed, which were partly used as an alternative to cow's milk. As milk is a relevant protein source in many countries, we have investigated the protein bioaccessibility and digestibility of soy, almond, and oat drinks in comparison to milk using the tiny-TIMsg gastrointestinal model. The relative protein digestibility of all products was between 81% (soy drink) and 90% (milk). The digestible indispensable amino acid score (DIAAS) in vitro method was used to estimate the protein nutritional quality. The highest DIAAS values were obtained for milk in tryptophan (117%) and soy drink in sulfur containing amino acids (100%). Oat drink was limited in lysine (73%), almond drink in lysine (34%) and the sulfur containing amino acids (56%). Additionally, the antioxidant activity of the bioaccessible fractions was analyzed using Trolox equivalent antioxidative capacity and oxygen radical absorbance capacity assays, revealing a higher antioxidative potential of milk and soy drink compared to oat and almond drink.


Subject(s)
Antioxidants , Milk , Animals , Cattle , Female , Milk/chemistry , Antioxidants/analysis , Lysine/analysis , Amino Acids/metabolism , Sulfur/analysis
5.
Anal Methods ; 15(48): 6698-6705, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38047493

ABSTRACT

During blood storage, red blood cells (RBCs) undergo physical, chemical, and metabolic changes that may contribute to post-transfusion complications. Due to the hyperglycemic environment of typical solutions used for RBC storage, the formation of advanced glycation endproducts (AGEs) on the stored RBCs has been implicated as a detrimental chemical change during storage. Unfortunately, there are limited studies involving quantitative determination and differentiation of carboxymethyl-lysine (CML) and carboxyethyl-lysine (CEL), two commonly formed AGEs, and no reported studies comparing these AGEs in experimental storage solutions. In this study, CML and CEL were identified and quantified on freshly drawn blood samples in two types of storage solutions, standard additive solution 1 (AS-1) and a normoglycemic version of AS-1 (AS-1N). To facilitate detection of the AGEs, a novel method was developed to reliably extract AGEs from RBCs, provide Food and Drug Administration (FDA) bioanalytical guidance criteria, and enable acceptable selectivity for these analytes. Ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) was utilized to identify and quantify the AGEs. Results show this method is accurate, precise, has minimal interferences or matrix effects, and overcomes the issue of detecting AGE byproducts. Importantly, AGEs can be detected and quantified in both types of blood storage solutions (AS-1 and AS-1N), thereby enabling long-term (6 weeks) blood storage related studies.


Subject(s)
Lysine , United States , Lysine/analysis , Glycation End Products, Advanced/analysis , Glycation End Products, Advanced/chemistry , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods
6.
Food Res Int ; 173(Pt 2): 113414, 2023 11.
Article in English | MEDLINE | ID: mdl-37803746

ABSTRACT

The inhibitory effects of liquiritigenin, liquiritin and glycyrrhizic acid against the hazards during the preparation of thermal reaction beef flavoring were investigated using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Liquiritigenin(1.5 mM) inhibited Nε-carboxymethyl-L-lysine and Nε-carboxyethyl-L-lysine by up to 38.69 % and 61.27 %, respectively; 1.5 mM liquiritin inhibited 4-methylimidazole by up to 48.28 %; and 1.5 mM liquiritigenin and 1.0 mM liquiritin inhibited hydroxymethylfurfural by up to 61.20 % and 59.31 %, respectively. The results of the model system showed that the inhibitory effect of the 3 inhibitors could be extended to other thermal reaction flavoring systems. The 3 inhibitors can effectively block key intermediates in beef flavoring, and liquiritigenin can inhibit up to 22.97 % of glyoxal and 22.89 % of methylglyoxal. In addition, liquiritigenin and liquiritin can directly eliminate up to 25.87 % and 21.01 % of methylglyoxal by addition and other means. Free radicals in the simultaneous formation model system were measured using electron spin resonance (ESR), and the results showed that liquiritigenin, liquiritin and glycyrrhizic acid could scavenge free radicals in the system in a dose-dependent manner, with scavenging rates of up to 44.88-57.09 %. Therefore, the inhibitory effects of the 3 inhibitors can be attributed to the intermediate blocking and free radical scavenging pathways.


