Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 382
Filter
1.
Commun Biol ; 7(1): 742, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890421

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) play a central role in the translation of genetic code, serving as attractive drug targets. Within this family, the lysyl-tRNA synthetase (LysRS) constitutes a promising antimalarial target. ASP3026, an anaplastic lymphoma kinase (ALK) inhibitor was recently identified as a novel Plasmodium falciparum LysRS (PfLysRS) inhibitor. Here, based on cocrystal structures and biochemical experiments, we developed a series of ASP3026 analogues to improve the selectivity and potency of LysRS inhibition. The leading compound 36 showed a dissociation constant of 15.9 nM with PfLysRS. The inhibitory efficacy on PfLysRS and parasites has been enhanced. Covalent attachment of L-lysine to compound 36 resulted in compound 36K3, which exhibited further increased inhibitory activity against PfLysRS but significantly decreased activity against ALK. However, its inhibitory activity against parasites did not improve, suggesting potential future optimization directions. This study presents a new example of derivatization of kinase inhibitors repurposed to inhibit aaRS.


Subject(s)
Anaplastic Lymphoma Kinase , Antimalarials , Lysine-tRNA Ligase , Plasmodium falciparum , Protein Kinase Inhibitors , Plasmodium falciparum/enzymology , Plasmodium falciparum/drug effects , Lysine-tRNA Ligase/antagonists & inhibitors , Lysine-tRNA Ligase/metabolism , Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/genetics , Antimalarials/pharmacology , Antimalarials/chemistry , Structure-Activity Relationship , Humans , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/genetics
2.
Biochem Biophys Res Commun ; 725: 150252, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38878758

ABSTRACT

Reverse transcription of human immunodeficiency virus type 1 (HIV-1) initiates from the 3' end of human tRNALys3. The primer tRNALys3 is selectively packaged into the virus in the form of a complex with human lysyl-tRNA synthetase (LysRS). To facilitate reverse transcription initiation, part of the 5' leader (5'L) of HIV-1 genomic RNA (gRNA) evolves a tRNA anticodon-like element (TLE), which binds LysRS and releases tRNALys3 for primer annealing and reverse transcription initiation. Although TLE has been identified as a key element in 5'L responsible for LysRS binding, how the conformations and various hairpin structures of 5'L regulate 5'L-LysRS interaction is not fully understood. Here, these factors have been individually investigated using direct and competitive fluorescence anisotropy binding experiments. Our data showed that the conformation of 5'L significantly influences its binding affinity with LysRS. The 5'L conformation favoring gRNA dimerization and packaging exhibits much weaker binding affinity with LysRS compared to the alternative 5'L conformation that is not selected for packaging. Additionally, dimerization of 5'L impairs LysRS-5'L interaction. Furthermore, among various regions of 5'L, both the primer binding site/TLE domain and the stem-loop 3 are important for LysRS interaction, whereas the dimerization initiation site and the splicing donor plays a minor role. In contrast, the presence of the transacting responsive and the polyadenylation signal hairpins slightly inhibit LysRS binding. These findings reveal that the conformation and various regions of the 5'L of HIV-1 genome regulate its interaction with human LysRS and the reverse transcription primer release process.


Subject(s)
Genome, Viral , HIV-1 , Lysine-tRNA Ligase , Nucleic Acid Conformation , Reverse Transcription , Lysine-tRNA Ligase/metabolism , Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/genetics , Humans , HIV-1/genetics , HIV-1/enzymology , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , 5' Untranslated Regions , Protein Binding
3.
BMC Microbiol ; 23(1): 396, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38087203