Subject(s)
Glycation End Products, Advanced , Glycyrrhizic Acid , Animals , Cattle , Glycyrrhizic Acid/pharmacology , Tandem Mass Spectrometry , Pyruvaldehyde , Lysine/analysis , Meat/analysis , Free Radicals
7.
Molecules ; 28(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37894490

ABSTRACT

Advanced glycation end products (AGEs) and heterocyclic amines (HAs) are two kinds of important harmful products formed simultaneously during the thermal processing of proteinaceous food. In this paper, the effect of roasting conditions on the formation of AGEs and HAs, as well as active carbonyl intermediates in common peanut (C-peanut) and high-oleic acid peanut (HO-peanut) was studied simultaneously for the first time. In general, with the increase in roasting temperature (160-200 °C) and time, the contents of AGEs, HAs and active carbonyl intermediates (i.e., glyoxal (GO) and methylglyoxal (MGO)) significantly increased in peanuts. Four kinds of HAs (i.e., AαC, DMIP, Harman and Norharman) were observed in roasted peanuts, of which Harman and Norharman accounted for about 93.0% of the total HAs content after roasting for 30 min at 200 °C. Furthermore, a correlation analysis among AGEs (i.e., Nε-(1-Carboxymethyl)-L-lysine (CML) and Nε-(1-Carboxyethyl)-L-lysine (CEL)), HAs, GO and MGO was conducted. Most of these compounds showed an excellent positive linear relationship (p ≤ 0.001) with each other. The evident increase in GO and MGO contents implied an increase in not only the content of AGEs but also HAs. However, contents of AGEs and HAs showed no significant difference between roasted HO-peanut and C-peanut. This study would provide a theoretical basis for simultaneously controlling the levels of AGEs and HAs in thermal processed peanut foods.


Subject(s)
Arachis , Glycation End Products, Advanced , Glycation End Products, Advanced/analysis , Lysine/analysis , Magnesium Oxide , Amines
8.
Methods Enzymol ; 686: 1-28, 2023.
Article in English | MEDLINE | ID: mdl-37532396

ABSTRACT

The field of N-terminomics has been advancing with the development of novel methods that provide a comprehensive and unbiased view of the N-terminome. Negative selection N-terminomics enables the identification of free and naturally modified protein N-termini. Here, we present a streamlined protocol that combines two negative selection N-terminomics methods, LATE and HYTANE, to increase N-terminome coverage by 1.5-fold compared to using a single methodology. Our protocol includes sample preparation and data analysis of both methods and can be applied to studying the N-terminome of diverse samples. The suggested approach enables researchers to achieve a more detailed and accurate understanding of the N-terminome.


Subject(s)
Lysine , Proteins , Proteome , Proteomics , Isotope Labeling/methods , Proteome/analysis , Proteome/chemistry , Proteome/isolation & purification , Data Analysis , Analytic Sample Preparation Methods , Proteomics/methods , Proteins/analysis , Proteins/chemistry , Peptide Chain Elongation, Translational , Lysine/analysis , Lysine/chemistry , Humans , Cell Line
9.
Food Chem ; 427: 136736, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37393633

ABSTRACT

This study aimed to investigate the effects of injecting l-arginine and l-lysine solution before freezing and after thawing on the emulsifying and gelling properties of myofibrillar proteins (MPs) of frozen porcine longissimus dorsi. The results showed that the pre-freezing injections were more effective in alleviating the decrease in emulsifying properties of MPs compared with the post-thawing injections, as evidenced by higher emulsion creaming index, oil droplet size, interfacial absorptive protein amount, and viscoelasticity. Additionally, the pre-freezing injections could effectively mitigate the damage to the gelling properties of MPs, as evidenced by the formation of a homogeneous and compact gel network with stronger water retention, strength and chemical forces, as well as a higher proportion of non-flowing water, whereas the post-thawing injections could not. These results demonstrated that the injection of l-arginine and l-lysine solution before freezing could delay freezing-induced damage to the emulsifying and gelling properties of MPs, keeping the processing characteristics of frozen porcine.


Subject(s)
Lysine , Proteins , Animals , Swine , Lysine/analysis , Freezing , Proteins/analysis , Muscle, Skeletal/chemistry , Water/analysis
10.
Poult Sci ; 102(9): 102860, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37406436

ABSTRACT

Modifying dietary amino acids has been proposed as a strategy to improve eggshell quality by slowing down increases in egg weight (EW). This study aimed to investigate the effects of different levels of digestible lysine (dLYS) and ratios of digestible sulfur amino acids (dTSAA) to dLYS on performance and eggshell quality in ISA brown hens. A total of 288 hens were individually housed and assigned to 8 treatments, which combined 2 levels of dLYS (5.9 and 5.5 g/kg) with 4 ratios of dTSAA:dLYS (90, 85, 80, and 75) in a factorial arrangement. The study lasted 12 wk, starting at 62 wk of age. The number of eggs was not affected by the interaction between dLYS and dTSAA:dLYS or their main effect. However, the interaction between dLYS and dTSAA:dLYS showed that reducing the dTSAA:dLYS ratio from 85 to 75 when hens were fed 5.5 g/kg of dLYS resulted in a lower EW. Conversely, when hens were fed 5.9 g/kg of dLYS, no significant difference was found in EW among the different ratios of dTSAA:dLYS. Although there was no interaction between the levels of dLYS and dTSAA:dLYS on eggshell quality, reducing the dLYS level from 5.9 to 5.5 slowed down the deterioration in eggshell-breaking strength and eggshell thickness, regardless of the dTSAA:dLYS ratio. These findings suggest that adjusting dietary dLYS while maintaining the dTSAA:dLYS ratio of no less than 85 may be an effective strategy for decelerating the deterioration of eggshell quality in laying hen operations without impacting the egg production rate.


Subject(s)
Amino Acids, Sulfur , Lysine , Animals , Female , Lysine/analysis , Amino Acids, Sulfur/pharmacology , Chickens , Egg Shell , Animal Feed/analysis , Ovum , Diet/veterinary , Dietary Supplements
11.
Food Res Int ; 171: 113026, 2023 09.
Article in English | MEDLINE | ID: mdl-37330848

ABSTRACT

Lysine, the first limiting essential amino acid, the deficiency of which seriously affects the health of human and animals. In this study, quinoa germination significantly increased the nutrients, especially lysine content. To better understanding the underlying molecular mechanism of lysine biosynthesis, isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics, RNA-sequencing (RNA-Seq) technology and liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) platform-based phytohormones analyses were conducted. Through proteome analyses, a total of 11,406 differentially expressed proteins were identified, which were mainly related to secondary metabolites. The lysine-rich storage globulins and endogenous phytohormones probably contributed the increased lysine content in quinoa during germination. Furthermore, aspartic acid semialdehyde dehydrogenase is essential for lysine synthesis in addition to aspartate kinase and dihydropyridine dicarboxylic acid synthase. Protein-protein interaction analysis indicated lysine biosynthesis is associated with "amino metabolism" and "starch and sucrose metabolism". Above all, our study screens the candidate genes participated in lysine accumulation and explores the factors affected lysine biosynthesis by multi-omics analysis. These information not only paves a foundation for breeding lysine-rich quinoa sprouts but also provides valuable multi-omics resource to explore the characteristic of nutrients during quinoa germination.