ABSTRACT

Malaria is a persistent illness that is still a public health issue. On the other hand, marine organisms are considered a rich source of anti­infective drugs and other medically significant compounds. Herein, we reported the isolation of the actinomycete associated with the Red Sea sponge Callyspongia siphonella. Using "one strain many compounds" (OSMAC) approach, a suitable strain was identified and then sub-cultured in three different media (M1, ISP2 and OLIGO). The extracts were evaluated for their in-vitro antimalarial activity against Plasmodium falciparum strain and subsequently analyzed by Liquid chromatography coupled with high-resolution mass spectrometry (LC-HR-MS). In addition, MetaboAnalyst 5.0 was used to statistically analyze the LC-MS data. Finally, Molecular docking was carried out for the dereplicated metabolites against lysyl-tRNA synthetase (PfKRS1). The phylogenetic study of the 16S rRNA sequence of the actinomycete isolate revealed its affiliation to Streptomyces genus. Antimalarial screening revealed that ISP2 media is the most active against Plasmodium falciparum strain. Based on LC-HR-MS based metabolomics and multivariate analyses, the static cultures of the media, ISP2 (ISP2-S) and M1 (M1-S), are the optimal media for metabolites production. OPLS-DA suggested that quinone derivatives are abundant in the extracts with the highest antimalarial activity. Fifteen compounds were identified where eight of these metabolites were correlated to the observed antimalarial activity of the active extracts. According to molecular docking experiments, saframycin Y3 and juglomycin E showed the greatest binding energy scores (-6.2 and -5.13) to lysyl-tRNA synthetase (PfKRS1), respectively. Using metabolomics and molecular docking investigation, the quinones, saframycin Y3 (5) and juglomycin E (1) were identified as promising antimalarial therapeutic candidates. Our approach can be used as a first evaluation stage in natural product drug development, facilitating the separation of chosen metabolites, particularly biologically active ones.


Subject(s)
Actinobacteria , Antimalarials , Callyspongia , Lysine-tRNA Ligase , Animals , Antimalarials/pharmacology , Actinobacteria/genetics , Actinobacteria/chemistry , Callyspongia/chemistry , Actinomyces/genetics , Indian Ocean , Phylogeny , RNA, Ribosomal, 16S/genetics , Molecular Docking Simulation , Lysine-tRNA Ligase/genetics , Plasmodium falciparum
4.
Nucleic Acids Res ; 51(22): 12111-12123, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37933844

ABSTRACT

Human lysyl-tRNA synthetase (LysRS) was previously shown to be re-localized from its normal cytoplasmic location in a multi-aminoacyl-tRNA synthetase complex (MSC) to the nucleus of HIV-1 infected cells. Nuclear localization depends on S207 phosphorylation but the nuclear function of pS207-LysRS in the HIV-1 lifecycle is unknown. Here, we show that HIV-1 replication was severely reduced in a S207A-LysRS knock-in cell line generated by CRISPR/Cas9; this effect was rescued by S207D-LysRS. LysRS phosphorylation up-regulated HIV-1 transcription, as did direct transfection of Ap4A, an upstream transcription factor 2 (USF2) activator that is synthesized by pS207-LysRS. Overexpressing an MSC-derived peptide known to stabilize LysRS MSC binding inhibited HIV-1 replication. Transcription of HIV-1 proviral DNA and other USF2 target genes was reduced in peptide-expressing cells. We propose that nuclear pS207-LysRS generates Ap4A, leading to activation of HIV-1 transcription. Our results suggest a new role for nuclear LysRS in facilitating HIV-1 replication and new avenues for antiviral therapy.


Subject(s)
Cell Nucleus , HIV-1 , Lysine-tRNA Ligase , Humans , DNA/metabolism , HIV-1/physiology , Lysine-tRNA Ligase/metabolism , Peptides/metabolism , Phosphorylation , Proviruses/metabolism , Cell Nucleus/metabolism , Cell Nucleus/virology , Virus Replication
5.
J Clin Immunol ; 43(8): 2115-2125, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37770806

ABSTRACT

Biallelic KARS1 mutations cause KARS-related diseases, a rare syndromic condition encompassing central and peripheral nervous system impairment, heart and liver disease, and deafness. KARS1 encodes the t-RNA synthase of lysine, an aminoacyl-tRNA synthetase, involved in different physiological mechanisms (such as angiogenesis, post-translational modifications, translation initiation, autophagy and mitochondrial function). Although patients with immune-hematological abnormalities have been individually described, results have not been collectively discussed and functional studies investigating how KARS1 mutations affect B cells have not been performed. Here, we describe one patient with severe developmental delay, sensoneurinal deafness, acute disseminated encephalomyelitis, hypogammaglobulinemia and recurrent infections. Pathogenic biallelic KARS1 variants (Phe291Val/ Pro499Leu) were associated with impaired B cell metabolism (decreased mitochondrial numbers and activity). All published cases of KARS-related diseases were identified. The corresponding authors and researchers involved in the diagnosis of inborn errors of immunity or genetic syndromes were contacted to obtain up-to-date clinical and immunological information. Seventeen patients with KARS-related diseases were identified. Recurrent/severe infections (9/17) and B cell abnormalities (either B cell lymphopenia [3/9], hypogammaglobulinemia [either IgG, IgA or IgM; 6/15] or impaired vaccine responses [4/7]) were frequently reported. Immunoglobulin replacement therapy was given in five patients. Full immunological assessment is warranted in these patients, who may require detailed investigation and specific supportive treatment.