Subject(s)
Chenopodium quinoa , Lysine , Humans , Lysine/analysis , Plant Growth Regulators/metabolism , Chenopodium quinoa/chemistry , Multiomics , Tandem Mass Spectrometry , Plant Breeding
12.
J Dairy Sci ; 106(10): 6731-6740, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37210347

ABSTRACT

Brown fermented milk (BFM) is favored by consumers in the dairy market for its unique burnt flavor and brown color. However, Maillard reaction products (MRP) from high-temperature baking are also noteworthy. In this study, tea polyphenols (TP) were initially developed as potential inhibitors of MRP formation in BFM. The results showed that the flavor profile of BFM did not change after adding 0.08% (wt/wt) of TP, and its inhibition rates on 5-hydroxymethyl-2-furaldehyde (5-HMF), glyoxal (GO), methylglyoxal (MGO), Nε-carboxymethyl lysine (CML), and Nε-carboxyethyl lysine (CEL) were 60.8%, 27.12%, 23.44%, 57.7%, and 31.28%, respectively. After 21 d of storage, the levels of 5-HMF, GO, MGO, CML, and CEL in BFM with TP were 46.3%, 9.7%, 20.6%, 5.2%, and 24.7% lower than the control group, respectively. Moreover, a smaller change occurred in their color and the browning index was lower than that of the control group. The significance of this study was to develop TP as additives to inhibit the production of MRP in brown fermented yogurt without changing color and flavors, thereby making dairy products safer for consumers.


Subject(s)
Maillard Reaction , Milk , Animals , Milk/chemistry , Lysine/analysis , Polyphenols/analysis , Magnesium Oxide , Pyruvaldehyde/analysis , Glyoxal/analysis , Glycation End Products, Advanced/analysis , Tea
13.
Int J Biol Macromol ; 240: 124347, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37028628

ABSTRACT

Maillard reaction browning is one of the quality deterioration in dried fruit products, but how pectin affects Maillard reaction in the fruit drying and storage process is not clear. This study aimed at investigating the mechanism of pectin variation impact on the browning of Maillard reaction by using simulated system (l-lysine, d-fructose and pectin) in thermal (60 °C and 90 °C for 8 h) and storage (37 °C for 14 days) process. Results showed that apple pectin (AP) and sugar beet pectin (SP) significantly enhanced the browning index (BI) of the Maillard reaction system by 0.01 to 134.51 in the thermal and storage processes, respectively, which were methylation degree of pectin-dependent. The pectin depolymerization product participated Maillard reaction by reacting with l-lysine, and increasing the 5-hydroxymethyl furfural (5-HMF) content (1.25-11.41-fold) and Abs420nm (0.01-0.09). It also produced a new product (m/z 225.1245), which finally increased browning level of the system.


Subject(s)
Lysine , Maillard Reaction , Lysine/analysis , Pectins/analysis , Fruit/chemistry , Vegetables
14.
Molecules ; 28(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36771056

ABSTRACT

Soy protein isolate (SPI) is an attractive natural material for preparing wood adhesives that has found broad application. However, poor mechanical properties and unfavorable water resistance of wood composites with SPI adhesive bonds limit its more extensive utilization. The combination of lysine (Lys) with a small molecular structure as a curing agent for modified soy-based wood adhesive allows Lys to penetrate wood pores easily and can result in better mechanical strength of soy protein-based composites, leading to the formation of strong chemical bonds between the amino acid and wood interface. Scanning electron microscopy (SEM) results showed that the degree of penetration of the S/G/L-9% adhesive into the wood was significantly increased, the voids, such as ducts of wood at the bonding interface, were filled, and the interfacial bonding ability of the plywood was enhanced. Compared with the pure SPI adhesive, the corresponding wood breakage rate was boosted to 84%. The wet shear strength of the modified SPI adhesive was 0.64 MPa. When Lys and glycerol epoxy resin (GER) were added, the wet shear strength of plywood prepared by the S/G/L-9% adhesive reached 1.22 MPa, which increased by 29.8% compared with only GER (0.94 MPa). Furthermore, the resultant SPI adhesive displayed excellent thermostability. Water resistance of S/G/L-9% adhesive was further enhanced with respect to pure SPI and S/GER adhesives through curing with 9% Lys. In addition, this work provides a new and feasible strategy for the development and application of manufacturing low-cost, and renewable biobased adhesives with excellent mechanical properties, a promising alternative to traditional formaldehyde-free adhesives in the wood industry.


Subject(s)
Lysine , Soybean Proteins , Soybean Proteins/chemistry , Lysine/analysis , Epoxy Resins/analysis , Adhesives/chemistry , Wood/chemistry , Water/analysis
15.
Food Res Int ; 164: 112395, 2023 02.
Article in English | MEDLINE | ID: mdl-36737978

ABSTRACT

As a representative product of advanced glycation end products, Nɛ-carboxymethyllysine (CML) exists in free and bound forms in vivo and in food with different bioavailability. To thoroughly understand the bioavailability of free Nɛ-carboxymethyllysine (CML) and bovine serum albumin (BSA)-CML in vivo after intragastric administration, pharmacokinetics, biodistribution, and excretion of CML in rats were investigated by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Pharmacokinetics results revealed that free CML peaked at 1.83 h (1684.72 ± 78.08 ng/mL) and 1.33 h (1440.84 ± 72.48 ng/mL) in serum after intragastric administration of free CML and BSA-CML, demonstrating the higher absorption of free CML than BSA-CML. Besides, dietary free CML exhibited a relatively lower body clearance and tissue distribution than dietary BSA-CML based on the apparent volume of distribution and body clearance. Moreover, free CML was concentrated in the kidneys, indicating that kidneys were the target organ for the uptake of absorbed free CML. Additionally, the total excretion rate of CML in urine and feces were 37% and 60% after oral administration of free CML and BSA-CML. These results shed pivotal light on a better understanding of the biological effects of free and bound CML on health.


Subject(s)
Lysine , Tandem Mass Spectrometry , Rats , Animals , Chromatography, High Pressure Liquid , Tissue Distribution , Tandem Mass Spectrometry/methods , Lysine/analysis , Serum Albumin, Bovine/metabolism
16.
Microbiol Spectr ; 10(5): e0189922, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36197290

ABSTRACT

Maintaining the health of seafarers is a difficult task during long-term voyages. Little is known about the corresponding changes in the gut microbiome-host interaction. This study recruited 30 seafarers undertaking a 6-month voyage and analyzed their gut microbiota using 16S rRNA gene sequencing. Fecal untargeted metabolomics analysis was performed using liquid chromatography-mass spectrometry. Significant changes in the composition of the gut microbiota and an increased ratio of Firmicutes/Bacteroidetes at the end (day 180) of the 6-month voyage, relative to the start (day 0), were observed. At the genus level, the abundances of Holdemanella and Plesiomonas were significantly increased, while the abundance of Bacteroides was decreased. Predicted microbial functional analysis revealed significant decreases in folate biosynthesis and biotin metabolism. Furthermore, 20 differential metabolites within six differentially enriched human metabolic pathways (including arginine biosynthesis, lysine degradation, phenylalanine metabolism, sphingolipid metabolism, pentose and glucuronate interconversions, and glycine, serine, and threonine metabolism) were identified by comparing the fecal metabolites at day 0 and day 180. Spearman correlation analysis revealed close relationships between the 14 differential microbiota members and the six differential fecal metabolites that might affect specific human metabolic pathways. This study adopted a multi-omics approach and provides potential targets for maintaining the health of seafarers during long-term voyages. These findings are worthy of more in-depth exploration in future studies. IMPORTANCE Maintaining the health of seafarers undertaking long-term voyages is a difficult task. Apart from the alterations in the gut microbiome and fecal metabolites after a long-term voyage, our study also revealed that 20 differential metabolites within six differentially enriched human metabolic pathways are worthy of attention. Moreover, we found close relationships between the 14 differential microbiota members and the six differential fecal metabolites that might impact specific human metabolic pathways. Accordingly, preventative measures, such as adjusting the gut microbiota by decreasing potential pathobionts or increasing potential probiotics as well as offsetting the decrease in B vitamins and beneficial metabolites (e.g., d-glucuronic acid and citrulline) via dietary adjustment or nutritional supplements, might improve the health of seafarers during long-term sea voyages. These findings provide valuable clues about gut microbiome-host interactions and propose potential targets for maintaining the health of seafarers engaged in long-term sea voyages.