Subject(s)
Agammaglobulinemia , Amino Acyl-tRNA Synthetases , Lysine-tRNA Ligase , Primary Immunodeficiency Diseases , Humans , Agammaglobulinemia/diagnosis , Agammaglobulinemia/genetics , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Deafness/genetics , Lysine-tRNA Ligase/genetics , Lysine-tRNA Ligase/metabolism , Mutation/genetics , Primary Immunodeficiency Diseases/genetics
6.
Front Cell Infect Microbiol ; 13: 1236814, 2023.
Article in English | MEDLINE | ID: mdl-37600947

ABSTRACT

Introduction: Cryptosporidiosis is a leading cause of diarrheal-associated morbidity and mortality, predominantly affecting children under 5 years old in low-and-middle-income countries. There is no effective treatment and no vaccine. New therapeutics are emerging from drug discovery efforts. It is critical that mode of action studies are performed alongside drug discovery to ensure the best clinical outcomes. Unfortunately, technology to identify and validate drug targets for Cryptosporidium is severely lacking. Methods: We used C. parvum lysyl-tRNA synthetase (CpKRS) and DDD01510706 as a target-compound pair to develop both chemical and genetic tools for mode of action studies for Cryptosporidium. We adapted thermal proteome profiling (TPP) for Cryptosporidium, an unbiased approach for target identification. Results: Using TPP we identified the molecular target of DDD01510706 and confirm that it is CpKRS. Genetic tools confirm that CpKRS is expressed throughout the life cycle and that this target is essential for parasite survival. Parasites genetically modified to over-express CpKRS or parasites with a mutation at the compound-binding site are resistant to treatment with DDD01510706. We leveraged these mutations to generate a second drug selection marker for genetic modification of Cryptosporidium, KRSR. This second selection marker is interchangeable with the original selection marker, NeoR, and expands the range of reverse genetic approaches available to study parasite biology. Due to the sexual nature of the Cryptosporidium life cycle, parental strains containing different drug selection markers can be crossed in vivo. Discussion: Selection with both drug markers produces highly efficient genetic crosses (>99% hybrid progeny), paving the way for forward genetics approaches in Cryptosporidium.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Lysine-tRNA Ligase , Child , Humans , Child, Preschool , Cryptosporidium/genetics , Cryptosporidiosis/drug therapy , Lysine-tRNA Ligase/genetics , Binding Sites , Diarrhea , Propionibacterium acnes
7.
Front Immunol ; 14: 1154108, 2023.
Article in English | MEDLINE | ID: mdl-37234172

ABSTRACT

MRGPRX2, a G-protein-coupled-seven transmembrane domain receptor, is mainly expressed in mast cells and neurons and is involved in skin immunity and pain. It is implicated in the pathophysiology of non-IgE-mediated immediate hypersensitivity and has been related to adverse drug reactions. Moreover, a role has been proposed in asthma, atopic dermatitis, contact dermatitis, and chronic spontaneous urticaria. Although it has a prominent role in disease, its signaling transduction is poorly understood. This study shows that MRGPRX2 activation with substance P increased Lysyl t-RNA synthetase (LysRS) translocation to the nucleus. LysRS is a moonlighting protein with a dual role in protein translation and IgE signaling in mast cells. Upon allergen- IgE-FcεRI crosslinking, LysRS is translocated to the nucleus and activates microphthalmia-associated transcription factor (MITF) activity. In this study, we found that MRGPRX2 triggering led to MITF phosphorylation and increased MITF activity. Therefore, overexpression of LysRS increased MITF activity after MRGPRX2 activation. MITF silencing reduced MRGPRX2-dependent calcium influx and mast cell degranulation. Furthermore, a MITF pathway inhibitor, ML329, impaired MITF expression, calcium influx, and mast cell degranulation. Moreover, drugs such as atracurium, vancomycin, and morphine, reported to induce MRGPRX2-dependent degranulation, increased MITF activity. Altogether, our data show that MRGPRX2 signaling enhances MITF activity, and its abrogation by silencing or inhibition resulted in defective MRGPRX2 degranulation. We conclude that MRGPRX2 signaling involves the LysRS and MITF pathway. Thus, MITF and MITF-dependent targets may be considered therapeutic approaches to treat pathologies where MRGPRX2 is implicated.


Subject(s)
Lysine-tRNA Ligase , Lysine-tRNA Ligase/metabolism , Receptors, G-Protein-Coupled/metabolism , Calcium/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Signal Transduction , Mast Cells
8.
Chembiochem ; 24(12): e202300154, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37158666

ABSTRACT

Cladosporin, a unique natural product from the fungus Cladosporium cladosporioides, exhibits nanomolar inhibitory activity against Plasmodium falciparum by targeting its cytosolic lysyl-tRNA synthetase (PfKRS) to inhibit protein biosynthesis. Due to its exquisite selectivity towards pathogenic parasites, cladosporin has become a very promising lead compound for developing antiparasitic drugs to treat drug-resistant malaria and cryptosporidiosis infections. Here we review the recent research progress of cladosporin covering aspects of the chemical synthesis, biosynthesis, bioactivity, cellular target and structure-activity relationship.


Subject(s)
Antimalarials , Lysine-tRNA Ligase , Malaria, Falciparum , Malaria , Humans , Isocoumarins/metabolism , Plasmodium falciparum/metabolism , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antimalarials/metabolism , Malaria, Falciparum/drug therapy
9.
Nat Commun ; 13(1): 5992, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36220877

ABSTRACT

Tuberculosis is a major global cause of both mortality and financial burden mainly in low and middle-income countries. Given the significant and ongoing rise of drug-resistant strains of Mycobacterium tuberculosis within the clinical setting, there is an urgent need for the development of new, safe and effective treatments. Here the development of a drug-like series based on a fused dihydropyrrolidino-pyrimidine scaffold is described. The series has been developed against M. tuberculosis lysyl-tRNA synthetase (LysRS) and cellular studies support this mechanism of action. DDD02049209, the lead compound, is efficacious in mouse models of acute and chronic tuberculosis and has suitable physicochemical, pharmacokinetic properties and an in vitro safety profile that supports further development. Importantly, preliminary analysis using clinical resistant strains shows no pre-existing clinical resistance towards this scaffold.


Subject(s)
Lysine-tRNA Ligase , Mycobacterium tuberculosis , Tuberculosis , Animals , Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/genetics , Lysine-tRNA Ligase/pharmacology , Mice , Mycobacterium tuberculosis/genetics , Tuberculosis/drug therapy
10.
Cancer Biomark ; 35(1): 99-109, 2022.
Article in English | MEDLINE | ID: mdl-35912727

ABSTRACT

BACKGROUND: Although lysyl-tRNA synthetase (KARS1) is predominantly located in the cytosol, it is also present in the plasma membrane where it stabilizes the 67-kDa laminin receptor (67LR). This physical interaction is strongly increased under metastatic conditions. However, the dynamic interaction of these two proteins and the turnover of KARS1 in the plasma membrane has not previously been investigated. OBJECTIVE: Our objective in this study was to identify the membranous location of KARS1 and 67LR and investigate if this changes with the developmental stage of epithelial ovarian cancer (EOC) and treatment with the inhibitor BC-K01. In addition, we evaluated the therapeutic efficacy of BC-K01 in combination with paclitaxel, as the latter is frequently used to treat patients with EOC. METHODS: Overall survival and prognostic significance were determined in EOC patients according to KARS1 and 67LR expression levels as determined by immunohistochemistry. Changes in the location and expression of KARS1 and 67LR were investigated in vitro after BC-K01 treatment. The effects of this compound on tumor growth and apoptosis were evaluated both in vitro and in vivo. RESULTS: EOC patients with high KARS1 and high 67LR expression had lower progression-free survival rates than those with low expression levels of these two markers. BC-K01 reduced cell viability and increased apoptosis in combination with paclitaxel in EOC cell xenograft mouse models. BC-K01 decreased membranous KARS1 expression, causing a reduction in 67LR membrane expression in EOC cell lines. BC-K01 significantly decreased in vivo tumor weight and number of nodules, especially when used in combination with paclitaxel. CONCLUSIONS: Co-localization of KARS1 and 67LR in the plasma membrane contributes to EOC progression. Inhibition of the KARS1-67LR interaction by BC-K01 suppresses metastasis in EOC.