Subject(s)
Gastrointestinal Microbiome , Vitamin B Complex , Humans , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Vitamin B Complex/analysis , Citrulline/analysis , Biotin , Lysine/analysis , Metabolomics/methods , Feces , Pentoses/analysis , Glucuronates/analysis , Glycine/analysis , Glucuronic Acid , Serine/analysis , Phenylalanine/analysis , Sphingolipids/analysis , Threonine/analysis , Arginine/analysis , Folic Acid/analysis
17.
J Anim Sci ; 100(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36082767

ABSTRACT

Thermal processing is used to produce most commercial pet foods and treats to improve safety, shelf life, nutritional characteristics, texture, and nutrient digestibility. However, heat treatments can degrade protein quality by damaging essential amino acids, as well as contribute to the Maillard reaction. The Maillard reaction forms melanoidins that favorably improve food qualities (e.g., color, flavor, aroma), but also form Maillard reaction products (MRP) and advanced glycation end-products that may negatively affect health. Because commercial pet diets are frequently fed to domestic cats and dogs throughout their lifetimes, it is critical to quantify MRP concentrations and understand the variables that influence their formation so future diets may be formulated with that in mind. Because few research studies on MRP in pet diets have been conducted, the goals of this study were to measure the MRP in commercial pet foods and treats, estimate pet MRP intake, and correlate MRP with dietary macronutrient concentrations. Fifty-three dry and wet dog foods, dog treats, and cat foods were analyzed for dry matter, organic matter, crude protein, acid-hydrolyzed fat, total dietary fiber, and gross energy using standard techniques. MRP were analyzed using high-performance liquid chromatography and gas chromatography-mass spectrometry. Data were analyzed using the Mixed Models procedure of SAS 9.4. Dry foods had lower reactive lysine concentrations and reactive lysine: total lysine ratios (indicator of damage) than wet foods. Wet foods had more fructoselysine (FRUC) than dry foods; however, dry dog treats contained more FRUC than wet dog treats. The greatest 5-hydroxymethyl-2-furfural (HMF) concentrations were measured in dry and wet dog foods, whereas the lowest HMF concentrations were measured in dry and wet cat foods. Based on dietary concentrations and estimated food intakes, dogs and cats fed wet foods are more likely to consume higher carboxymethyllysine and FRUC concentrations than those fed dry foods. However, dogs fed wet foods are more likely to consume higher HMF concentrations than those fed dry foods. In cats, those fed dry foods would consume higher HMF concentrations than those fed wet foods. We demonstrated that pet foods and treats contain highly variable MRP concentrations and depend on diet/treat type. In general, higher MRP concentrations were measured in wet pet foods and dry treats. While these findings are valuable, in vivo testing is needed to determine if and how MRP consumption affect pet health.


When heat is applied to food, the structure of sugars and proteins are rearranged. Some of the newly formed compounds are Maillard reaction products (MRP). The Maillard reaction can form melanoidins that improve color, flavor, and aroma, but can also lead to the loss of essential amino acids and the formation of advanced glycation end-products that may negatively affect animal health. Most commercial pet foods and treats are heated to improve safety, shelf life, nutritional characteristics, texture, and nutrient digestion, but MRP formation can be a problem. Because commercial pet foods are fed to domestic cats and dogs throughout their entire lives, quantifying MRP and understanding the variables that influence their formation is critical. The goals of this study were to determine the amount of MRP in commercial pet foods and treats, estimate MRP ingestion in pets, and correlate MRP with dietary macronutrient concentrations. Wet foods and dry treats contained more fructoselysine than dry foods, while dry foods contained more 5-hydroxymethyl-2-furfural. According to our findings, wet diets will result in higher total MRP, carboxymethyllysine, and fructoselysine intake than dry diets. While these findings are valuable, in vivo testing is needed to determine if and how MRP consumption affect pet health.