Subject(s)
Lysine-tRNA Ligase , Ovarian Neoplasms , Animals , Carcinoma, Ovarian Epithelial/drug therapy , Cell Adhesion Molecules , Female , Humans , Lysine-tRNA Ligase/metabolism , Mice , Ovarian Neoplasms/drug therapy , Paclitaxel/pharmacology , Receptors, Laminin/genetics , Receptors, Laminin/metabolism , Ribosomal Proteins/genetics
11.
ACS Infect Dis ; 8(9): 1962-1974, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36037410

ABSTRACT

There is a pressing need for new medicines to prevent and treat malaria. Most antimalarial drug discovery is reliant upon phenotypic screening. However, with the development of improved target validation strategies, target-focused approaches are now being utilized. Here, we describe the development of a toolkit to support the therapeutic exploitation of a promising target, lysyl tRNA synthetase (PfKRS). The toolkit includes resistant mutants to probe resistance mechanisms and on-target engagement for specific chemotypes; a hybrid KRS protein capable of producing crystals suitable for ligand soaking, thus providing high-resolution structural information to guide compound optimization; chemical probes to facilitate pulldown studies aimed at revealing the full range of specifically interacting proteins and thermal proteome profiling (TPP); as well as streamlined isothermal TPP methods to provide unbiased confirmation of on-target engagement within a biologically relevant milieu. This combination of tools and methodologies acts as a template for the development of future target-enabling packages.


Subject(s)
Antimalarials , Lysine-tRNA Ligase , Malaria , Antimalarials/chemistry , Antimalarials/pharmacology , Drug Discovery , Humans , Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/genetics , Lysine-tRNA Ligase/metabolism , Plasmodium falciparum/metabolism
12.
Viruses ; 14(7)2022 07 16.
Article in English | MEDLINE | ID: mdl-35891536

ABSTRACT

Interactions between lysyl-tRNA synthetase (LysRS) and HIV-1 Gag facilitate selective packaging of the HIV-1 reverse transcription primer, tRNALys3. During HIV-1 infection, LysRS is phosphorylated at S207, released from a multi-aminoacyl-tRNA synthetase complex and packaged into progeny virions. LysRS is critical for proper targeting of tRNALys3 to the primer-binding site (PBS) by specifically binding a PBS-adjacent tRNA-like element (TLE), which promotes release of the tRNA proximal to the PBS. However, whether LysRS phosphorylation plays a role in this process remains unknown. Here, we used a combination of binding assays, RNA chemical probing, and small-angle X-ray scattering to show that both wild-type (WT) and a phosphomimetic S207D LysRS mutant bind similarly to the HIV-1 genomic RNA (gRNA) 5'UTR via direct interactions with the TLE and stem loop 1 (SL1) and have a modest preference for binding dimeric gRNA. Unlike WT, S207D LysRS bound in an open conformation and increased the dynamics of both the PBS region and SL1. A new working model is proposed wherein a dimeric phosphorylated LysRS/tRNA complex binds to a gRNA dimer to facilitate tRNA primer release and placement onto the PBS. Future anti-viral strategies that prevent this host factor-gRNA interaction are envisioned.


Subject(s)
HIV Seropositivity , HIV-1 , Lysine-tRNA Ligase , 5' Untranslated Regions , HIV Seropositivity/genetics , HIV-1/genetics , HIV-1/metabolism , Humans , Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/genetics , Nucleic Acid Conformation , RNA, Guide, Kinetoplastida , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism
13.
Cell Mol Life Sci ; 79(2): 128, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35133502

ABSTRACT

The evolutionary necessity of aminoacyl-tRNA synthetases being associated into complex is unknown. Human lysyl-tRNA synthetase (LysRS) is one component of the multi-tRNA synthetase complex (MSC), which is not only critical for protein translation but also involved in multiple cellular pathways such as immune response, cell migration, etc. Here, combined with crystallography, CRISPR/Cas9-based genome editing, biochemistry, and cell biology analyses, we show that the structures of LysRSs from metazoan are more dynamic than those from single-celled organisms. Without the presence of MSC scaffold proteins, such as aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2), human LysRS is free from the MSC. The interaction with AIMP2 stabilizes the closed conformation of LysRS, thereby protects the essential aminoacylation activity under stressed conditions. Deleting AIMP2 from the human embryonic kidney 293 cells leads to retardation in cell growth in nutrient deficient mediums. Together, these results suggest that the evolutionary emergence of the MSC in metazoan might be to protect the aminoacyl-tRNA synthetase components from being modified or recruited for use in other cellular pathways.


Subject(s)
Lysine-tRNA Ligase/metabolism , Nuclear Proteins/metabolism , Aminoacylation , HEK293 Cells , Humans , Protein Binding , Protein Biosynthesis
14.
Neuropediatrics ; 53(1): 65-68, 2022 02.
Article in English | MEDLINE | ID: mdl-34448181

ABSTRACT

KARS encodes lysyl-tRNA synthetase, which is essential for protein translation. KARS mutations sometimes cause impairment of cytoplasmic and mitochondrial protein synthesis, and sometimes lead to progressive leukodystrophies with mitochondrial signature and psychomotor regression, and follow a rapid regressive course to premature death. There has been no disease-modifying therapy beyond supportive treatment. We present a 5-year-old male patient with an asymmetrical leukodystrophy who showed overt evidence of mitochondrial dysfunction, including elevation of lactate on brain MR spectroscopy and low oxygen consumption rate in fibroblasts. We diagnosed this patient's condition as KARS-related leukodystrophy with cerebral calcification, congenital deafness, and evidence of mitochondrial dysfunction. We employed a ketogenic diet as well as multiple vitamin supplementation with the intention to alleviate mitochondrial dysfunction. The patient showed alleviation of his psychomotor regression and even partial restoration of his abilities within 4 months. This is an early report of a potential disease-modifying therapy for KARS-related progressive leukodystrophy without appreciable adverse effects.


Subject(s)
Deafness , Diet, Ketogenic , Lysine-tRNA Ligase , Child, Preschool , Humans , Lysine-tRNA Ligase/genetics , Lysine-tRNA Ligase/metabolism , Male , Mitochondria/genetics , Mitochondria/metabolism , Mutation
15.
Protein Sci ; 30(9): 1793-1803, 2021 09.
Article in English | MEDLINE | ID: mdl-34184352

ABSTRACT

Malaria is a parasitic illness caused by the genus Plasmodium from the apicomplexan phylum. Five plasmodial species of P. falciparum (Pf), P. knowlesi, P. malariae, P. ovale, and P. vivax (Pv) are responsible for causing malaria in humans. According to the World Malaria Report 2020, there were 229 million cases and ~ 0.04 million deaths of which 67% were in children below 5 years of age. While more than 3 billion people are at risk of malaria infection globally, antimalarial drugs are their only option for treatment. Antimalarial drug resistance keeps arising periodically and thus threatens the main line of malaria treatment, emphasizing the need to find new alternatives. The availability of whole genomes of P. falciparum and P. vivax has allowed targeting their unexplored plasmodial enzymes for inhibitor development with a focus on multistage targets that are crucial for parasite viability in both the blood and liver stages. Over the past decades, aminoacyl-tRNA synthetases (aaRSs) have been explored as anti-bacterial and anti-fungal drug targets, and more recently (since 2009) aaRSs are also the focus of antimalarial drug targeting. Here, we dissect the structure-based knowledge of the most advanced three aaRSs-lysyl- (KRS), prolyl- (PRS), and phenylalanyl- (FRS) synthetases in terms of development of antimalarial drugs. These examples showcase the promising potential of this family of enzymes to provide druggable targets that stall protein synthesis upon inhibition and thereby kill malaria parasites selectively.


Subject(s)
Amino Acyl-tRNA Synthetases/chemistry , Antimalarials/chemistry , Enzyme Inhibitors/chemistry , Lysine-tRNA Ligase/chemistry , Phenylalanine-tRNA Ligase/chemistry , Plasmodium falciparum/drug effects , Protozoan Proteins/chemistry , Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Antimalarials/pharmacology , Catalytic Domain , Drug Discovery , Enzyme Inhibitors/pharmacology , Gene Expression , Humans , Lysine-tRNA Ligase/antagonists & inhibitors , Lysine-tRNA Ligase/genetics , Lysine-tRNA Ligase/metabolism , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Models, Molecular , Phenylalanine-tRNA Ligase/antagonists & inhibitors , Phenylalanine-tRNA Ligase/genetics , Phenylalanine-tRNA Ligase/metabolism , Plasmodium falciparum/chemistry , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
16.
Nucleic Acids Res ; 49(11): 6128-6143, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34086938

ABSTRACT

Many non-coding RNAs with known functions are structurally conserved: their intramolecular secondary and tertiary interactions are maintained across evolutionary time. Consequently, the presence of conserved structure in multiple sequence alignments can be used to identify candidate functional non-coding RNAs. Here, we present a bioinformatics method that couples iterative homology search with covariation analysis to assess whether a genomic region has evidence of conserved RNA structure. We used this method to examine all unannotated regions of five well-studied fungal genomes (Saccharomyces cerevisiae, Candida albicans, Neurospora crassa, Aspergillus fumigatus, and Schizosaccharomyces pombe). We identified 17 novel structurally conserved non-coding RNA candidates, which include four H/ACA box small nucleolar RNAs, four intergenic RNAs and nine RNA structures located within the introns and untranslated regions (UTRs) of mRNAs. For the two structures in the 3' UTRs of the metabolic genes GLY1 and MET13, we performed experiments that provide evidence against them being eukaryotic riboswitches.