Subject(s)
Cat Diseases , Dog Diseases , Cats , Dogs , Animals , Glycation End Products, Advanced , Animal Feed/analysis , Lysine/analysis , Nutrients/metabolism , Diet/veterinary , Maillard Reaction , Furaldehyde/analysis , Digestion
18.
Molecules ; 27(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36144482

ABSTRACT

The Maillard reaction kinetics in the confined volume of the thin film produced by ESI microdroplet deposition was studied by mass spectrometry. The almost exclusive formation of the Amadori product from the reaction of D-xylose and D-glucose toward L-glycine and L-lysine was demonstrated. The thin film Maillard reaction occurred at a mild synthetic condition under which the same process in solution was not observed. The comparison of the thin film kinetics with that of the reaction performed in solution showed strong thin film rate acceleration factors.


Subject(s)
Maillard Reaction , Xylose , Glucose , Glycine/chemistry , Lysine/analysis , Xylose/chemistry
19.
Toxicol Ind Health ; 38(9): 636-642, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35930620

ABSTRACT

Diisocyanates have long been a leading cause of occupational asthma. As control often relies on personal protective equipment and there is the potential for skin uptake, biological monitoring is often used to assess worker exposure. Current routine biological monitoring methods do not distinguish between a diisocyanate and the corresponding diamine exposure in urine samples; therefore, a specific urinary biomarker is desirable. Urine samples were obtained from a group of workers exposed to methylenediphenyl diisocyanate (MDI) where aerosol generation was unlikely. Lysine conjugates of MDI were extracted from urine by solid phase extraction; analysis was performed by liquid chromatography tandem mass spectrometry. Acetylated MDI-lysine (acMDI-Lys) conjugates were detected in 73% of samples tested from persons with exposure to MDI compared to 93% of samples that were positive for methylene dianiline (MDA) in hydrolysed urine. There was a weak but significant positive correlation between the two biomarkers (r2 = 0.377). This is the first report detecting and quantifying acMDI-Lys in the urine of workers exposed to MDI, and acMDI-Lys may be a useful non-invasive biomarker in discriminating between MDI and MDA exposures.


Subject(s)
Asthma, Occupational , Occupational Exposure , Biomarkers/analysis , Humans , Isocyanates/toxicity , Lysine/analysis , Lysine/chemistry , Mass Spectrometry , Occupational Exposure/adverse effects , Occupational Exposure/analysis
20.
Food Chem ; 396: 133687, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35858513

ABSTRACT

The formation of Maillard reaction products, including Amadori compounds (determined as furosine), advanced glycation end products (AGEs), α-dicarbonyl and furfural compounds, as well as amino acid cross-links (lysinoalanine and lanthionine) was investigated in direct (DI) and indirect (IN) UHT-treated experimental liquid infant formula (IF) during storage at 40 °C. IN-IF had higher concentrations of all investigated compounds compared to DI-IF and low pasteurized IF. IN UHT treatment induced significantly higher concentrations of α-dicarbonyl compounds (glyoxal, methylglyoxal, 3-deoxyglucosone and 3-deoxygalactosone) compared to DI, which facilitated increased formation of AGEs (N-Ɛ-(carboxymethyl)lysine, methylglyoxal- and glyoxal-derived hydroimidazolones) in unstored IFs. During storage for 6 months, concentrations of furosine and AGEs increased while α-dicarbonyl compounds decreased. Principal component analysis indicated that differences between IN-IF and DI-IF disappeared after 2 months of storage. IN-IF had higher concentrations of lysinoalanine and lanthionine and lower concentrations of available lysine and arginine than DI-IF indicating higher loss of protein quality in IN-IF.


Subject(s)
Amino Acids , Maillard Reaction , Glycation End Products, Advanced/chemistry , Glyoxal/analysis , Humans , Infant Formula/analysis , Lysine/analysis , Lysinoalanine , Pyruvaldehyde/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...