Subject(s)
RNA, Fungal/chemistry , RNA, Untranslated/chemistry , 3' Untranslated Regions , Computational Biology/methods , Genome, Fungal , Introns , Lysine-tRNA Ligase/genetics , Markov Chains , Nucleic Acid Conformation , RNA, Small Nucleolar/chemistry , Ribosomal Proteins/genetics , Riboswitch , Sequence Alignment , Thioredoxins/genetics
17.
Genet Med ; 23(10): 1933-1943, 2021 10.
Article in English | MEDLINE | ID: mdl-34172899

ABSTRACT

PURPOSE: Pathogenic variants in Lysyl-tRNA synthetase 1 (KARS1) have increasingly been recognized as a cause of early-onset complex neurological phenotypes. To advance the timely diagnosis of KARS1-related disorders, we sought to delineate its phenotype and generate a disease model to understand its function in vivo. METHODS: Through international collaboration, we identified 22 affected individuals from 16 unrelated families harboring biallelic likely pathogenic or pathogenic in KARS1 variants. Sequencing approaches ranged from disease-specific panels to genome sequencing. We generated loss-of-function alleles in zebrafish. RESULTS: We identify ten new and four known biallelic missense variants in KARS1 presenting with a moderate-to-severe developmental delay, progressive neurological and neurosensory abnormalities, and variable white matter involvement. We describe novel KARS1-associated signs such as autism, hyperactive behavior, pontine hypoplasia, and cerebellar atrophy with prevalent vermian involvement. Loss of kars1 leads to upregulation of p53, tissue-specific apoptosis, and downregulation of neurodevelopmental related genes, recapitulating key tissue-specific disease phenotypes of patients. Inhibition of p53 rescued several defects of kars1-/- knockouts. CONCLUSION: Our work delineates the clinical spectrum associated with KARS1 defects and provides a novel animal model for KARS1-related human diseases revealing p53 signaling components as potential therapeutic targets.


Subject(s)
Hearing Loss , Lysine-tRNA Ligase/genetics , Neurodevelopmental Disorders , Alleles , Animals , Disease Models, Animal , Hearing Loss/genetics , Humans , Neurodevelopmental Disorders/genetics , Phenotype , Zebrafish/genetics
18.
J Autoimmun ; 122: 102680, 2021 08.
Article in English | MEDLINE | ID: mdl-34120070

ABSTRACT

OBJECTIVE: Anti-aminoacyl-tRNA synthetase (anti-ARS) antibodies are useful for identifying a clinical subset of patients with idiopathic inflammatory myopathies (IIMs). Anti-OJ antibodies, which recognize multi-enzyme synthetase complexes including isoleucyl-tRNA synthetase (IARS) and lysyl-tRNA synthetase (KARS), are among the anti-ARS antibodies. Although testing antibodies to other ARSs have been used clinically, no validated immunoassays for detecting anti-OJ antibodies are available. We aimed to establish an anti-OJ ELISA. METHODS: Serum samples were collected from 279 patients with IIMs and 22 patients with idiopathic interstitial pneumonia. Sixty-four of the samples that had been confirmed to be negative for anti-OJ by standard immunoprecipitation were used as the negative control, and 12 anti-OJ-positive reference sera were used as the positive control. Antibodies to IARS and KARS were assayed by ELISA using biotinylated recombinant proteins generated by in vitro transcription/translation. RESULTS: The anti-OJ-positive sera strongly reacted with the KARS and IARS recombinant proteins in ELISA. Although all 12 reference sera were positive in the anti-KARS ELISA, 4 of the 64 anti-OJ-negative sera were also weakly positive. The sensitivity and the specificity were 100% and 93.8%, respectively. Since our anti-KARS ELISA performed well, showing a high agreement with the results for immunoprecipitation (Cohen's κ > 0.8), the remaining 237 samples were also tested. Thirteen anti-KARS-positive sera were newly found by ELISA, all of which were anti-OJ positive by immunoprecipitation. CONCLUSION: Immunoassays for detecting anti-OJ antibodies using KARS and IARS recombinant proteins were developed. Our ELISAs performed well, with very high agreement of the results by immunoprecipitation and can be applied to the first reliable, easy-to-use measurement assays for anti-OJ antibodies.


Subject(s)
Autoantibodies/isolation & purification , Isoleucine-tRNA Ligase/metabolism , Lysine-tRNA Ligase/metabolism , Myositis/diagnosis , Adult , Aged , Autoantibodies/blood , Autoantibodies/immunology , Autoantibodies/metabolism , Case-Control Studies , Enzyme-Linked Immunosorbent Assay/methods , Feasibility Studies , Female , Healthy Volunteers , Humans , Isoleucine-tRNA Ligase/immunology , Lysine-tRNA Ligase/immunology , Male , Middle Aged , Myositis/blood , Myositis/immunology , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Reproducibility of Results , Young Adult
19.
Hum Mutat ; 42(6): 745-761, 2021 06.
Article in English | MEDLINE | ID: mdl-33942428

ABSTRACT

KARS1 encodes a lysyl-transfer RNA synthetase (LysRS) that links lysine to its cognate transfer RNA. Two different KARS1 isoforms exert functional effects in cytosol and mitochondria. Bi-allelic pathogenic variants in KARS1 have been associated to sensorineural hearing and visual loss, neuropathy, seizures, and leukodystrophy. We report the clinical, biochemical, and neuroradiological features of nine individuals with KARS1-related disorder carrying 12 different variants with nine of them being novel. The consequences of these variants on the cytosol and/or mitochondrial LysRS were functionally validated in yeast mutants. Most cases presented with severe neurological features including congenital and progressive microcephaly, seizures, developmental delay/intellectual disability, and cerebral atrophy. Oculo-motor dysfunction and immuno-hematological problems were present in six and three cases, respectively. A yeast growth defect of variable severity was detected for most variants on both cytosolic and mitochondrial isoforms. The detrimental effects of two variants on yeast growth were partially rescued by lysine supplementation. Congenital progressive microcephaly, oculo-motor dysfunction, and immuno-hematological problems are emerging phenotypes in KARS1-related disorder. The data in yeast emphasize the role of both mitochondrial and cytosolic isoforms in the pathogenesis of KARS1-related disorder and supports the therapeutic potential of lysine supplementation at least in a subset of patients.


Subject(s)
Abnormalities, Multiple/genetics , Lysine-tRNA Ligase/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Adolescent , Alleles , Brain Diseases, Metabolic, Inborn/complications , Brain Diseases, Metabolic, Inborn/genetics , Brain Diseases, Metabolic, Inborn/pathology , Child , Child, Preschool , Cohort Studies , Cytosol/metabolism , Disease Progression , Female , Homozygote , Humans , Infant , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Microcephaly/complications , Microcephaly/genetics , Microcephaly/pathology , Mitochondria/genetics , Mitochondria/metabolism , Organisms, Genetically Modified , Pedigree , Phenotype , Saccharomyces cerevisiae
20.
Eur J Med Chem ; 218: 113405, 2021 Jun 05.
Article in English | MEDLINE | ID: mdl-33831781

ABSTRACT

Recently, non-canonical roles of Lysyl-tRNA Synthetase (KRS), which is associated with cell migration and cancer metastasis, have been reported. Therefore, KRS has emerged as a promising target for the treatment of cell migration-related diseases, especially cancer metastasis, although the satisfying chemical inhibitors targeting KRS have not yet been identified. Here, we report the discovery of novel, mechanistically unique, and potent cell migration inhibitors targeting KRS, including the chemical and biological studies on the most effective N,N-dialkylthiazolo [5,4-b]pyridin-2-amine (SL-1910). SL-1910 exhibited highly potent migration inhibition (EC50 = 81 nM against the mutant KRS-overexpressed MDA-MB-231 cells) and was superior to the previously reported KRS inhibitor (migration inhibitory EC50 = 8.5 µM against H226 cells). The KRS protein binding study via fluorescence-based binding titration and KRS protein 2D-NMR mapping study, in vitro concentration-dependent cell migration inhibition, and in vivo anti-metastatic activity of SL-1910, which consists of a new scaffold, have been reported in this study. In addition, in vitro absorption, distribution, metabolism, and excretion studies and mouse pharmacokinetics experiments for SL-1910 were conducted.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Lysine-tRNA Ligase/antagonists & inhibitors , Pyridines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Female , Humans , Lysine-tRNA Ligase/metabolism , Mammary Neoplasms, Experimental/diagnostic imaging , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mice , Mice, Inbred BALB C , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...